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Abstract
Synaptic loss induced by beta-amyloid (Aβ) plays a critical role in the pathophysiology of

Alzheimer’s disease (AD), but the mechanisms underlying this process remain unknown. In

this study, we found that oridonin (Ori) rescued synaptic loss induced by Aβ1–42 in vivo and

in vitro and attenuated the alterations in dendritic structure and spine density observed in

the hippocampus of AD mice. In addition, Ori increased the expression of PSD-95 and

synaptophysin and promoted mitochondrial activity in the synaptosomes of AD mice. Ori

also activated the BDNF/TrkB/CREB signaling pathway in the hippocampus of AD mice.

Furthermore, in the Morris water maze test, Ori reduced latency and searching distance and

increased the number of platform crosses in AD mice. These data suggest that Ori might

prevent synaptic loss and improve behavioral symptoms in Aβ1–42-induced ADmice.

Introduction
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly and is a preva-
lent neurodegenerative disease characterized by neuronal loss, extracellular senile plaques and
intracellular neurofibrillary tangles. In 2015, an estimated 5.3 million people have AD in
United States, and AD makes the sixth leading cause of death[1]. Although the underlying
mechanisms of AD have not been fully elucidated, converging lines of evidence indicate that
the accumulation of beta-amyloid (Aβ) is the key event in AD pathology. Aβ peptides are pro-
duced from the consecutive cleavage of β-amyloid precursor protein (APP) by β-secretase and
γ-secretase, and Aβ1–42 is considered as the major neurotoxic Aβ species in the brain[2,3].
Genetic evidence has established the causative role of Aβ generation in AD pathogenesis, and
this amyloidogenic processing of APP might be linked to essential cellular processes uniquely
disrupted in AD brains[4,5]. The deposition of Aβ affects the morphology and function of syn-
apses by disrupting the synaptic signaling pathways and destroys dendritic spines, which leads
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to deficits in memory and behavior[6]. In addition, brain tissues from AD patients show a
marked loss of synapses, which could underlie the observed cognitive decline[7]. Emerging evi-
dence also suggests that protecting synapses could attenuate the observed memory deficits in
animal models of AD[8,9], which indicates that new approaches that target synapses could pro-
vide disease-modifying therapeutics.

Synaptic dysfunction in AD has been extensively studied, and the results suggest a central
role for the synapse in AD pathogenesis. However, the exact mechanisms by which Aβ specifi-
cally targets synapses remain largely unknown. Brain-derived neurotrophic factor (BDNF), a
member of neurotrophin family, plays a critical role in synaptic regulation and is thought to
ensure synaptic growth, promote synaptic transmission and enhance synaptic plasticity[10]. A
reduction in BDNF expression has been found in the hippocampus of AD mice[11]. In addi-
tion, Aβ significantly decreases the levels of BDNF in dendritic cells derived from AD patients
[12]. The biological function of BDNF is regulated by its high-affinity receptor, tropomyosin-
related kinase B (TrkB), which is known to be coupled to the activation of the phosphatidylino-
sitol 3-kinase/Akt, phospholipase C-γ (PLC-γ) and Ras/ERK pathways[13]. Aβ decreases TrkB
expression in the hippocampal dentate gyrus of Aβ-injected rats[14], and activating TrkB pro-
tects neurons against Aβ toxicity[15]. cAMP response element-binding protein (CREB), a
downstream target of this pathway, is strongly related to the maintenance and activity of syn-
apses and the formation of memories[16–18]. Taken together, these results support the
hypothesis that the BDNF/TrkB/CREB pathway is involved in the pathological processes of
AD.

Oridonin (Ori), isolated from the traditional Chinese herb Rabdosia rubescens, is an active
diterpenoid which is a trepenoid with the C20 skeleton, Ori has diverse pharmaceutical and bio-
logical factions and has already been used in clinical practice. We have previously reported that
Ori suppresses Aβ-induced neuroinflammation by inhibiting the NF-κB pathway[19]. Thus, in
this study, we show the effects of Ori on Aβ1–42-induced synaptic loss and investigate the
molecular mechanisms involved in the protection of synapses.

