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Abstract

Background

Abdominal aortic aneurysm (AAA) is a pathological enlargement of infrarenal aorta close to

the aortic bifurcation, and it is an important cause of mortality in the elderly. Therefore, the

biomarker identification for early diagnosis is of great interest for clinical benefit. It is known

that microRNAs (miRNAs) have important roles via target genes regulation in many dis-

eases. This study aimed to identify miRNAs and their target genes involved in the pathogen-

esis of AAA.

Methods

Tissue samples were obtained from patients who underwent AAA surgery and from organ

donors (control group). Quantitative PCR Array was applied to assess 84 genes and 384

miRNAs aiming to identify differentially expressed targets (AAA n = 6, control n = 6), fol-

lowed by validation in a new cohort (AAA n = 18, control n = 6) by regular qPCR. The

functional interaction between validated miRNAs and target genes was performed by the

Ingenuity Pathway Analysis (IPA) software.

Results

The screening cohort assessed by PCR array identified 10 genes and 59 miRNAs differen-

tially expressed (�2-fold change, p<0.05). Among these, IPA identified 5 genes and 9 miR-

NAs with paired interaction. ALOX5, PTGIS, CX3CL1 genes, and miR-193a-3p, 125b-5p,

150-5p maintained a statistical significance in the validation cohort. IPA analysis based on

the validated genes and miRNAs revealed that eicosanoid and metalloproteinase/TIMP syn-

thesis are potentially involved in AAA.
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Conclusion

Paired interactions of differentially expressed ALOX5, PTGIS, CX3CL1 genes, and miR-

193b-3p, 125b-5p, 150-5p revealed a potentially significant role of the eicosanoid synthesis

and metalloproteinase/TIMP pathways in the AAA pathogenesis.

Introduction

Abdominal aortic aneurysm (AAA) is a pathological enlargement of infrarenal aorta close to

the aortic bifurcation, and it is an important cause of mortality in the elderly. The AAA inci-

dence in individuals older than 60 years of age is higher in men than in women; 5% vs. 1%,

respectively [1,2]. Smoking is the main risk factor for the expansion of AAA [3] and other

risks include age, male gender, lower HDL cholesterol levels, and genetic susceptibility [4,5].

Ultrasonography (US) is routinely used to diagnose and monitoring AAA, with sensitivity

and specificity close to 100% in the late stage of the disease; most cases are detected by chance

during routine abdominal US [6,7]. Aortic diameter larger than 3 cm is suggestive of AAA;

aortic diameter larger than 5 cm shows worse outcome, requiring intense monitoring [8] and

treatment to reduce aortic inflammation, proteolysis, and support vascular smooth muscle cell

recovery [6]. The annual rupture risk increases with aortic enlargement, reaching 30% in AAA

larger than 7 cm [9]. In these cases, surgical repair is advised; however, preoperative risk also

has to be taken into consideration.

The mechanisms underlying AAA are complex and not completely understood. However,

some studies suggest that AAA development is mainly associated with increased biomechani-

cal stress, proteolytic degeneration of elastin and collagen in the aortic wall, inflammation pro-

cesses, genetic factors, and immune responses [10,11]. Some molecules, such as CCL22 [12]

and CTLA4 [13] are suggested as biomarkers for AAA diagnosis.

Adequate regulation of gene expression is critical for all cellular processes and its dysregula-

tion may contribute to disease. Gene expression can be regulated at the post-transcriptional

level by small non-coding RNAs, known as microRNAs (miRNA), which are short, single-

stranded RNAs (approximately 22 bp) that control mRNA stability or translational repression

via base pairing with regions within the 3’ untranslated region of the target RNA [14]. The

miRNAs are found not only inside the cells, but also in biological fluids such as serum, plasma,

urine, and saliva [15], and can be delivered into different tissues through vesicles and lipopro-

tein transport [16]. The role and implications of miRNAs in animal models and their relevance

to human AAA have also been discussed [17]. The circulating miR-455-3p has been suggested

as a promising biomarker for the early diagnosis of AAA [18]. However, the role of miRNAs

in AAA development remains to be clarified.

