

Comparative Diagnostic Accuracy of Contrast-Enhanced Ultrasound and Shear Wave Elastography in Differentiating Benign and Malignant Lesions: A Network Meta-Analysis

Rongzhong Huang¹, Lihong Jiang¹, Yu Xu², Yuping Gong³, Haitao Ran³, Zhigang Wang³ and Yang Sun^{3*}

¹ The First People's Hospital of Yunnan Province, Kunming, China, ² Chuangxu Institute of Life Science, Chongqing, China, ³ Second Affiliated Hospital of Chongqing Medical University, Chongqing, China

OPEN ACCESS

Edited by:

Giuseppe Esposito, MedStar Georgetown University Hospital, United States

Reviewed by:

Meiyappan Solaiyappan, Johns Hopkins University, United States Vishwa S. Parekh, Johns Hopkins University, United States

***Correspondence:** Yang Sun sy19850905@126.com

Specialty section:

This article was submitted to Cancer Imaging and Image-directed Interventions, a section of the journal Frontiers in Oncology

> Received: 24 August 2018 Accepted: 04 February 2019 Published: 05 March 2019

Citation:

Huang R, Jiang L, Xu Y, Gong Y, Ran H, Wang Z and Sun Y (2019) Comparative Diagnostic Accuracy of Contrast-Enhanced Ultrasound and Shear Wave Elastography in Differentiating Benign and Malignant Lesions: A Network Meta-Analysis. Front. Oncol. 9:102. doi: 10.3389/fonc.2019.00102 **Background:** We performed a network meta-analysis to compare the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) and shear wave elastography (SWE) in differentiating benign and malignant lesions in different body sites.

Methods: A computerized literature search of Medline, Embase, SCOPUS, and Web of Science was performed using relevant keywords. Following data extraction, we calculated sensitivity, specificity, positive likelihood ratio (LR), negative LR, and diagnostic odds ratio (DOR) for CEUS, and SWE compared to histopathology as a reference standard. Statistical analyses were conducted by MetaDiSc (version 1.4) and R software (version 3.4.3).

Results: One hundred and fourteen studies (15,926 patients) were pooled in the final analyses. Network meta-analysis showed that CEUS had significantly higher DOR than SWE (DOR = 27.14, 95%CI [2.30, 51.97]) in breast cancer detection. However, there were no significant differences between CEUS and SWE in hepatic (DOR = -6.67, 95%CI [-15.08, 1.74]) and thyroid cancer detection (DOR = 3.79, 95%CI [-3.10, 10.68]). Interestingly, ranking analysis showed that CEUS achieved higher DOR in detecting breast and thyroid cancer, while SWE achieved higher DOR in detecting hepatic cancer. The overall DOR for CEUS in detecting renal cancer was 53.44, 95%CI [29.89, 95.56] with an AUROC of 0.95, while the overall DOR for SWE in detecting prostate cancer was 25.35, 95%CI [7.15, 89.89] with an AUROC of 0.89.

Conclusion: Both diagnostic tests showed relatively high sensitivity and specificity in detecting malignant tumors in different organs. Network meta-analysis showed that CEUS had higher diagnostic accuracy than SWE in detecting breast and thyroid cancer, while SWE had higher accuracy in detecting hepatic cancer. However, the results were not statistically significant in hepatic and thyroid malignancies. Further head-to-head comparisons are needed to confirm the optimal imaging technique to differentiate each cancer type.

Keywords: contract enhanced ultrasonography, malignant lesions benign lesions, network meta analysis, shear wave elastography, lesions

1

INTRODUCTION

Ultrasound (US) has been used for decades in differentiating benign and malignant lesions because of its low cost, ease of access, and non-invasiveness. For example, it belongs to the triad (physical examination, mammography and US), commonly used to assess the risk of breast cancer (1). Moreover, it can detect thyroid nodules as small as 2 mm in size and predicts malignancy based on features like irregular border, hypo-echogenicity, and calcification (2, 3). However, none of these features can individually predict malignancy and conventional US alone has shown moderate accuracy in detecting malignant lesions (4). Therefore, improvements to US technique have been sought.

The introduction of contrast agents (contrast-enhanced US/CEUS) allows for visibility of blood flow within the lesion, which improves its characterization (5). The current in-use contrast media are second-generation agents as SonoVue. These agents remain within the intravascular space, which increases their safety and allows for continuous imaging over the enhancement period (6). Several studies have reported high sensitivity and specificity for CEUS in differentiating malignant lesions with the breast, thyroid, liver and kidneys (5, 7–9). A recent meta-analysis showed no significant difference between CEUS and contrast-enhanced computed tomography (CECT) and magnetic resonance imaging (CEMRI) in terms of the diagnostic accuracy in characterizing focal liver lesions (FLLs) (8).

Shear wave elastography (SWE) relies on the degree of lesion stiffness when subjected to external pressure. Malignant nodules have harder consistency (less elasticity) than benign ones due to the uncontrolled proliferation of cancer cells (10). Therefore, SWE has been investigated for differentiating benign and malignant nodules. Compared to conventional US, SWE is more quantitative and is less operator-dependent, allowing more effective detection of malignant tumors (11). Recent diagnostic test accuracy (DTA) studies and metaanalyses showed high sensitivity and specificity for SWE in detecting malignant lesions within the breast and hepatic tissues (11–13).

According to our knowledge, data are lacking on the direct comparison between CEUS and SWE; therefore, we performed a meta-analysis to evaluate the diagnostic accuracy of CEUS and SWE in differentiating malignant tumors in the breast, liver, thyroid, kidneys, and prostate tissues in comparison to histopathology as a reference test. Moreover, we used network meta-analysis (NMA) to compare the diagnostic accuracy of both tests in malignant tumor differentiation.

MATERIALS AND METHODS

This meta-analysis has been conducted and reported in accordance with the Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (The PRISMA-DTA Statement) (14); **Supplementary File I.**

Literature Search

We searched Medline (via PubMed), Embase, SCOPUS and Web of Science for diagnostic accuracy studies that evaluated the use of CEUS and SWE in the differentiation of malignant tumors in different body organs. The following search terms were used with different combinations in different databases: Contrast-enhanced Ultrasound OR CEUS OR Ultrasound OR SonoVue OR Shear Wave Elastography OR SWE OR Sonoelastography OR Elastosonography AND Malignant OR Cancer OR Tumor OR Benign OR Adenoma OR Adenocarcinoma OR Carcinoma OR Nodule. No search filters of any sort were used during the search. All retrieved search results from database search (including bibliographic data and abstracts) were imported into EndNote (X7) for duplicate removal and then were transferred to a Microsoft Excel Sheet for screening.