Materials and Methods

Reagents and antibodies
Human Aβ1–42 was purchased from EMDMillipore Corporation (Billerica, MA, USA). Ori
was obtained from Chengdu Must Bio-Technology Company (Sichuan, China). Neurobasal
media and B27 were bought from Life Technologies Corporation. MAP-2 antibody was pur-
chased from Abcam (Cambridge, MA, USA). COX-2 antibody was bought from Santa Cruz
Biotechnology (Santa Cruz, USA). PSD-95 antibody, synaptophysin antibody and CREB anti-
body were obtained from CST (Cell Signaling Technology, USA). 4', 6'-diamidino-2-phenylin-
dole (DAPI), VDAC1, BDNF, p-TrkB, TrkB, p-CREB and β-actin antibodies were purchased
from Bioworld Technology (Bioworld, USA). Lamin B1 antibody and HRP-conjugated second-
ary antibodies were also obtained from Bioworld.

Animals
Experiments were conducted using male C57BL/6 (B6) mice weighing 20–26 g. This study was
reviewed and approved by the Animal Care Committee of Nanjing University. We made every
effort to minimize the number of mice used and their suffering, and no mice died through the
experiment. Mice were housed in specific pathogen free (SPF) cages under standard laboratory
conditions including 21±1°C temperature, 40–55% relative humidity and 12-h light/dark cycle
with free access to water and food. All mice in the study were sacrificed after the treatment.
The mice were anesthetized with sodium pentobarbital (50 mg/kg) and decapitated, and brain
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tissues were removed for the western blot and synaptosomes study. In the immunostaining
study, the mice were anesthetized and perfused intracardially with 0.9% saline followed by 4%
paraformaldehyde. The brains were removed and sequentially post-fixed in 15% and 25%
sucrose solutions. The experiments were performed in a double-blinded manner.

ADmouse model and treatment with Ori
Aβ1–42 was prepared with 1% NH3xH2O at a concentration of 1 mg/ml and incubated at 37°C
for 5 days to allow for oligomerization as described previously[20]. Ori was dissolved in DMSO
at a concentration of 20 mg/ml and diluted to the desired concentration in saline as described
previously[19]. The i.c.v microinjections of Aβ1–42 (4 μg) into the bilateral hippocampus of
male C57BL/6 (B6) mice were given via infusion cannulae as previously described[21]. After
injecting Aβ1–42 for 7 days, Ori was injected intraperitoneally once a day for 15 days. Ori (10
mg/kg/day, i.p. for 15 days) attenuated memory deficits in Aβ1–42 induced AD mice, but it did
not exert the protective effects at higher doses (20–50 mg/kg/day)[19]. Thus, the dose of 10
mg/kg/day intraperitoneally injected for 15 days was used in this study. Mice were divided into
the following groups: control mice (sham-operated) that received saline; control mice (sham-
operated) that received Ori (10 mg/kg/day, i.p. for 15 days); Aβ1–42-induced AD mice that
received saline; and Aβ1–42-induced AD mice that received Ori (10 mg/kg/day, i.p. for 15 days).
At the end of the treatment, mice were behaviorally tested and sacrificed for the following
experiments.

Cell culture and stimulation
Primary cortical neurons were derived from the brains of E15-17 C57BL/6 (B6) mouse
embryos as previously described[22]. Briefly, the cerebral cortex was isolated, trypsinized in
0.25% trypsin at 37°C for 10 min and seeded onto 24-well poly-D-lysine-coated plates with
cover slips at a density of 5 × 105 cells/ml. Cells were cultured in neurobasal media supple-
mented with B27 and 25 nmol/L glutamine at 37°C in a humidified 5% CO2 incubator. Neu-
rons were maintained in the media for 8 days, and the purity of the primary neurons was more
than 95%. Neurons were pre-treated with Ori (10–100 μM) for 1 h and 2 μMAβ1–42 for 6 h,
and then prepared for the following experiments. Our preliminary data indicated that Ori
(40 μM) significantly increased the viability of neurons treated with Aβ1–42, while the doses of
more than 40 μM did not exert the protective effects (data not shown), and the dose of 40 μM
was used in this study.