To date, the available treatments for AAA are surgical or interventional using different

kinds of prosthesis, and new targets need to be identified in order to bring alternatives to diag-

nosis and therapy. Here, we analyzed miRNA and mRNA profiles of human AAA tissues and

applied miRNA-mRNA interactions to predict molecular pathways that may outline potential

targets for therapeutic approaches to control AAA progression.

Materials and methods

Ethics statement

This study was approved by the ethics committee of the Dante Pazzanese Institute of Cardiol-

ogy in Sao Paulo, Brazil (number 1470/2014). Each participant signed an informed consent
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after receiving a verbal explanation of the study. Patients who had cognitive deficit were not

enrolled. The donation term was signed by responsible relatives in accordance with the Brazil-

ian laws for organ and tissue donation.

Abdominal aortic tissues samples

Abdominal aortic tissues were obtained from patients undergoing AAA repair surgery and

from brain-dead but heart beating organ donors. The characteristics of the screening and vali-

dation cohort are shown in Table 1. The excised segments of the abdominal aorta were col-

lected in RNAlater1 stabilization solution (Ambion Inc., MN, USA) and stored at -20 ˚C until

assayed.

To check if the tissues from organ donors were adequate to use as a control, we applied

Verhoeff´s histological staining to assess elastin, an extracellular matrix protein. The image

was acquired by a Scanscope CS system unit (Aperio Technologies Inc., CA, USA), with an

Olympus UPlanSApo objective lens, with specifications of 20x magnification power and 0.75

numerical aperture attached to the scanner. Images were analyzed using the Aperio program

ImageScope View software (Aperio Technologies, Inc., CA, USA). Results were reported as the

positive staining percentage area per total tissue area.

RNA extraction and qPCR array analysis

Tissue samples from AAA (n = 6) and control group (n = 6) were randomly selected for qPCR

array analysis.

To obtain mRNA, 20 mg of aortic tissues containing all layers were firstly homogenized

by TissueRuptor1 (Qiagen, GmbH, Hilden, Germany), followed by extraction using RNeasy

Microarray Tissue Mini Kit (Qiagen, GmbH, Hilden, Germany), according to manufacturer

recommendations. RNA quantification was determined using a Qubit1 spectrophotometer

system (Life Technologies, Foster City, CA, USA) and sample quality was assessed by Agilent

Technologies 2200 Tape Station (Agilent Technologies Inc., USA). All samples had RNA integ-

rity number (RIN) higher than eight, therefore, they were suitable for downstream processing.

The RT2 First Strand Kit (Qiagen, GmbH, Hilden, Germany) was used for cDNA synthesis

and quality control was performed using RT2 RNA QC RT2 Profiler PCR Array plates

Table 1. Biodemographic characteristics of screening and validation cohort.

Variable Screening Cohort Validation Cohort

AAA (n = 6) OD (n = 6) p-value AAA (n = 18) OD (n = 6) p-value

Age (year, mean ± SD) 68.8 (± 5.5) 42.8 (± 9.3) <0.001 71.0 (± 5.6) 49.5 (± 5.1) <0.001

Male (n,%) 5 (83,3) 3 (50) 0.545 14 (77.8) 2 (33.3) <0.001

Ever smoker (n,%) 5 (83,3) 2 (33.3) 0.242 16 (88.9) 5 (83.3) 0.422

Alcohol consumption (n,%) 3 (50) 2 (33.3) 1.000 5 (27.8) 2 (33.3) 0.441

Hypertension (n,%) 5 (83.3) 4 (66.7) 1.000 16 (88.9) 4 (66.7) <0.001

Dyslipidemia (n,%) 5 (83.3) 0 <0.05 10 (55.5) 0 <0.05

Diabetes (n,%) 2 (33.3) 0 <0.05 3 (16.7) 0 <0.05

Family history of CAD (n,%) 2 (33.3) 0 <0.05 2 (11.1) 0 <0.05

aneurysm diameter (cm, mean ± SD) 5.6 (± 0.89) <3.0 <0.05 5.9 (± 1.27) <3.0 <0.05

AAA: Abdominal aortic aneurysm; OD: organ donors; CAD: coronary artery disease

Data are shown as average and standard deviation for numeric variables and as count and percentage for categorical variables. The t-test was performed to compare

numeric variables and Fisher’s exact test was performed to compare categorical variables.

https://doi.org/10.1371/journal.pone.0222782.t001

Dysregulation of microRNAs and target genes in human abdominal aortic aneurysm

PLOS ONE | https://doi.org/10.1371/journal.pone.0222782 September 20, 2019 3 / 14

https://doi.org/10.1371/journal.pone.0222782.t001
https://doi.org/10.1371/journal.pone.0222782


(PAHS-999Z), which looked out for the presence of reverse transcription inhibitors, PCR

amplification efficiency, and DNA contamination.