Study Screening

For a study to be eligible for inclusion, it must have matched all the following criteria: (1) Population: Patients, suspected or diagnosed with malignancy in any body organ, (2) Intervention: CEUS or SWE [no specifications by US system or probe type], (3) Comparator: Histopathology, (4) Outcomes: Sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV], and (5) Study type: Diagnostic accuracy study. Two independent authors reviewed the title and abstract of retrieved records against our eligibility criteria and classified them into: eligible, non-eligible, or requires further screening (seems to fit the inclusion criteria, but further confirmation is required). The full-text articles of the latter type were retrieved and underwent a second wave of screening. Any discrepancy between the two reviewers' decisions was solved by a senior reviewer (with a 15-year experience in secondary analysis and evidence synthesis methods) after reviewing the debated studies in reference to the pre-specified PICO criteria.

Data Extraction and Quality Assessment

An extraction sheet (in Microsoft Excel) was formatted and pilot-tested before final extraction. The sheet was customized to extract the baseline data of the imaging device, enrolled patients, as well as the raw diagnostic data of each included study. For pilot testing, two reviewers extracted these data from 5 included studies and the datasets were matched and compared with the original studies by a third reviewer. Each set of data was extracted by two reviewers and discordant decisions were resolved by discussion. These discussions included reexamining the studies, inspecting their available additional data sources and re-evaluating the former decisions. When the discrepancies remained, a senior reviewer examined the studies and settled the differences. The extracted data included (I) baseline characteristics of enrolled participants, (II) study design, (III) diagnostic test parameters: Parameters, cutoff value and US system for SWE and contrast agent, US technique, probe and mechanical index for CEUS, and (IV) Outcome data: true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values. When these values were not directly given, they were calculated from the processed data as sensitivity, specificity, PPV, and NPV, using the statistical calculator on RevMan software (Version 5.3 for Windows). We used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) score to assess the quality of included studies. It consists of 14 (yes/no/unclear) questions to assess different forms of bias within DTA studies (15).

Data Analysis

Pairwise meta-analyses were done under the random-effects model when two or more studies investigated the same predefined research question with the same laboratory test. We extracted the sensitivity, specificity, positive likelihood ratio (LR), negative LR, and diagnostic odds ratio (DOR) values for CEUS and SWE compared to histopathology as a reference standard. The DOR is calculated as (TP X TN)/ (FP X FN) and defined as the odds of having a positive test result in a patient with disease compared with the odds of a positive test result in a patient without disease. Moreover, summary receiver operating characteristic (SROC) curves were constructed to examine diagnostic accuracy. All statistics were reported as absolute values with their 95% confidence interval (95% CI). A *p*-value <0.05 was considered statistically significant. The Chi-square and I-square statistics were calculated in order to assess

heterogeneity. Significant heterogeneity was considered to be present if the chi-square *p*-value was <0.1 (as per the Cochrane Handbook for Systematic Reviews of Intervention). Data were presented into five subgroups according to cancer site: breast, liver, thyroid, kidneys, and prostate. Network meta-analyses were conducted to compare the diagnostic accuracy of CEUS vs. SWE in malignancy detection. Heterogeneity and inconsistency were checked by the I² and the corresponding *p*-value. All statistical analyses were conducted on MetaDiSc (version 1.4) and R software (version 3.4.3).

RESULTS

Literature Search and Study Characteristics

Database search retrieved 5896 unique citations. Following title and abstract screening, 422 full-text articles were retrieved for further scrutiny. Finally, 114 diagnostic accuracy studies (65 on SWE and 50 on CEUS; one study by 4 assessed both modalities), reporting data from 15926 patients (5680 for CEUS and 10392 for SWE) were included in our network meta-analysis (**Figure 1**, Bibliographic details in **Supplementary File II**). According to