Western blotting
Three animals from each group were euthanized and decapitated, and the hippocampus of the
mice were removed and sonicated in RIPA buffer (Beyotime Institute of Biotechnology, China)
containing phosphatase and protease inhibitor cocktails (Sigma-Aldrich, USA). The total pro-
tein was obtained from the supernatant of this extract following 30 min of centrifugation at
12000×rpm, and the protein content was quantified by the BCA protein assay kit (Bioworld,
USA). Western blotting was performed as described previously[23]. Samples (30 μg protein)
were separated by SDS-PAGE and electrophoretically transferred onto PVDF membranes.
Membranes were blocked for 1 h in 5% non-fat milk and incubated overnight with primary
antibodies. β-actin was used as a loading control. The incubation with primary antibodies was
followed by a 2 h incubation with HRP-conjugated anti-rabbit or anti-mouse secondary anti-
bodies. The protein signals were detected using the chemiluminescence reagents provided with
the ECL kit (Bioworld, USA), and Image J software was used to determine the intensity of the
blots.
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Immunostaining
Immunostaining was performed as described previously[24]. After being anesthetized, mice
were perfused intracardially with 0.9% saline followed by 4% paraformaldehyde. The brains
were removed and sequentially post-fixed in 15% and 25% sucrose solutions. Subsequently, the
brains were cut into 15 μm sections using a cryostat microtome (Leica, Germany). After wash-
ing in phosphate buffered saline (PBS) three times for 10 min each and blocking in 3% BSA for
1 h at room temperature, the sections were incubated overnight with an anti-BDNF antibody
at 4°C. After washing in PBS three times for 10 min each, the samples were incubated with the
secondary antibody for 1 h at 37°C in the dark. Subsequently, the cell nuclei were labeled by
DAPI. Images were detected using an OLYMPUS BX51 microscope (Olympus, Japan).

For double immunostaining, cells were washed three times with PBS and then fixed in 4%
paraformaldehyde for 30 min at room temperature. Subsequently, cells were blocked with 3%
BSA for 60 min. After an overnight incubation with anti-PSD-95 antibody or anti-synaptophy-
sin antibody and MAP-2 antibody at 4°C, the cover slips were washed for 10 min three times
and then incubated with goat anti-rabbit and goat anti-mouse antibodies for 1 h at 37°C in the
dark. DAPI was used to stain the cell nuclei, and images were acquired using an OLYMPUS
BX51 microscope. The immunostaining analysis was performed as described previously[25].
All procedures were conducted in a randomized and blinded manner.

Morris water maze (MWM) test
Cognitive function was evaluated by the Morris water maze as previously described[23].
Briefly, the test involved 5 days of acquisition training with four trials per day. For each trial,
each mouse was given 60 s to find a platform that was submerged 2 cm underwater in a circular
black pool; if the mouse failed to find the platform within this period, they were manually
placed on the platform for 10 s, and the latency was recorded for 60 s. The escape distance,
escape latency and swimming speed were analyzed by Any-maze software (Stoelting, USA). On
the 6th day, the hidden platform was removed from the water maze, and mice were allowed to
swim freely for 60 s; the number of times the mouse crossed the target platform were recorded.
The observers were blind to the experimental conditions.

Synaptosomal preparation
To obtain synaptosomes, mice were anesthetized, and their brains were removed, weighed and
dounced in a glass Teflon homogenizer in 10 vol (1:10, wt/vol) of Syn-PER synaptic protein
extraction reagent (Thermo, Rockford, USA) supplemented with a protease and phosphatase
inhibitor cocktail. Following the manufacturer’s instructions, the homogenate was centrifuged
at 1200g for 10 min at 4°C, and then the supernatant was centrifuged for a further 20 min at
15000g at 4°C. The supernatant (cytosolic fraction) was removed, and the synaptosome pellets
were resuspended in Syn-PER reagent. The protein concentration of synaptosomes was deter-
mined by the BCA method.