The screening of candidate genes involved in AAA pathogenesis was performed by the

RotorGene1 Real-Time PCR system (Qiagen, Hilden, Germany) using RT2 Profiler PCR

Arrays (PAHS-015Z, Qiagen, Hilden, Germany). This array includes 84 genes involved in

angiogenesis, vasoconstriction, vasodilation, inflammatory response, apoptosis, cell adhesion

molecules, coagulation, and platelet activation.

The PCR cycling condition was set as follows: 1 cycle at 95 ˚C for 10 min, 40 cycles at 95 ˚C

for 15 s, and 60 ˚C for 30 s. The Qiagen web-based PCR array data analysis software was

applied to obtain fold change of gene expression. Genes showing�2-fold change and p-value

<0.05 were considered as differentially expressed. A cycle of threshold (Ct) value higher than

35 was considered as no amplification.

MicroRNA extraction and qPCR array analysis

The total RNA including miRNAs were isolated using RNeasy Fibrous Tissue Mini Kit (Qia-

gen, GmbH, Germany) according to the protocol. RNA was quantified using the RNA assay

kit in Qubit1 spectrophotometer. All samples showed RIN (RNA integrity number)>8.0 and

were suitable for downstream processing. An input of 800ng of total RNA was used to prepare

the cDNA following the miScript II RT protocol (Qiagen, Hilden, Germany). The quality con-

trol of cDNA samples was assessed by miScript miRNA QC PCR plates (MIHS-989ZE, Qiagen,

Hilden, Germany). Quantitative PCR was performed according to manual instructions in

QuantiStudio1 12k Flex Real-Time PCR system (Thermo Fisher Scientific, Waltham, MA,

USA) using Human miFinder 384HC miScript miRNA PCR Arrays (Qiagen, Hilden, Ger-

many). The PCR cycling conditions were set as follows: 1 cycle at 95 ˚C for 15 min; 40 cycles

of 3 step cycling: 94 ˚C for 15 s, 55 ˚C for 30 s and 70 ˚C for 30 s. The Ct values were submitted

to the Qiagen web-based PCR array data analysis software and the 2-ΔΔCt formula was used

to compare miRNA expression between groups. The global mean normalization method

was used to normalize the miRNA Cts [19]. The miRNAs showing� 2-fold change and p-

value < 0.05 were considered as differentially expressed. Ct values higher than 35 were not

included in the analysis.

Ingenuity Pathway Analysis1 (IPA)

Functional analysis was performed by IPA1 software (Qiagen, Hilden, Germany). Interactions

between differentially expressed miRNAs and target genes were assessed by opposite pairwise

analysis (Table 2), and Molecular Activation Prediction (MAP) analysis was applied to predict

Table 2. Differently expressed miRNA was paired up with the respective target gene by IPA pairing analysis.

miRNA Fold change p-value Target genes Fold change p-value

hsa-miRNA-1207-5p 9.3 0.037 CX3CL1 -5.8 0.017

hsa-miRNA-125b-5p -3.5 0.005 ALOX5 2.8 0.011

hsa-miRNA-150-5p 7.5 0.007 PTGIS -8.7 0.031

hsa-miRNA-16-5p 2.2 0.040 CX3CL1 -5.1 0.017

hsa-miRNA-182-5p 3.3 0.013 FN1 -2.9 0.041

hsa-miRNA-193b-3p -3.1 0.008 ALOX5 2.8 0.011

hsa-miRNA-200c-3p 2.1 0.015 FN1 -2.9 0.041

hsa-miRNA-34c-5p 2.5 0.026 AGTR1 -2.6 0.022

hsa-miRNA-34c-5p 2.5 0.026 PTGIS -8.7 0.031

hsa-miRNA-34b-3p 2.1 0.045 FN1 -2.9 0.041

https://doi.org/10.1371/journal.pone.0222782.t002
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molecular activation or inhibition that may be involved in AAA pathogenesis. New pathway

analysis was performed to investigate the interaction between the validated genes and miR-

NAs. Intermediary molecules were added to the pathway to clarify the link between these miR-

NAs and their target genes and explain the relevant roles in the AAA context.