Lifed Inter Respective 28236 Belore 64.4.1.1 Contr Exercise Figure respective Figure respective Figure respective S13	References	Country	Study design	Patients/Lesions (N)	Age (Years)	Male: Female	Organ	Condition	Reference test/Gold standard	SWE parameters	Cutoff value (Kpa)	US system
Were stat (17.14)ChureChareaseriesC18 (225 lastics) (32 ± 14.6) $(20\% f)$ $(20\% f)(20\% f)(20\% f)$	Li et al. (16)	China	Prospective cohort	276 (296 lesions)	45.4 ± 14.7	100% F	Breast	Benign vs. malignant breast masses	Histopathology	SWS	4.39 m/sec	S3000 US scanner (Siemens)
Emeroare tailExperie transitExperie transitEnergy transitHetoperhologyTense105.65 kpaNA $(1,3)$ Keret (10)KeretTense $(1,1,17)$ tensor $(5,1,2+3,7)$ $(0,0)$ $(5,1,2+3,7)$ $(0,0)$ $(5,1,2+3,7)$ $(20,0)$	Yang et al. (17, 18)	China	Retrospective cohort	218 (225 lesions)	45.3 土 14.6	100% F	Breast	Benign vs. malignant breast masses	Histopathology	Emean	36.1 Kpa	Aplio500 US machine (Toshiba)
Kun et 1(1)KomeRenergencine $171(171 \text{ lesions})$ 6.71 ± 9.07 100% Beast cancerHetopathologyEner 37.5 Kpa 400 Yuk et al. (2)ForaProspective $23(130 \text{ beinos})$ 46.7 ± 11.2 100% Beast cancerHetopathologyEnen 32.5 Kpa 300 Targ at 4.7 Prospective $8(131 \text{ sion})$ 100% 100% Beast cancerHetopathologyEnen 32.6 Kpa 300 Targ at 4.7 Prospective $8(131 \text{ Bision})$ 100% 100% 100% 100% 100% 360% 360% 360% Ub et al. (2)Prospective $8(131 \text{ Bision})$ 100% 100% 100% 100% 100% 360% 360% Ub et al. (2)Prospective 100% 100% 100% 100% 100% 100% 100% 360% 360% Ub et al. (2)Prospective 100% 100% 100% 100% 100% 100% 100% 100% 100% Ub et al. (2)VeraProspective 100% 100% 100% 100% 100% 100% 100% 100% Ub et al. (2)VeraProspective 100% 100% 100% 100% 100% 100% 100% Ub et al. (2)VeraProspective 100% 110% 100% 110% 110% 110% 110% Ub et al. (2)VeraProspective 100% 110% 100% 100	Elmoneam et al. (13)	Egypt	Prospective cohort	63 (63 lesions)	34.7 ± 5.9	100% F	Breast	Benign vs. malignant breast masses	Histopathology	Emax	106.55 Kpa	N/A
Work et i.C)KoranProspectiveT23 (130 lesion) 6.7 ± 11.2 $10\% F$ Breast cancerHstopathologyEmen $2.2 Kpa$ AndTarg et al.(2)ChuaProspective $36 (133 lesion)$ Nu $10\% F$ BreastBengruxsHstopathologyEmen $2.3 Kpa$ Se mailChoi traitProspective $36 (133 lesion)$ Nu $10\% F$ BreastBengruxsHstopathologyEmen $2.3 Kpa$ Se mailChoi traitProspective $54 (56 lesion)$ 4.74 ± 14.77 $10\% F$ BeagnHstopathologyEmen $4.3 Kpa$ Se mailSe mailLu et al.(2)ChuaProspective $100 (104 lesions)$ 4.74 ± 14.77 $10\% F$ BeagnHstopathologyMar SWV $5.37 ms$ Se mailLu et al.(2)ChuaProspective $100 (104 lesions)$ 51 ± 13.66 $10\% F$ BeagnHstopathologyMar SWV $5.37 ms$ Se mailCobult et al.(2)ChuaProspective $100 (104 lesions)$ 51 ± 13.66 $10\% F$ BeagnHstopathologyMar SWV $5.37 ms$ Se mailCobultRemoveBengrux $100 F$ Beagn $100 F$ Beagn $100 F$	Kim et al. (19)	Korea	Retrospective cohort	171 (177 lesions)	45.17 ± 9.37	100% F	Breast	Small breast lesions<2 cm	Histopathology	Emax	87.5 Kpa	Aixplorer system (Supersonic Imagine
Target 41 (21)ChinaProspective8 (131 lecion)NA100% FBengin was lecionHstopathologyMen SW3.88 m/sSimCholet 41 (22)KorasPerspective8 (56 lecions)40.76 + 68.07100% FBengin was lecionHstopathologyFerson Men SW5.37 m/s3.89 m/s3.69 m/sUbet 41 (12)ChinaProspective10 (139 lecions)41.74 ± 14.17100% FBengin was lecionHstopathologyMen SW5.37 m/sSimUbet 41 (12)ChinaProspective10 (14 lecions)51 ± 1856100% FBengin was lecionHstopathologyMen SW5.37 m/sSimUbet 41 (12)ChinaProspective10 (14 lecions)51 ± 1856100% FBengin was lecionHstopathologyMen SW5.14 m/sSimUbet 41 (23)KoraBengin was colortMen SW5.14 m/s100% FBengin was lecionHstopathologyFerson4.16 K/sVoket 41 (24)KoraBengin was colortMen SW4.14 H sions4.16 H sions4.16 H sions4.16 H sions4.16 H sionsVoket 41 (23)KoraBengin was colortMen SWBengin was sionHstopathologyErailo7.17 K/sMenVoket 41 (24)KoraBengin was colortMen SW4.16 H sions4.16 H sions4.16 H sions4.16 H sions4.16 H sionsVoket 41 (25)KoraBengin was colortMen SWBengin was sionsHstopathologyErailo	Youk et al. (20)	Korea	Prospective cohort	123 (130 lesions)	46.7 土 11.2	100% F	Breast	Breast cancer	Histopathology	Emean	82.2 Kpa	Aixplorer ultrasound system
Chole tal. (2)KorealRetrospectiveS4 (56 lesions) 4.74 ± 14.77 100% (5Bengin visionHistopathologyEmen 4.3 (ApaAigoLue tal. (12)ChinaProspective $3 (3 (13) \text{ Besions})$ 4.74 ± 14.77 100% (5Bengin visionHistopathologyEmen 4.3 (ApaSerialLue tal. (12)ChinaProspective $130(13)$ (130 lesions) 4.74 ± 14.77 100% (5BreastBengin visionHistopathologyMax SWV 5.37 m/sSerialGobatta et al. (23)CamunyProspective $130(13)$ (130 lesions) 51 ± 18.56 100% (5BreastBengin visionHistopathologyMax SWV 5.16 m/sMarVouk et al. (23)CamunyProspective $32(4)$ (30) (3) 4.50 ± 11.4 100% (5BreastBengin visionHistopathologyEmen 4.16 (3)Vouk et al. (23)Korea $32(4)$ (30) (3) 4.50 ± 11.4 100% (5BreastBengin visionHistopathologyEmen 4.16 (3)Vouk et al. (23)Korea $32(4)$ (30) (3) 4.5 ± 12.6 100% (5BreastNormassHistopathologyEmen 4.16 (3)Vouk et al. (23)Korea $32(4)$ (3) (3) 4.5 ± 12.6 100% (5BreastNormassHistopathologyEmen 4.16 (3)Vouk et al. (23)Korea $32(4)$ (3) (3) 40.4 ± 7.5 100% (5BreastNormassHistopathologyEmen 4.16 (3)Vout et al. (23)Korea $32(4)$ (3) (3	Tang et al. (21)	China	Prospective cohort	98 (133 lesion)	N/A	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Mean SWV	3.68 m/s	Siemens S3000 US scanner
Line at (12) ChinaProspective cohort $30(130 \text{ lesions})$ 4.74 ± 14.77 100% Beagin v.Beignant breast malgnant breastHistopathology $Max SWV$ 5.37 m/s $5 \text{ millGolatta et al (23)GemanyProspectivecohort103(104 \text{ lesions})51 \pm 18.56100\%B \text{ less t}Bengin v.HistopathologyB \text{ ean SWV}5.18 \text{ m/s}51 \text{ emol}31 \text{ emol}Vouk et al (23)GemanyProspective103(104 \text{ lesions})51 \pm 18.56100\%B \text{ east}B \text{ emignant breast}HistopathologyB \text{ em SWV}5.18 \text{ m/s}31 \text{ emol}Vouk et al (23)KoreaRetrospective324(186) lesions)46.0 \pm 11.4100\%B \text{ resst}B \text{ emignant breast}B \text{ emol}4105.143 \text{ emol}Vouk et al (23)KoreaRetrospective33(41 \text{ esions})46.0 \pm 17.6100\%B \text{ resst}B \text{ emignant breast}B \text{ emignant breast}B \text{ emignant breast}4106417.2 \text{ Kpa}350Ko et al (23)Korea134(144 \text{ esions})49.1 \pm 12.8100\%B \text{ resst}B \text{ emignant breast}41041.5 \text{ Kpa}350No et al (23)Korea134(144 \text{ esions})100\%B \text{ resst}B \text{ emignant breast}410410410350No et al (25)Korea134(144 \text{ esions})120\%B \text{ resst}B \text{ emign v.1140147.2 \text{ Kpa}$	Choi et al. (22)	Korea	Retrospective cohort	54 (56 lesions)	40.76 + 68.07	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Emean	44.3 Kpa	Aixplorer US system (SuperSonic Imagine