Synaptosome activity assay
The synaptosome activity assay was performed as described previously[26]. The relative
amount of mitochondria was determined by western blot with VDAC1 as a loading control.
The mitochondrial activity, an index of the functional status of the synaptosomes, was assessed
by the conventional 3-[4, 5-diethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT)
assay. Briefly, 2.0 mg of synaptosome protein was prepared, and MTT solution (5 mg/ml in
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PBS) was added and incubated at 37°C for 3 h. Subsequently, formazan crystals were dissolved
in DMSO, and the absorbance was read at 570 nm by a microplate reader.

Golgi staining
The morphology of dendritic spines in the brain was analyzed using a FD Rapid GolgiStain Kit
(FD Neurotechnologies, Elliot City, MD, USA) according to the manufacturer’s instructions.
Briefly, after being anesthetized, the mouse brains were quickly removed and washed in double
distilled water (DDW). Subsequently, the brains were submerged in impregnation solution for
2 weeks at room temperature in the dark. The impregnation solution was replaced on the next
day. Samples were removed to solution C for 2 days at room temperature in the dark, sectioned
into 200 μm sections by a cryostat microtome and placed onto microscope slides. Sections were
washed three times for 10 min each and placed in a mixture composed of solution D, solution
E and DDW for 10 min followed by two rinses in DDW for 4 min each. The slides were dehy-
drated, cleared and coverslipped.

Analysis of dendritic morphology
Dendritic morphology was measured by an investigator blind to the experimental conditions
using an OLYMPUS BX51 microscope (Olympus, Japan). Golgi-stained brains from 6 mice
from each group were subjected to morphological analysis, and 6 neurons from the hippocam-
pus of each brain were selected randomly for analysis. In addition, the spine density was
observed under a 100x oil immersion and was expressed as the number of spines per 10 μm of
dendrite. The total dendritic length, numbers of branches and spine density were measured by
Image J software.

Statistical analysis
All data are presented as the means ± SEM and analyzed using SPSS version 13.0 (SPSS, Chi-
cago, IL, USA). For the MWM tasks, group differences in the escape latency, searching distance
and swimming speed during the MWM test were analyzed using two-way analysis of variance
(ANOVA) with repeated measures followed by Bonferroni multiple comparison test with day
and treatment as the sources of variation. All other data were analyzed with a one-way
ANOVA followed by Bonferroni’s post hoc. P-values smaller than 0.05 (P<0.05) were consid-
ered statistically significant.

Results

Ori increases the expression of PSD-95 and synaptophysin in the
hippocampus of AD mice
Synaptic loss is one of the neuropathological hallmarks of AD, and synaptophysin and PSD-95
are the markers of the pre- and post-synapse, respectively. Compelling evidence has shown
that the levels of PSD-95 and synaptophysin are reduced in AD transgenic mouse models
[27,28] and in brains from AD patients[29]. In this study, we first tested the expression of
PSD-95 and synaptophysin in the hippocampus of AD mice. As shown in Fig 1, the western
blot analysis revealed significant reductions of PSD-95 and synaptophysin expression in the
hippocampal samples. However, after Ori treatment, the expressions of PSD-95 and synapto-
physin were significantly increased compared to the AD group. These data indicated that Ori
attenuated the loss of synaptic proteins that was induced by Aβ in vivo.
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Ori promotes the expression of PSD-95 and synaptophysin in Aβ1–42
treated neurons
To explore whether Ori could rescue PSD-95 and synaptophysin expression in Aβ1–42-treated
neurons, we observed the expression of PSD-95 and synaptophysin by immunostaining. As
shown in Fig 2, the levels of PSD-95 (Fig 2A and 2B) and synaptophysin (Fig 2C and 2D) were
significantly decreased in the AD group, and this reduction was partially reversed by Ori treat-
ment. Thus, our results indicated that Ori attenuated synaptic loss in vivo and in vitro.