Validation of paired expressed genes and miRNAs

The validation cohort consisted of other samples different from the ones employed for screen-

ing, 18 AAA samples, and 6 organ donor control.

All samples were tested for miRNAs and genes that showed paired interactions in the

paired expression analysis (Table 2). The miRNA and mRNA analysis followed the same steps

described above using the RT2 qPCR primer assays for gene expression and miScript primer

assays for miRNA expression. Assays used for this proposal were: ALOX5 (#PPH2590G),

CX3CL1 (#PPH689C), PTGIS (#PPH2582A), FN1 (#PPH143B), AGTR1 (#PPH2362F), TIMP1

(#PPH00771C), miR-1207-5p (#MS14189), miR-125b-5p (#MS6629), miR-150-5p (#MS3577),

miR-16-5p (#MS31493), miR-193b-3p (#MS31549), miR-34c-5p (#MS3332). The average

expression of three reference genes: ACTB (#PPH73G), B2M (#PPH1094E) and GAPDH
(#PPH150F) were applied for normalization of the gene expression, and in case of miRNAs

expression, the average expression of SNORD61 (#MS33705), SNORD68 (#MS33712) and

RNU6-6p (#MS33740) was applied for normalization.

The relative expression was calculated by the 2-ΔΔCt formula [20], and results were reported

as fold change.

Statistical analysis

The biodemographic data was reported as average and standard deviation or as count and per-

centage. The t-test was used to compare numerical variables from the biodemographic data

and the likelihood ratio or Fisher’s exact test was used to compare categorical variables. The

elastin detected by immunohistochemical staining, as well as the miRNA and gene expression

were analyzed by a Mann-Whitney U test for non-parametric data and reported as median,

25th and 75th percentiles. Differences were considered statistically significant when p< 0.05.

Results

Biodemographic data and sample characteristics

As expected, patients from the AAA group were older than the donors. Also, the AAA group

showed a higher frequency of male sex, hypertension, dyslipidemia, diabetes and family history

of coronary artery disease (Table 1).

The aneurysm from the AAA group achieved a 5.9 cm diameter on average while the con-

trol group had an abdominal aortic diameter smaller than 3.0 cm detected by observational

analysis only. Comparative microscopic analysis revealed that AAA tissues had a significant

decrease in elastin fiber. The 25th and 75th percentile of elastin detected by Verhoeff´s staining

was 1.0% and 9.3% in AAA compared to 3.1% and 24.6% in the control group (p< 0.001),

respectively.

Gene and miRNA qPCR array analysis

Ten out of 84 genes analyzed by RT-qPCR were differentially expressed in the AAA group

(n = 6) when compared to the control group (n = 6). Six genes (PTGIS, CX3CL1, ITGB1,

COL18A1, FN1, and AGTR1) were significantly downregulated and four other genes (SPHK1,

TYMP, ALOX5, HIF1A) were significantly up-regulated (Table 3).
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PLOS ONE | https://doi.org/10.1371/journal.pone.0222782 September 20, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0222782


The expression analysis of 372 miRNAs by qPCR array showed a total of 59 differentially

expressed miRNAs in the AAA group, from which 35 were down-regulated and 24 were up-

regulated (Table 4).

Pathway analysis and qPCR validation

After identifying differentially expressed genes and miRNAs in the AAA group, the IPA soft-

ware was used to recognize paired interactions between miRNAs and their target genes. Ten

paired interactions were identified, which involved five differentially expressed genes and 9

miRNAs (Table 2).