Golata et al. (2)GermanyProspective cohort(30 (104 lesions) 10 ± 18.56 100% BreastBenjon vest besionHistopathologyMean SWN 5.18 m/s SienYouk et al. (24)KoraeRetrospective $324 (389 lesions)$ 46.0 ± 11.4 100% BreastBenjon vest lesionHistopathologyEratio 5.14 Am Youk et al. (25)KoraeRetrospective $33 (34 lesions)$ 46.0 ± 17.5 100% BreastBenjon vest lesionHistopathologyEratio 5.14 Am Ko et al. (25)KoraeRetrospective $33 (34 lesions)$ 46.4 ± 7.5 100% BreastBenjon vest lesions 410% 40% Lee et al. (26)KoraeRetrospective $134 (144 lesions)$ 49.1 ± 12.8 100% BreastBenjon vest lesionsHistopathologyErnean 41.6% 30% Use et al. (26)KoraeProspective $134 (144 lesions)$ 49.1 ± 12.8 100% BreastBenjon vestHistopathologyErnean 41.6% 30% Use et al. (27)MalaysiProspective $134 (144 lesions)$ 49.1 ± 12.8 100% BreastBenjon vestHistopathologyErnean 41.6% 30% Use et al. (27)MalaysiProspective $134 (144 lesions)$ 49.1 ± 12.8 100% BreastBenjon vestHistopathologyErnea 41.6% 30% Use et al. (26)MalaysiProspective $124 (14 lesions)$ $52 + 20.5$	Liu et al. (12)	China	Prospective cohort	130 (139 lesions)	44.74 ± 14.77	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Max SWV	5.37 m/s	Siemens Acuson S3000 ultra-sound machine
Youk et al. (24)KoreaRetrospective cohort324 (389 lesions)46.0 ± 11.4100% FBreast hesionBeinonHistopathologyEratio5.14Aixp (SupKo et al. (25)KoreaRetrospective33 (34 lesions)46.4 ± 7.5100% FBreastBreast Non-massHistopathologyEratio5.14Aixp (SupLee et al. (26)KoreaRetrospective33 (34 lesions)46.4 ± 7.5100% FBreast Non-massHistopathologyEmean41.6 KpaAixp (SupLee et al. (26)KoreaProspective134 (144 lesions)49.1 ± 12.8100% FBreast Non-massHistopathologyEmean41.6 KpaAixp (SupUst al. (27)MalaysiaProspective134 (144 lesions)49.1 ± 12.8100% FBreast Non-massHistopathologyEmean41.6 KpaAixp (SupUst al. (27)MalaysiaProspective152 (159 lesions)52 ± 20.5100% FBreastBeinonsHistopathologyEmax147.2 KpaAixp (SupNa et al. (28)MalaysiaProspective152 (159 lesions)52 ± 20.5100% FBreastBeinonsHistopathologyEmax65.0 KpaAixp (SupNa et al. (28)ChinaRetrospective210 (210 lesions)43.12 ± 13.34100% FBreastBeinonsHistopathologyEmax80.8 KpaAixpTan et al. (28)ChinaRetrospective210 (210 lesions)43.12 ± 13.34100% FBreastBreastBreas	Golatta et al. (23)	Germany	Prospective cohort	103 (104 lesions)	51 土 18.56	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Mean SWV	5.18 m/s	Siemens Medical Solutions
Ko et al. (25)KoreaRetrospective33 (34 lesions)46.4 ± 7.5100% FBreastBreast Non-massHistopathologyEmean41.6 KpaAkpLee et al. (26)KoreaProspective134 (144 lesions)49.1 ± 12.8100% FBreastBenign vs.HistopathologyEmean41.6 KpaAkpLee et al. (27)KoreaProspective134 (144 lesions)49.1 ± 12.8100% FBreastBenign vs.HistopathologyEmax147.2 KpaAkpNg et al. (27)MalayiaProspective152 (159 lesions)52 ± 20.5100% FBreastBenign vs.HistopathologyEmax147.2 KpaAkpNg et al. (27)MalayiaProspective152 (159 lesions)52 ± 20.5100% FBreastBenign vs.HistopathologyEmax65.0 KpaAkpTan et al. (28)ChinaRetrospective152 (159 lesions)52 ± 20.5100% FBreastBenign vs.HistopathologyEmax56.0 KpaAkpTan et al. (28)ChinaRetrospective210 (210 lesions)43.12 ± 13.34100% FBreastBenign vs.HistopathologyEmax80.8 KpaAkpTan et al. (28)ChinaRetrospective210 (210 lesions)43.12 ± 13.34100% FBreastBenign vs.HistopathologyEmax80.8 KpaAkpTan et al. (28)ChinaRetrospective210 (210 lesions)43.12 ± 13.34100% FBreastBenign vs.HistopathologyEmax80.8 Kpa	Youk et al. (24)	Korea	Retrospective cohort	324 (389 lesions)	46.0 土 11.4	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Eratio	5.14	Aixplorer US system (SuperSonic Imagine
Lee et al. (26) Korea Prospective 134 (144 lesions) 49.1 ± 12.8 100% F Breast Benignant. breast Histopathology Emax 147.2 Kpa Akp cohort cohort 132 (159 lesions) 52 ± 20.5 100% F Breast Benign us. Histopathology Emax 147.2 Kpa Akp Ng et al. (27) Malaysia Prospective 152 (159 lesions) 52 ± 20.5 100% F Breast Benign us. Histopathology Emax 56.0 Kpa Akp Cohort cohort 152 (159 lesions) 52 ± 20.5 100% F Breast Benign us. Histopathology Emax 56.0 Kpa Akp Tain et al. (28) China Retrospective 210 (210 lesions) 43.12 ± 13.34 100% F Breast Benign vs. Histopathology Emax 56.0 Kpa Akp Tain et al. (28) China Retrospective 210 (210 lesions) 43.12 ± 13.34 100% F Breast Benign vs. Histopathology Emax 80.8 Kpa Akp Cohort cohort cohort 210 % F Breast Benign vs. Histopa	Ko et al. (25)	Korea	Retrospective cohort	33 (34 lesions)	46.4 土 7.5	100% F	Breast	Breast Non-mass lesions	Histopathology	Emean	41.6 Kpa	Aixplorer US system (SuperSonic Imagine
Ng et al. (27) Malaysia Prospective 152 (159 lesions) 52 + 20.5 100% F Breast Benign vs. Histopathology Emax 56.0 Kpa Akp cohort Eacin Tian et al. (28) China Retrospective 210 (210 lesions) 43.12 ± 13.34 100% F Breast Benign vs. Histopathology Emax 80.8 Kpa Akp cohort cohort Eacin	Lee et al. (26)	Korea	Prospective cohort	134 (144 lesions)	49.1 土 12.8	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Emax	147.2 Kpa	Aixplorer US system (SuperSonic Imagine
Tian et al. (28) China Retrospective 210 (210 lesions) 43.12 ± 13.34 100% F Breast Benign vs. Histopathology Emax 80.8 Kpa Aixp cohort cohort lesion lesion	Ng et al. (27)	Malaysia	Prospective cohort	152 (159 lesions)	52 + 20.5	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Emax	56.0 Kpa	Aixplorer ultrasound system (SuperSonic Imagine
	Tian et al. (28)	China	Retrospective cohort	210 (210 lesions)	43.12 ± 13.34	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Emax	80.8 Kpa	Akplorer ultrasound system (SuperSonic Imagine