Ori rescues the dendritic morphological changes in the hippocampus of
AD mice
The development of dendrites and the number of dendritic spines, which are compromised in
AD mice, can both affect synaptic function[30]. Here, we used Golgi staining to examine the
effects of Ori on dendritic morphology. As shown in Fig 3A, the total dendritic length and the
number of branches did not differ between control and Ori-injected mice. Aβ significantly
decreased the total dendritic length compared to control mice, while Ori-treated AD mice had
significantly longer dendrites compared to untreated AD mice. Moreover, AD mice showed a
reduction in the number of dendritic branches, whereas the number of branches was markedly
increased following Ori treatment. To further characterize the differences in dendritic mor-
phology between groups, we examined the density of dendritic spines. The hippocampus of
AD mice exhibited a lower density of spines, and this reduction in spine density could be res-
cued by Ori (Fig 3D).

Ori increases the expression of PSD-95 and synaptophysin and
promotes mitochondrial activity in the synaptosomes of AD mice
Synaptosomes, which are isolated synaptic terminals from neurons, can provide material for
protein experiments and studies of the maintenance of metabolic activity. We also examined
the levels of PSD-95 and synaptophysin in synaptosomes. As shown in Fig 4A and 4B, Ori

Fig 1. Ori increases the expression of PSD-95 and synaptophysin in the hippocampus of ADmice. (A) Western blotting for PSD-95 and synaptophysin
proteins. (B) Quantitative analysis of PSD-95 and synaptophysin expression. The relative expression levels of PSD-95 and synaptophysin were normalized
against β-actin and are presented as the ratio of the values of the experimental group to the control group. n = 5 mice per group and the experiment was
performed for three times. Data are presented as the means ± SEM. *P<0.05, **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. Aβ1–42.

doi:10.1371/journal.pone.0151397.g001
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significantly upregulated the expression of PSD-95 and synaptophysin in the synaptosomes,
which was consistent with our results shown in Fig 1. Given that there were no significant dif-
ferences in the levels of VDAC1 (Fig 4C and 4D), we next measured mitochondrial activity via
the MTT assay. As shown in Fig 4E, mitochondrial activity was significantly reduced in synap-
tosomes from ADmice compared to controls. However, treatment with Ori ameliorated the
Aβ-induced reduction in mitochondrial MTT. These data also demonstrated that Ori exerted
protective effects on the viability of synapses.

Ori treatment enhances the BDNF/TrkB/CREB signaling pathway in the
hippocampus of AD mice
Next, we investigated whether Ori activated the BDNF/TrkB/CREB signaling pathway. As
shown in Fig 5, the levels of BDNF, p-TrkB and p-CREB were decreased in the hippocampus
of AD mice compared to control mice, and the levels of all three proteins were significantly
upregulated after Ori treatment. Our immunostaining also indicated that the reduction in
BDNF expression was reversed by Ori (Fig 6). These results showed that the activation of the
BDNF/TrkB/CREB signaling pathway might participate in the neuroprotective effects medi-
ated by Ori.

Ori improves cognitive deficits in Aβ1–42-induced ADmice
Finally, to examine whether Ori improved the cognitive deficits induced by Aβ, we measured
the therapeutic potential of Ori to reverse AD-induced declines in spatial memory and learning
ability by the Morris water maze. The AD group showed a longer escape latency compared to
the control group. However, the reduced latency induced by Aβ was ameliorated by the admin-
istration of Ori (Fig 7A). The increase in searching distance induced by Aβ was also improved
following Ori treatment (Fig 7B). On the 6th day of testing, the hidden platform was removed
from the pool, and all groups of mice were allowed to swim for 1 min. The number of platform
crosses by Ori-treated mice was dramatically increased compared to AD mice (Fig 7C).
Throughout the entire trial, no significant differences in swimming speed were observed across
the groups (Fig 7D), suggesting that there were no differences in motivation. The results from
the MWM tests indicated that Ori improved the spatial learning and memory disorders in AD
mice.