Three out of six genes (FN1, TIMP1 and AGTR1) lost statistical relevance in the validation

cohort, and, consequently, miRNAs associated with these genes (miR-182-5p, 200c-3p, and

34b-3p) did not follow validation. It is worth mentioning that 12 out of 18 samples had upre-

gulation of TIMP1 ranging from 2 to 10 folds, even though statistical difference was not

detected (Fig 1). Six miRNAs (miR-1207-5p, 125b-5p, 150-5p, 16-5p, 193b-3p and 34c-5p)

showed paired interactions with genes and followed validation (Fig 2). Several samples showed

miR-34c-5p Ct higher than 35, indicating no detectable expression. This miRNA was, there-

fore, excluded from the IPA representation on Fig 3. Although miRNAs 1207-5p and 16-5p

are highly upregulated in array data, they showed no differences in the RT-PCR validation

cohort and, were not included in the final IPA network.

Through bioinformatic analysis, the results showed that eicosanoid synthesis (arachidonic

acid and leukotriene) and metalloprotease/TIMP pathway are possibly the two main pathways

involved in AAA pathogenesis that are directly regulated by differentially expressed miRNAs

(Fig 3).

Discussion

There is some literature showing the assess of miRNA or mRNA profile in AAA tissues

[13,21]. However, the identified target substantially varies among studies, probably because

different aortic fragments were assessed and distinct methods were employed. It is known that

each aortic segment has a different embryonic origin and shows vascular smooth muscle diver-

sity [22]; therefore, gene expression profile may also vary between aortic segments. In this

study, we carefully obtained samples from the same aortic infra-renal fragments for both

groups (AAA vs control). The AAA average aortic diameter was 5.9 cm, and there was a signif-

icant elastin fiber degradation associated with collagen down-expression, which characterizes

Table 3. Differently expressed genes were identified by PCR array: AAA (n = 6) compared to organ donor control (n = 6).

Gene’s symbol Ref. Sequence Gene’s description Folde Change Regulation p-value

SPHK1 NM_021972 Sphingosine kinase 1 5.9 up 0.008

TYMP NM_001953 Thymidine phosphorylase 3.4 up 0.012

ALOX5 NM_000698 Arachidonate 5-lipoxygenase 2.8 up 0.011

HIF1A NM_001530 Hypoxia inducible factor 1, alpha subunit 2.3 up 0.044

PTGIS NM_000961 Prostaglandin I2 (prostacyclin) synthase -8.8 down 0.031

CX3CL1 NM_002996 Chemokine (C-X3-C motif) ligand 1 -5.1 down 0.017

ITGB1 NM_002211 Integrin, beta 1 (fibronectin receptor) -4.2 down 0.038

COL18A1 NM_030582 Collagen, type XVIII, alpha 1 -3.2 down 0.013

FN1 NM_002026 Fibronectin 1 -2.9 down 0.041

AGTR1 NM_031850 Angiotensin II receptor, type 1 -2.6 down 0.022

AAA: abdominal aortic aneurysm

https://doi.org/10.1371/journal.pone.0222782.t003
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chronic aneurysm. It is important to mention that this study was not designed to evaluate

early AAA, once the tissues were obtained in a later stage, concomitant with the surgery. These

results, combinedwith a serum miRNAs analysis [18], might be interesting to identify bio-

markers for early AAA diagnosis.

According to Pahl and colleagues, target genes associated with apoptosis and activation of T

cells are mainly involved in AAA. However, other vascular cells may also probably contribute

to AAA pathogenesis [21]. For this proposal, firstly, we evaluated the expression of 84 genes

associated with vascular function, and 372 most abundantly expressed miRNAs and best-char-

acterized miRNAs in miRBase (www.miRBase.org). The screened genes and miRNAs were

validated in a new cohort, consisted of 18 AAA samples. Surprisingly, two genes (FN1 and

AGTR1) and three miRNAs (16-5p, 1207-5p, and 34c-5p) previously screened by PCR array

Table 4. Differently expressed miRNAs were identified by PCR array: AAA (n = 6) compared to organ donor control (n = 6).