References	Country	Study design	Patients/Lesions (N)	Age (Years)	Male: Female	Organ	Condition	Reference test/Gold standard	SWE parameters	Cutoff value (Kpa)	US system
Olgun et al. (29)	Turkey	Prospective cohort	109 (115 lesions)	51 + 17.5	0.02:1	Breast	Benign vs. malignant breast lesion	Histopathology	Eratio	4.7	Aixplorer ultrasound system (SuperSonic Imagine
Chang et al. (30)	Korea	Prospective cohort	115 (133 lesions)	51.4 + 11.75	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Emean	60.7 Kpa	IU-22 (Phillips) OR HDI 5000 sonography unit
Yao et al. (31)	China	Prospective cohort	206 (206 lesions)	44.6 + 13.3	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Mean SWV	4.22 m/s	Acuson S2000 ultrasound system (Siemens
Lee et al. (26)	Korea	Retrospective cohort	139 (156 lesions)	43.54 ± 9.94	100% F	Breast	Solid breast masses	Histopathology	Emax	82.3 Kpa	Aixplorer ultrasound system (SuperSonic Imagine
Seo et al. (32)	Korea	Prospective cohort	37 (45 lesions)	47.4 +14.75	100% F	Breast	Benign vs. malignant breast lesion	Histopathology	Emean	67.8 Kpa	Aplio 500; Toshiba
Au et al. (33)	Canada	Prospective cohort	112 (123 lesions)	49.2+10.7	100% F	Breast	Solid breast masses	Histopathology	Eratio	3.56	Aixplorer Multiwave V3, Supersonic Imagine
Chang et al. (34)	Korea	Prospective cohort	129 (150 lesions)	47.8+8.83	100% F	Breast	Benign vs. malignant solid breast lesions	Histopathology	Emean	80 Kpa	Aixplorer, SuperSonic Imagine
Choi et al. (35)	Korea	Retrospective cohort	113 (116 lesions)	48.4+10	100% F	Breast	Breast non-mass lesions	Histopathology	Emean	85.1 Kpa	Aixplorer, SuperSonic Imagine
Chung et al. (36)	Korea	Retrospective cohort	71 (79 lesions)	48+10.67	100% F	Breast	Breast papillary lesions	Histopathology	Emax	62.1 Kpa	Aixplorer, SuperSonic Imagine
Choi et al. (22)	Korea	Retrospective cohort	199 (205 lesions)	51.7 ± 13.3	100% F	Breast	Benign vs. malignant solid breast lesions	Histopathology	Emean	85.8 Kpa	Aixplorer, SuperSonic Imagine
Dobruch-Sobczak et al. (37)	Poland	Retrospective cohort	76 (84 lesions)	59.9+13	100% F	Breast	Focal breast lesions	Histopathology	Eav.adj.	68.5 Kpa	Aixplorer, SuperSonic Imagine
Guo et al. (38)	China	Prospective cohort	379 (404 lesions)	N/A	100% F	Breast	Focal breast lesions	Histopathology	SWS	3.015 m/s	Siemens ACUSON S2000
Hong et al. (39)	Korea	Prospective cohort	218 (264 lesions)	46.4+10.5	100% F	Breast	Solid breast masses	Histopathology	Emax	44.1 Kpa	N/A
Kim et al. (40)	China	Retrospective cohort	67 (67 lesions)	41.5+2.29	100% F	Breast	Fibroadenoma vs. phylloids tumor	Histopathology	Emean	43.9 Kpa	Aixplorer, SuperSonic Imagine
Klotz et al. (41)	France	Retrospective cohort	142 (167 lesions)	57.7 +11	100% F	Breast	Benign vs. malignant solid breast lesions	Histopathology	Emax	106 Kpa	Aixplorer, SuperSonic Imagine
Lee et al. (42)	Korea	Retrospective cohort	139 (140 lesions)	45.5 + 10.33	100% F	Breast	Complex cystic and solid breast lesions	Histopathology	Emax	108.5 Kpa	Aixplorer, SuperSonic Imagine
Li et al. (16)	China	Retrospective cohort	116 (116 lesions)	48.56+ 14.4	100% F	Breast	Breast lesions BIRADS IV	Histopathology	SWS	3.49 m/s	Siemens S3000 US machine
											(Continued)