Discussion
Aβ plays a critical role in producing the cognitive dysfunction and other characteristics of AD,
including synaptic loss, neuroinflammation, neuronal apoptosis, and neurofibrillary tangles.
However, the underlying mechanism for Aβ-mediated synaptic loss is not yet fully understood.
In current study, we demonstrated that Ori activated the BDNF/TrkB/CREB signaling path-
way, prevented synaptic loss and dysfunction and ameliorated cognitive deficits in Aβ-induced
AD mice.

Although the exact cause of AD is poorly understood, the production and deposition of Aβ
is widely believed to be involved in its pathogenesis. The essential role of Aβ suggests that

Fig 2. Ori promotes the expression of PSD-95 and synaptophysin in Aβ1–42-treated neurons. (A)
Immunostaining for PSD-95 in Aβ1–42-treated neurons. (B) Quantitative analysis of PSD-95 staining. (C)
Immunostaining for synaptophysin in Aβ1–42-treated neurons. (D) Quantitative analysis of synaptophysin
staining. Data are presented as the means ± SEM and normalized to control neurons. *P<0.05, **P<0.01 vs.
control; #P<0.05, ##P<0.01 vs. Aβ1–42. Scale bar = 50 μm. All measurements were made by blinded
investigators, and the final quantification was based upon at least three independent experiments.

doi:10.1371/journal.pone.0151397.g002
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Fig 3. Effects of Ori on the total dendritic length, number of branches and spine density in the hippocampus of ADmice. (A) Representative dendritic
images from the hippocampus of mice. Scale bar = 20 μm. (B) Quantitative analysis of the total dendritic length. (C) Quantitative analysis of the number of
branches. (D) Representative dendritic spine images from the hippocampus of mice. Scale bar = 10 μm. (E) Quantitative analysis of spine density. Six
neurons from each brain were selected for analysis and 6 mice were used from each group. Data are presented as the means ± SEM. *P<0.05, **P<0.01 vs.
control; #P<0.05, ##P<0.01 vs. Aβ1–42.

doi:10.1371/journal.pone.0151397.g003
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therapies that target Aβmight be promising for the treatment of AD. Because the major form
of amyloid deposition is primarily Aβ1–42[31] and because the levels of Aβ1–42 are thought to
be a potential differentiator between AD and non-AD dementias[32], we used the oligomeriza-
tion of Aβ1–42 in vivo and in vitro. In AD, Aβ-induced synaptic dysfunction and loss is an

Fig 4. Ori increases the expression of PSD-95 and synaptophysin and promotes mitochondrial activity in the synaptosomes of ADmice. (A)
Western blotting for PSD-95, synaptophysin, COX-2 and Lamin B1 proteins. The absence of the cytosolic protein COX-2 and the nuclear protein Lamin B in
the synaptosome pellets confirms the purity of synaptosomes. (B) Quantitative analysis of PSD-95 and synaptophysin expression. The relative expression
levels of PSD-95 and synaptophysin were normalized against β-actin and are presented as the ratio of the values of the experimental group to the control
group. (C) Western blotting for VDAC1 protein. (D) Quantitative analysis of VDAC1 expression. (E) MTT assay for mitochondrial activity of synaptosomes.
n = 5 mice per group and the experiment was performed for three times. Data are presented as the means ± SEM. *P<0.05, **P<0.01 vs. control; #P<0.05,
##P<0.01 vs. Aβ1–42.