Mature miRNA up-regulation p-value Mature miRNA down-regulation p-value

hsa-let-7g-3p 9.85 0.014 hsa-let-7a-5p -2.02 0.023

hsa-miR-1207-5p 9.27 0.036 hsa-let-7c-5p -2.14 0.002

hsa-miR-142-3p 7.2 0.033 hsa-miR-100-5p -2.75 0.003

hsa-miR-144-5p 5.54 0.003 hsa-miR-125a-5p -2.7 0.015

hsa-miR-150-5p 7.5 0.007 hsa-miR-125b-5p -3.52 0.005

hsa-miR-155-3p 3.54 0.011 hsa-miR-133a-3p -9.33 0.029

hsa-miR-15b-3p 4.58 0.003 hsa-miR-133b -7.95 0.009

hsa-miR-16-5p 2.16 0.040 hsa-miR-140-3p -4.55 0.001

hsa-miR-181a-3p 4.58 0.007 hsa-miR-140-5p -2.96 0.008

hsa-miR-182-5p 3.34 0.013 hsa-miR-143-3p -7.31 0.001

hsa-miR-200c-3p 2.08 0.015 hsa-miR-143-5p -9.2 0.001

hsa-miR-212-3p 2.09 0.047 hsa-miR-145-5p -7.15 0.008

hsa-miR-29a-5p 2.98 0.005 hsa-miR-145-3p -5.42 0.001

hsa-miR-31-5p 6.08 0.018 hsa-miR-193a-3p -2.58 0.038

hsa-miR-338-3p 4.87 0.033 hsa-miR-193a-5p -3.12 0.001

hsa-miR-34b-3p 2.05 0.045 hsa-miR-193b-3p -3.11 0.008

hsa-miR-34c-5p 2.53 0.026 hsa-miR-193b-5p -2.51 0.002

hsa-miR-363-3p 3.28 0.024 hsa-miR-196b-5p -4.73 0.006

hsa-miR-378a-3p 2.05 0.003 hsa-miR-23a-3p -2.07 0.006

hsa-miR-378a-5p 2.19 0.006 hsa-miR-23b-3p -20.83 0.001

hsa-miR-425-5p 2.32 0.013 hsa-miR-23b-5p -2.67 0.019

hsa-miR-451a 5.61 0.010 hsa-miR-24-3p -2.31 0.001

hsa-miR-454-3p 3.09 0.010 hsa-miR-27b-3p -3.67 0.001

hsa-miR-542-5p 2.62 0.008 hsa-miR-27b-5p -5.24 0.001

hsa-miR-28-3p -2.32 0.004

hsa-miR-28-5p -2.15 0.002

hsa-miR-29b-2-5p -2.69 0.001

hsa-miR-328-3p -3.78 0.037

hsa-miR-331-5p -4.52 0.001

hsa-miR-365b-3p -3.11 0.005

hsa-miR-504-5p -5.96 0.004

hsa-miR-574-3p -2.16 0.008

hsa-miR-744-5p -2.62 0.010

hsa-miR-99a-3p -2.8 0.032

hsa-miR-99b-5p -3.22 0.042

https://doi.org/10.1371/journal.pone.0222782.t004
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lost the statistical significance in the validation test. Probably, the number of samples assessed

in the array and the tissue heterogeneity contributed to the difference between these results,

reinforcing the importance of validation in array approaches. Tavares et. al. showed that even

though the biomechanical resistance of AAA varies with size or location of aorta, no histologi-

cal or histochemical differences were detected in situ [23], hence the expression of gene and

miRNA could be more sensitive for AAA monitoring.

Based on genes and miRNAs identified in the validation study, the IPA analysis showed

two pathways associated with AAA: the eicosanoid synthesis pathway, with ALOX5 and PTGIS
genes participation, and metalloprotease/TIMP pathway, which involves the CX3CL1 gene.

The role of ALOX5 in the eicosanoid synthesis pathway is well-established. This gene

encodes the enzyme arachidonate 5-lipoxygenase which, in association with ALOX5AP

protein [24], to catalyze the conversion of 5-HPETE to leukotriene A4 (LTA4), favor the

Fig 1. Validation of gene expression by qPCR. The relative expression was calculated using the 2-ΔΔCt formula and

Mann-Whitney test was performed to compare AAA (n = 18) and control groups (n = 6). The null hypothesis was rejected

if the p-value was lower than 0.05.