TABLE 1 | Continued

5

	2										
References	Country	Study design	Patients/Lesions (N)	Age (Years)	Male: Female	Organ	Condition	Reference test/Gold standard	SWE parameters	Cutoff value (Kpa)	US system
Shi et al. (43)	China	Prospective cohort	251 (279 lesions)	45.3 6 11.8	100% F	Breast	Benign vs. malignant solid breast lesions	Histopathology	SD	8.05 Kpa	Aixplorer, SuperSonic Imagine
Sim et al. (44)	NUK	Retrospective cohort	52 (52 lesions)	67	100% F	Breast	IDC	Histopathology	Emean	50 Kpa	Aixplorer, SuperSonic Imagine
Sim et al. (44)	NK	Retrospective cohort	52 (52 lesions)	67	100% F	Breast	ILC	Histopathology	Emean	50 Kpa	Aixplorer, SuperSonic Imagine
Wu et al. (45)	China	Retrospective cohort	192 (209 lesions)	N/A	100% F	Breast	Benign vs. malignant solid breast lesions	Histopathology	N/A	N/A	Siemens ACUSON S2000
Youk et al. (20)	Korea	Retrospective	78 (79 lesions)	45.5 + 11.6	100% F	Breast	Benign vs. malignant solid breast lesions	Histopathology	Eratio	3.7	Aixplorer, SuperSonic Imagine
Zhang et al. (46)	China	Prospective cohort	97 (98 lesions)	44.74 ± 14.77	100% F	Breast	Small breast lesions<10 cm	Histopathology	SWV	3.27 m/s	Siemens ACUSON S2000
Cong et al. (47)	China	Prospective cohort	315 (326 lesions)	44.51 + 11.81	100% F	Breast	Breast masses	Histopathology	SD	13.75	Aixplorer, SuperSonic Imagine
Park et al. (48, 49)	Korea	Retrospective cohort	133 (156 lesions)	47.8 ± 12.7	100% F	Breast	Palpable breast masses	Histopathology or periodic imaging surveillance	Emax	45.1 Kpa	Aixplorer, SuperSonic Imagine
Wang et al. (50)	China	Retrospective cohort	63 (67 lesions)	40.1 + 21.2	100% F	Breast	Non-mass breast lesions	Histopathology	Emax	81.07 Kpa	iU22 Philips
Kasai et al. (51)	Japan	Prospective cohort	273 patients with chronic liver disease	59.64 ± 14.40 70.98 ± 9.33	1:01	Liver	НСО	Histopathology	Young's Modulus	N/A	Aixplorer US system (SuperSonic Imagine S.A.)
Gerber et al. (52)	Germany	Prospective cohort	106 (106 lesions)	55.5+16.74	3.8:1	Liver	Characterization of solid HFLs	Histopathology and CE imaging for benign lesions	Emedian	37.6 Kpa	Aixplorer uttrasound system (SuperSonic Imagine)
Özmen et al. (53)	Turkey	Prospective cohort	20 (20 lesions)	4.74+4	2.3:1	Liver	Heamangioma vs. malignant liver lesions	Histopathology	Emean	23.62 Kpa	Aixplorer ultrasound system (SuperSonic Imagine)
Tian et al. (54)	China	Prospective cohort	221 (229 lesions)	48.9 + 13.2	2.4:1	Liver	Benign vs. malignant HFLs	Histopathology	Emax	39.6 Kpa	Aixplorer, SuperSonic Imagine
Ahmad et al. (55)	NN	Prospective cohort	50 (11 with PSA> 20)	69	100% M	Prostate	Prostate cancer	Histopathology	Shear wave velocity and Young's modulus	A/A	SuperSonic Imagine
											(Continued)

References	Country	Study design	Patients/Lesions (N)	Age (Years)	Male: Female	Organ	Condition	Reference test/Gold standard	SWE parameters	Cutoff value (Kpa)	US system
Boehm et al. (56)	Germany	Prospective cohort	60 patients with suspected prostate cancer	N/A	100% M	Prostate	Prostate cancer	histopathology	Young's Modulus	50 Kpa	TRUS Aixplorer
Porsch et al. (57)	Germany	Prospective cohort	69 (794 samples)	65+8	100% M	Prostate	Prostate cancer	Histopathology	Young's Modulus	48 Kpa	SuperSonic Imagine Ultrasound System AIXPLORER
Woo et al. (58)	Korea	Prospective cohort	87 (87 lesions)	66 ± 9.0	100% M	Prostate	Prostate cancer	Histopathology	Young's Modulus	43.9 Kpa	SuperSonic Imagine
Correas et al. (59)	France	Prospective cohort	184 (1040 samples)	65.1 6 7.6	100% M	Prostate	Prostate cancer	Histopathology	Young's Modulus	35 Kpa	SuperSonic Imagine
Glybochko et al. (60)	Russia	Prospective cohort	302 (134 with suspected PC, 120 with confirmed PC and 48 healthy men)	N/A	1 00% M	Prostate	Prostate cancer	Histopathology	Young's Modulus	50 Kpa	Super Sonic Imagine
Zhang et al. (61, 62)	China	Prospective cohort	59 (71 lesions)	50.5 ± 9.1	0.4:1	Thyroid	Benign vs. malignant thyroid nodules <10mm	Histopathology	Shear wave velocity	2.910 m/s	Acuson S2000 Seimens VTTQ
Azizi et al. (63)	USA	Prospective cohort	676 (707 lesions)	51.2+15	0.2:1	Thyroid	Thyroid cancer	Histopathology	Shear wave velocity	3.54 m/s	Virtual Touch IQ Software on the Siemens ACU-SON S3000 US
Liu et al. (12)	China	Prospective cohort	271 (331 lesions)	45.9 土 13.4	0.3:2	Thyroid	Malignant thyroid nodule	Histopathology	SWE mean	39.3 Kpa	SuperSonic Imagine
Wang et al. (64)	China	Prospective cohort	322 (322 nodules)	50.5 ± 12.6	0.3:1	Thyroid	Malignant thyroid nodule	Histopathology	Elastic modulous and SWS	3.52 m/s	Aplio500, Toshiba Medical Systems
Duan et al. (65)	China	Prospective cohort	118 (137 lesions)	45.9 土 13.4	0.6:1	Thyroid	Malignant thyroid nodule	Histopathology	SWE mean	34.5	Aixplorer, Supersonic Imagine
Liu et al. (66)	China	Prospective cohort	238 (254 lesions)	50.9 ± 11.9	0.3:1	Thyroid	Malignant thyroid nodule	Histopathology	SWS	2.78 m/s	N/A
Liu et al. (67)	China	Retrospective cohort	227 (313 lesions)	46.14 ± 9.70	0.2:1	Thyroid	Malignant thyroid nodule	Histopathology	Emax	51.95 Kpa	N/A
Kim et al. (68)	Korea	Retrospective cohort	99 (99 lesions)	45.7+13	N/A	Thyroid	Malignant thyroid nodule	Histopathology	Emean	62 Kpa	Aixplorer US system (SuperSonic Imagine)
Deng et al. (69)	China	Prospective cohort	146 (175 nodules)	46.36 土 12.5	0.4:1	Thyroid	Malignant thyroid nodule	Histopathology	SWS	2.59 m/s.	Siemens Acuson S2000 US machine
Baig et al. (70)	China	Prospective cohort	122 (163 nodules)	53 土 13.7	0.2:1	Thyroid	Malignant thyroid nodule	Histopathology	Emax	67.3 Kpa	Aixplorer, Supersonic Imagine
Dobruch-Sobczak et al. (71)	Poland	Prospective cohort	119 (169 lesions)	49.2+14	0.3:1	Thyroid	Characterization of thyroid nodules	Histopathology	Emean	30.5 Kpa	Aixplorer, SuperSonic Imagine
											(Continued)