doi:10.1371/journal.pone.0151397.g004
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important event that is associated with memory deficits, and a reduction of synapses and
decrease in synaptic markers have been widely reported in early and late stages of AD[33–37].
Aβ exerts its synaptotoxicity by binding to synapses, which leads to suppression of long-term
potentiation (LTP), impairments in synaptic plasticity and neuronal dysfunction[38]. In addi-
tion, the Aβ-induced loss of synapse number occurs in a dose-dependent manner[39]. In this
study, PSD-95 and synaptophysin were significantly reduced in Aβ-induced AD mice; how-
ever, this loss was attenuated by Ori treatment, which suggested that Ori prevented Aβ-induced
synaptic loss. Additionally, Ori increased the expression of PSD95 and synaptophysin in Aβ-
treated primary cortical neurons. In agreement with the hypothesis that abnormal dendritic
morphology is involved in the process of synaptic dysfunction in transgenic mouse models of
AD[40–42], we found that Aβ negatively impacted dendritic morphology in AD mice. Mean-
while, Ori increased the overall dendritic length and number of branches and enhanced the
number of dendritic spines, which favored the improvement of synaptic function and cognitive
deficits.

In recent years, synaptosomes, which are isolated from synapses, have been widely used for
the study of AD synapses[43,44]. Indeed, both structural and functional studies of the synapse
are supported by synaptosome preparation because they can be stimulated to release neuro-
transmitters and supply material for protein studies and reflect synaptic function[45]. Studies
from post-mortem human brains show that Aβ and p-tau are accumulated in synaptosomes
[46,47]. Moreover, the levels of oxidative markers are significantly increased in the synapto-
somes from AD postmortem frontal cortices, which implicates the participation of oxidative
stress in synaptic loss[48]. Nicotinamide and 3-aminobenzamide exert neuroprotective effects
in Aβ-induced AD rats by improving mitochondrial function in synaptosomes[49]. Our cur-
rent study showed that Ori increased the expression of PSD-95 and synaptophysin in the syn-
aptosomes of AD mice. We also analyzed mitochondrial activity, which was an index of
synaptosomal functional integrity, and found Ori improved the mitochondrial activity in syn-
aptosomes from the brains of AD mice. This suggested that Ori exerted protective effects of
synaptosomes.

Fig 5. Ori activates the BDNF/TrkB/CREB signaling pathway in the hippocampus of ADmice. (A) Western blotting for BDNF, p-TrkB, TrkB, p-CREB
and CREB proteins. (B) Quantitative analysis of BDNF, p-TrkB and p-CREB expression. n = 5 mice per group and the experiment was performed for three
times. Data are presented as the means ± SEM. *P<0.05, **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. Aβ1–42.

doi:10.1371/journal.pone.0151397.g005
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BDNF and its receptor TrkB are widely expressed in the brain, and the binding of BDNF to
TrkB regulates the survival and differentiation of neurons and modulates long-term potentia-
tion and plasticity[50,51]. In addition, the BDNF/TrkB signaling pathway is essential for mod-
ulating learning and memory[52]. Emerging evidence shows that abnormal BDNF/TrkB
signaling is associated with the progression of AD and is involved in the production of Aβ, tau
hyperphosphorylation and cognitive impairment[53]. BDNF/TrkB signaling pathway has also
been implicated in the morphogenesis, strength, activity and plasticity of synapses, which sug-
gests its crucial roles during various phases of synaptic development[54]. This study confirmed
that Ori activated the BDNF/TrkB pathway and increased the expression of p-CREB in the

Fig 6. Ori increases the expression of BDNF in the hippocampus of ADmice. (A) Immunostaining for BDNF in the hippocampus. (B) Quantitative
analysis of the expression of BDNF normalized to the control group. n = 5 mice per group and the experiment was performed for three times. Data are
presented as the means ± SEM. *P<0.05, **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. Aβ1–42. Scale bar = 50 μm.

doi:10.1371/journal.pone.0151397.g006
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hippocampus of Aβ-induced AD mice, which might contribute to the neuroprotective effects
of Ori.

In summary, our current study demonstrates that the administration of Ori attenuates the
synaptic dysfunction and exerts significant neuroprotective effects in Aβ1–42-induced AD mice.
In addition, the potential mechanism could be associated with the activation of the BDNF/
TrkB/CREB signaling pathway. Therefore, Ori might be a potential drug that targets synapses
for the treatment of AD.
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