https://doi.org/10.1371/journal.pone.0222782.g001

Fig 2. Validation of microRNA expression by qPCR. The 2-ΔΔCt formula was applied to obtain relative expression and

Mann-Whitney test was performed to compare AAA (n = 18) and control group (n = 6). The null hypothesis was rejected

if the p-value waslower than 0.05.

https://doi.org/10.1371/journal.pone.0222782.g002
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proinflammatory leukotrienes biosynthesis [25] and increases the infiltration of immune cells

through leukotriene B4 signaling [26]. ALOX5 also plays a key role in cathepsin K (CTSK)

modulation [27], which is directly involved in AAA formation through mechanisms such as

collagen turnover [28], T-cell proliferation, and smooth muscle cell apoptosis [29]. The regula-

tion of ALOX5 transcript by miRNA-125b-5p was previously reported in several cell lines [30].

In this study, it was noted a down-regulation of miRNA-125b-5p and miR-193a-3p in AAA

tissues leading to up-regulation of ALOX5 gene, which results in a leukotriene production

increase and empowers aortic wall inflammation and injury.

Another gene involved in the eicosanoid synthesis pathway identified in our studyis PTGIS.

This gene encodes prostaglandin I2 synthase and catalyzes prostacyclin (PGI2) synthesis from

prostaglandin H2. PGI2 is widely distributed and predominantly found in vascular endothelial

and smooth muscle cells and it has an inhibitory role in platelet aggregation and thrombus for-

mation [31]. An imbalance of prostacyclin and its physiological antagonist thromboxane A2

(TXA2) contributes to the development of myocardial infarction, stroke, and atherosclerosis

[32,33]. The frequencies of PTGIS (rs5602CC) and PTGS2 (rs20417CC) variants were signifi-

cantly higher in patients with carotid plaque compared with patients without plaque, and are

associated with carotid plaque vulnerability, platelet activation and TXA2 levels in ischemic

stroke patients [34]. Our data suggests that up-regulation of miRNA-150-5p is possibly

repressing PTGIS expression, which indirectly contributed to AAA progression through the

leukotriene pathway. In this study, we did not assess PTGS2 expression; but it is known that

PTGS2 is an induced form of prostaglandin-endoperoxide synthase, also known as cyclooxy-

genase, which is the key enzyme in prostaglandin biosynthesis. High-level tumor miR-21

expression may potentiate the PTGS2/PGE2 pathway and suppress antitumor immunity [35].

Fig 3. Ingenuity Pathway Analysis (IPA) showed predicted interactions between validated miRNAs and their

respective targets genes in abdominal aortic aneurysm. Intermediary molecules are also showed in grey to clarify the

connections of miRNAs and targets. The blue lines and molecules represent inhibition; orange lines and molecules

represent activation; green represents miRNA down-regulation, and red represents miRNA up-regulation.

https://doi.org/10.1371/journal.pone.0222782.g003
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In AAA, miR-21 is usually upregulated [11,36], and modulation of miR-21 expression can

limit AAA expansion through the inhibition of the expression of the phosphatase and tensin

homolog (PTEN) protein [37]. In our array, the results showed that miR-21-3p is 2.6 folds

higher in AAA than control, but the difference was not statistical significant (p = 0.210). Fur-

ther study can clarify if miR-21 also regulates PTGS2/PGE2 pathway in AAA context.

The down-regulation of CX3CL1 (chemokine C-X3-C motif ligand 1) gene in AAA tissue

was also observed in validated cohort. The protein codified by this gene inhibits tissue inhibi-

tors of metalloproteinase (TIMP) and controls the turnover of matrix metalloproteinase

(MMP). Recently, Ma et. al. described that the overexpression of miR-195 may induce the

protein expression of MMP-2 and MMP-9 in AAA [38]. However, our study showed that

miR-195 is equally expressed between AAA and control groups and,consequently, it was not

included in the validation study. Through IPA1 bioinformatic analysis, we observed down-

regulation of CX3CL1 that favors TIMP1 gene activation. Furthermore, in validation cohort,

12 out of 18 samples showed upregulation of TIMP1 ranging from 2 to 10 folds. Together,

TIMP1 and TIMP2 suppress the expression of MMP. These results corroborate the existing

literature showing the increase of TIMP expression in AAA [39]. However, other authors

reported opposite findings [40]. Probably different models used by these studies could explain

these conflicting results. CX3CL1, also known as fractalkine, chemoattracts T cells and mono-

cytes, and their adhesive and migratory functions by interacting with the receptor CX3CR1 on

endothelial cells [41]. We could not validate the expression of miRNAs 16-5p and 1207-5p, but

we do not discard the involvement of an additional miRNA not presented in the array panel in

the down-regulation of CX3CL1 gene, or possible indirect regulation.