		per Sonic	erSonic	erSonic) (Siemens)) (Siemens)
	US system	Q-box TM; Su Imagine	Aixplorer, Supt Imagine	Aixplorer, Supt Imagine	Acuson S3000	Acuson S3000
	Cutoff value (Kpa)	38.3 Kpa	85.2 Kpa	22.3 Kpa	3.01 m/s	2.6 m/s
	SWE parameters	Emean	Emean	Young's Modulus	Mean SWS	Mean SWS
	Reference test/Gold standard	Histopathology	Histopathology	Histopathology	Histopathology	Histopathology
	Condition	benign vs. malignant solid Thyroid lesions	Benign vs. malignant solid Thyroid lesions	Benign vs. malignant thyroid follicular lesions	Benign vs. malignant solid Thyroid lesions	Benign vs. malignant solid Thyroid lesions
	Organ	Thyroid	Thyroid	Thyroid	Thyroid	Thyroid
	Male: Female	0.4:1	0.2:1	0.5:1	0.26:1	0.4:1
	Age (Years)	45.3 ± 13.1	45.7+10.33	55 + 16.1	54.0 ± 9.4	49.80+12.34
	Patients/Lesions (N)	49 (64 lesions)	453 (476 nodules)	35 (35 lesions)	107 (107 lesions)	290 (302 lesions)
	Study design	Prospective cohort	Retrospective cohort	Prospective cohort	Prospective cohort	Prospective cohort
ned	Country	China	Korea	NSA	China	China
TABLE 1 Contin	References	Liu et al. (72)	Park et al. (73)	Samir et al. (74)	Yang et al. (75)	Zhou et al. (76)

the QUADAS score, 25 (21.5%), 30 (25.8%), 22 (18.9%), 23 (19.8%), and 16 (13.8%) studies scored 10, 11, 12, 13, and 14, respectively. The baseline data of enrolled participants, as well as the characteristics of the used US systems for SWE and CEUS tests are illustrated in **Tables 1**, **2**, respectively.

Outcomes of Pair-Wise Meta-Analysis Breast Cancer

Detailed figures for pairwise meta-analysis in all five organs are illustrated in **Supplementary File III**. The pooled sensitivity, specificity, positive LR, and negative LR for CEUS in detection of breast malignant lesions were 0.89 (95% CI, 0.85, 0.92), 0.85 (95% CI, 0.81, 0.89), 6.13 (95% CI, 4.70, 8.01), and 0.12 (95% CI, 0.07, 0.21), respectively. The pooled DOR was 49.66 (95% CI, 29.42, 83.82) and the area under the receiving-operating characteristic (AUROC) curve was 0.92, **Figure 2A**. No heterogeneity was observed for sensitivity (p = 0.15) or specificity (p = 0.95).

For SWE, the pooled sensitivity, specificity, positive LR, and negative LR were 0.84 (95% CI, 0.83, 0.86), 0.86 (95% CI, 0.85, 0.87), 7.12 (95% CI, 5.54, 9.15), and 0.18 (95% CI, 0.15, 0.22), respectively. The pooled DOR was 46.22 (95% CI, 31.33, 68.18) with an AUROC of 0.93, **Figure 2B**. Significant heterogeneity was observed for sensitivity (p < 0.0001) and specificity (p < 0.0001).

Hepatic Cancer

The pooled sensitivity, specificity, positive LR, and negative LR for CEUS in differentiating malignant hepatic lesions were 0.78 (95% CI, 0.76, 0.81), 0.89 (95% CI, 0.87, 0.91), 6.51 (95% CI, 3.90, 10.85), and 0.13 (95% CI, 0.06, 0.25), respectively. The overall DOR was 57.94 (95% CI, 24.78, 135.45) with an AUROC of 0.95, **Figure 3A**. The included studies were heterogeneous in the estimates of sensitivity (p < 0.0001) and specificity (p < 0.0001).

For SWE, the pooled sensitivity, specificity, positive LR, and negative LR were 0.82 (95% CI, 0.77, 0.87), 0.83 (95% CI, 0.76, 0.89), 4.30 (95% CI, 2.85, 6.48), and 0.29 (95% CI, 0.12, 0.71), respectively. The overall DOR was 14.46 (95% CI, 4.09, 51.04) with an AUROC of 0.90, **Figure 3B**. The included studies were heterogeneous in the estimates of sensitivity (p < 0.0009) and specificity (p < 0.0001).

Thyroid Cancer

The pooled sensitivity, specificity, positive LR, and negative LR for CEUS in detecting malignant thyroid nodules were 0.81 (95% CI, 0.78, 0.84), 0.88 (95% CI, 0.86, 0.90), 6.01 (95% CI, 3.88, 9.31), and 0.23 (95% CI, 0.17, 0.31), respectively. The overall DOR was 28.54 (95% CI, 16.79, 48.51) with an AUROC of 0.91, **Figure 4A**. Significant heterogeneity was observed for sensitivity (p = 0.001) and for specificity (p < 0.0001).

For SWE, the pooled sensitivity, specificity, positive LR, and negative LR were 0.67 (95% CI, 0.64, 0.69), 0.77 (95% CI, 0.76, 0.79), 3.50 (95% CI, 2.93, 4.18), and 0.33 (95% CI, 0.25, 0.45), respectively. The overall DOR was 11.17 (95% CI, 8.04, 15.51) with an AUROC of 0.84, **Figure 4B**. Significant

