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A B S T R A C T   

Acute kidney injury (AKI) is an important complication of COVID-19 encompassing a wide range of pre-
sentations. SARS-CoV-2 is proposed to cause AKI in the patients through various mechanisms. We are, never-
theless, far from a comprehensive understanding of the underlying pathophysiological mechanisms of the kidney 
injury in this infection. AKI has been shown to be a marker of disease severity and also a negative prognostic 
factor for survival. Unfortunately, no effective preventive strategy to decrease the risk of kidney damage in these 
patients has yet been identified. In this hypothesis, we highlight the potential protective effects of acetazolamide, 
a carbonic anhydrase inhibitor, in preventing the proximal tubular damage caused by the virus through dis-
rupting the virus-endosome fusion and also interfering with the lysosomal proteases. Our proposed mechanisms 
could pave the way for further in vitro studies and subsequent clinical trials.   

The novel coronavirus, which had initially led to pneumonia of un-
known etiology in a series of patients in China’s Hubei province in 
December 2019, has now precipitated a global health crisis (Habibzadeh 
and Stoneman, 2020). It has been shown that SARS-CoV-2 uses the same 
SARS-CoV receptor ACE2 for cell entry (Hoffmann et al., 2020; Shojaei 
et al., 2020; Sureda et al., 2020). This receptor is not only present in 
alveolar cells but also has a high expression level in other organs 
including kidneys (Hamming et al., 2004). Although further in-
vestigations on the prevalence of kidney injury in COVID-19 infection 
and the potential mechanisms of injury are needed, investigations on 
different cohorts of patients with COVID-19 infection have highlighted 
the importance of acute kidney injury (AKI) as an important complica-
tion of this infection and also a critical prognostic factor (Cheng et al., 
2020). A recent meta-analysis has shown that the odds of death in pa-
tients with COVID-19 infection with AKI is more than 16 times higher 
than those without AKI (Mou and Zhang, 2020). 

Prior studies on SARS-CoV have shown that the virus enters its target 
cells via a pH-sensitive endocytosis pathway (Yang et al., 2004). On the 
grounds of preliminary findings in patients with COVID-19 suggestive of 
the effectiveness of treatments such as Chloroquine, which is known to 

cause elevation of endosomal pH and therefore disrupt virus-endosome 
fusion in other viral infections, it is tempting to suggest that this ther-
apeutic strategy might be effective here as well (Drożdżal et al., 2020; 
Gao et al., 2020; Khan et al., 2010; Shojaei et al., 2020). Furthermore, it 
has been shown that SARS-CoV-2 uses TMPRSS2 and CatB/L proteases 
for cell invasion, the latter which are blocked by elevated endosomal pH 
(Hoffmann et al., 2020). 

Although the exact mechanism of kidney injury in patients with 
COVID-19 infection remains elusive, many potential mechanisms could 
be responsible for kidney damage in these patients. Cytokine storm and 
elevated levels of pro-inflammatory cytokines (e.g. IL-6) have been 
observed in patients with COVID-19 infection, particularly those in 
critical conditions (Mahmudpour et al., 2020). Therefore, the inflam-
matory state in the kidney and increased vascular permeability might be 
responsible for the development of AKI. In addition, direct viral damage 
might be an important factor in the pathophysiology of AKI in this 
infection. In a postmortem histopathological examination of six patients 
who had developed AKI during the course of COVID-19 infection, 
varying degrees of acute tubular necrosis, and presence of virus-like 
particles in the kidneys were observed (Diao et al., 2020). Electron 
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microscopic examination of 26 patients with COVID-19 infection 
revealed coronavirus-like particles with distinctive spikes in renal 
podocytes and tubular epithelial cells providing further supporting ev-
idence for direct virus invasion to the kidneys in this infection (Su et al., 
2020). Extensive tubular vacuolization suggestive of acute tubular 
injury and presence of rare ill-defined round particles in the podocytes 
are among other histopathologic findings in this infection (Bradley et al., 
2020). Kidney injury caused by direct SARS-CoV-2 invasion corrobo-
rated by postmortem histopathological studies can potentially be pre-
vented through targeting virus-endosome fusion. 

Proximal tubular cells have the highest expression of ACE2 receptors 
on their apical membranes and are therefore most susceptible to direct 
virus damage (Soleimani, 2020; Ye et al., 2006). Carbonic anhydrases 
are a group of metalloenzymes catalyzing the hydration of CO2 forming 
carbonic acid. There are two pools of carbonic anhydrase enzymes, 
namely carbonic anhydrase II and carbonic anhydrase IV. carbonic 
anhydrase II, the predominant type in the proximal tubule, is expressed 
in the cytoplasm while carbonic anhydrase IV is located on the plasma 
membrane with an extracellular active site (Zhu and Sly, 1990). Acet-
azolamide (Diamox) can inhibit both pools of carbonic anhydrases and 
has been shown to cause an increase in the cytosolic pH (Henderson 
et al., 1986; Skorecki et al., 2016). Despite the fact that endosomal pH 
might not necessarily be identical to the intracellular pH, the alkaline 
cytosolic pH in these cells can possibly disrupt virus-endosome fusion 
and the ensuing cytopathic effects. Furthermore, the decreased intra-
cellular H+ can decrease the ability of the lysosomal transporters 
responsible for maintaining the acidity of the lysosome (Mindell, 2012). 
This decrease in lysosomal acidity can subsequently inactivate the 
pH-dependent proteases which are responsible for the cleavage of viral 
glycoproteins enabling viral replication (Fig. 1) (Burkard et al., 2014; 
Soleimani, 2020). 

It is also notable that proximal tubular cells are proposed to be 
uniquely more alkaline in patients with hereditary proximal renal 
tubular acidosis (RTA) (Kamel and Halperin, 2017). Although the 
prevalence of AKI in patients with proximal RTA who have had 
COVID-19 infection has not yet been studied, these patients might be 
more resistant to the kidney injury caused by the SARS-CoV-2 due to 

mechanisms we highlighted. 
Although some studies have investigated the potential effectiveness 

of acetazolamide in other clinical settings associated with AKI through 
different mechanisms, the possible protective effect of this drug in AKI in 
patients with COVID-19 has not yet been studied (Davidov et al., 2006; 
El Hamamsy et al., 2018; Pochedly, 1973). 

We, therefore, hypothesize that prophylactic administration of low 
dose acetazolamide in those considered to be at high risk of developing 
severe COVID-19 infection might exert a protective effect against kidney 
injury in these patients by acting through two inter-related mechanisms 
inhibiting virus invasion and replication. Although long term adminis-
tration of acetazolamide could potentially have less proximal tubular 
alkalization effect once the serum bicarbonate levels have dropped, to 
the best of our knowledge this effect has not yet been investigated. 
Further experimental studies to shed light on the efficacy of this pre-
ventive strategy are needed. 
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