Our results identified SPHK1 as the most upregulated gene in AAA. Although no informa-

tion in the literature supports the role of this gene in the development of AAA, it is known

that SPHK1 regulates endothelial function [42], and could indirectly be involved in AAA

pathogenesis.

Although it was not included in the validation step, it is worth mentioning that miRNA-

23b-3p is by far the most expressed miRNA identified in this study; its expression in AAA

tissue was almost 21-fold lower than that in the normal aorta. It has been shown that the

miRNA-23b-3p plays a critical role in a wide range of biological processes, including angio-

genesis [43] and positively regulating cardiac hypertrophy [44]. Its downregulation induces

phenotypic switching of vascular smooth muscle cells from a low proliferative to a highly pro-

liferative phenotype [45]. In this study, the IPA1 bioinformatic tools did not identify targets

among the differentially expressed genes in our PCR array. As previously mentioned, each

miRNA can regulate one or more messenger RNA transcript and, conversely, a given mRNA

can be regulated by more than one miRNA [14]. It is possible that miRNA-23b-3p is involved

in aortic tissue maintenance; its low expression could be owing to high regulatory activity and

catabolism.

Let-7g-3p is the most upregulated miRNA in our study, but didn’t show any direct interac-

tion with the differentially expressed genes in IPA. In the human, the let-7 family is composed

of 9 mature let-7 miRNAs highly conserved across different species, suggesting that they may

play important roles in the biological processes of various organisms [46]. The tumor-suppres-

sor role of let-7 miRNAs is known [47,48] and the new regulation functions has been described

in different clinical situations.

It seems that the let-7 family has an extremely complex regulation network. Koh et. al.

predicted that let-7 family miRNAs can regulate 50 genes and affect the downstream target

HNF4A, which is a known endodermal differentiation marker [49]. Other study using a

porcine shunt model of pulmonary hypertension showed both let-7d-3p and let-7g-3p

miRNAs were upregulated, however, let-7f-2-3p was downregulated in endoarterial biopsy
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samples, suggesting that each let-7 family member has different regulation function [50],

suggesting that let-7 family may participate in many molecular pathways and biologic pro-

cesses simultaneously.

In AAA context, Kin et al. observed that the let-7 family members (let-7a, 7c, 7e and 7f)

were significantly upregulated in the AAA tissue [36]. However, there is still no specific infor-

mation about the association of let-7g and AAA. In this study, even though significant upregu-

lation of let-7g-3p in AAA was observed, no differentially expressed gene showed paired

interactions with this miRNA by IPA. Although no interactions between let-7 family and gene

expression were found in our analysis, we believe that these miRNAs have an important role

in the development of AAA through indirect regulations, which were not a focus of our valida-

tion and, consequently, not represented in our IPA network.

A major limitation of this study is the large diameter (5.9 cm) of AAA samples which corre-

sponds to chronic AAA and may involve degeneration process. It is worth mentioning that

tissue samples were only possible to obtain during surgery; therefore, the results may not be

causal factors, but they might reflect chronic degenerative AAA. Three miRNAs identified in

this study were not identified by another group which was searching for circulating miRNAs

from patients with an AAA average diameter of 3.6 cm [51]. Probably, a different degree of

AAA or biological material origin may have different miRNA profile.

Conclusions

In conclusion, dysregulation of miRNA-193b-3p, 125b-5p, 150-5p involved in the regulation

of genes with a role in the eicosanoid synthesis such as ALOX5 and PTGIS, and metalloprotei-

nase/TIMP pathway, such as CX3CL1 are potentially implicated in the AAA pathogenesis. The

genes and miRNAs identified in this study could be important targets for clinical therapy and

diagnosis of AAA.
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