References C	Sountry	Study Organ design	Condition	Patients/ Lesions (N)	Age (Years)	Male: Female	Contrast agent	Reference test	US technique	Mechanical index	Probe
Bertolotto It et al. (5)	aly	Retrospective Kidney	Indeterminate renal masses with equivocal enhancement on CT	47 (30 HP)	65 ± 13	4.75:1	2.4 mL SonoVue	Histopathology	Pulse inversion harmonic imaging Cadence contrast pulse sequencing	0.05-0.21	Convex array (C5–1) & (4C1) &(C5–2 HDI) & (CA430E)
Cai et al. (77) C	China	Prospective Kidney cohort	Benign vs. malignant renal masses	73 (73 lesions)	56.36 ± 12.2	1.6:1	1.0–1.8 mL SonoVue	Histopathology and follow up data	Acuson Sequoia 512, Siemens,	0.21-0.23	4C1-S convex probe 1-4 MHz
Chang et al. U (30)	ASL	Prospective Kidney cohort	Renal solid and cystic lesions	44 (23 HP lesions) 56 ± 14	0.7:1	Sonazoid	Histopathology and follow up data	Siemens Acuson Sequoia 512	0.19	4C1 abdominal transducer
Chen et al. C (78, 79)	China	Prospective Kidney cohort	RCC vs. AML	99 (102 lesions)	56.6 ± 16.5	2:01	1.2 ml of SonoVue	Histopathology	Acuson S2000 (contrast pulse sequencing)	N/A	N/A
Chen et al. C (80)	China	Prospective Kidney cohort	Complex cystic renal masses	59 (71 lesions)	49.6 + 14.25	2.9:1	2.4 mL of SonoVu	e Histopathology and follow up data	Coded phase inversion harmonic imaging (Logiq 9 scanner GE Healthcare)	0.07-0.10	3.5C (2.5–5.0 MHz) and 4C (1.0–4.0 MHz) convex transducers
Defortescu F et al. (81)	rance	Prospective Kidney cohort	Complex renal cysts	47 (47 lesions)	46 + 9.75	1.8:1	1.2 mL SonoVue	Histopathology and follow up data	ACUSON S2000-Siemens-10	0.06-0.1	Convex probe 3–4.5 mHz
Li et al. (16) C	China	Retrospective Kidney	RCC vs. AML	411 (429 lesions)	54.12 ± 12.57	1.9:1	1.2 mL SonoVue	Histopathology	E9 system (GE Healthcare	0.11	C1-5, 1-5 MHz
Li et al. (82) C	China	Retrospective Kidney	Solid Renal Masses	91 (100 lesions)	62.0 ± 15.6	2.6:1	1.0–1.2 ml SonoVue	Histopathology	Acuson Sequoia 512 scanner	<0.2	4V1 vector transducer, 1–4 MHz
Lu et al. (83) C	Shina	Retrospective Kidney	RCC vs. AML	189 (189 lesions)	47.3 ± 20.7	1.6:1	1.2 ml SonoVue	Histopathology	LOGIC E9	< 0.1	C1-5, 1.5 MHz
Nicolau et al. S (84)	òpain	Prospective Kidney cohort	Indeterminate renal masses by CT	72 (83 nodules)	64.9 + 14.5	1.9:1	2.4 mL of SonoVu	e Histopathology and follow up data	Cadence contrast pulse sequencing technology (CPS)	<0.2 at Sequoia 512, <0.009 at S2000)	4C1 convex array probe
Oh et al. (85) K	lorea	Retrospective Kidney	RCC vs. AML (small masses)	49 lesions	61+11.5	2.5:1	SonoVue	Histopathology	N/A	N/A	N/A
Sanz et al. S (86)	Spain	Prospective Kidney cohort	Complex cystic renal masses	66 (67 lesions)	67.8+ 1.83	2.7:1	2.4 mL SonoVue	Histopathology	Hitachi Preirus	N/A	EUP-C715 probe (5–1 MHz
Tamas-Szora R et al. (87)	Romania	Prospective Kidney cohort	RCC	32 (33 lesions)	60.9 ± 10.43	1:01	1.6mL of SonoVu	e Histopathology	General Electric Logiq 7 system	0.09-0.11	Convex wide-band transducer (2–5.5 MHz)
Tian et al. (28) C	China	Prospective Kidney cohort	Renal SOL	367 (378 lesions)	N/A	N/A	1.2 mL SonoVue	Histopathology	ACUSON S2000 Ultrasound System		Probe 4C1, 2.5–5 MHz
											(Continued)

References Country	/ Study Organ design	Condition	Patients/ Lesions (N)	Age (Years)	Male: Female	Contrast agent	Reference test	US technique	Mechanical index	Probe
Wei et al. (88) China	Retrospective Kidney	Benign vs. malignant solid renal masses	118 (118 lesions)	53.5 ± 12.6	1.6:1	1.6-2.4 mL SonoVue	Histopathology	Contrast pulse sequence, Sequoia 512 ultrasound system (Siemens	0.18-0.20	4C1, 3-4 MHz
Yong et al. Singapc (89)	re Retrospective Kidney	Undetermined renal masses	63 (74 nodules)	62.4 ± 14.5	1.6:1	1.5 ml of SonoVue	e Histopathology	Aplio 500, Toshiba Medical Systems AND iU22, Philips Healthcare	e N/A	N/A
Zhang et al. China (90)	Prospective Kidney cohort	Benign vs. malignant thyroid nodules	148 (157 lesions)	45.4 ± 10.5	N/A	2.4 ml SonoVue	Histopathology	Contrast pulse sequence (CPS) imaging. Acuson, Sequoia 512 Encompass	0.20-0.23	15L8w probe (8–14 MHz)
Miyamoto Japan et al. (91)	Prospective Breast cohort	Focal breast lesions	127 (127 lesions)	48.5 ± 12.3		0.015 mL/kg Sonazoid	Histopathology	AplioXG, Toshiba AND, Hitachi-Aloka AND Logiq E9, GE	, 0.1–0.4	Broadband linear phased-array transducer
Xia et al. (92) China	Retrospective Breast	Papillary breast lesions	50 (52 lesions)	51 +13.57		2.4 mL SonoVue	Histopathology	Pulse-inverse harmonic imaging technique [Philips iU22]	c 0.05-0.08	3–9-MHz linear transducer
Xiao et al. (93) China	Prospective Breast cohort	Subcentimetric breast lesions	203 (209 lesions)	47+15.25		4.8mL of SonoVu	le Histopathology	Pulse inversion harmonic technique w iU22 (Philips)	0.06	9–3-MHz linear transducer
Yuan et al. China (94)	Prospective Breast cohort	Breast tumors	216 (216 lesions)	46 土 12		2.5 mL SonoVue	Histopathology	Sequoia; Siemens Medical Solutions	N/A	10 MHz transducer
Aubé et al. France (95)	Prospective Liver cohort	Diagnosis of HCC (<3 cm)	0 381 (544 lesions)	62 ± 9.69	4.6:1	SonoVue	Histopathology, CT and MRI according to EASL-AASLD	N/A	N/A	N/A
Beyer et al. German (96)	y Retrospective Liver	Benign vs. malignant liver nodules	83 (83 lesions)	59.8 +10	2.6:1	1-2.4 ml SonoVu(e Histopathology	LOGIQ E9, GE	N/A	1–6 MHz curved probe
Corvino et al. Italy (97)	Prospective Liver cohort	Cystic and cyst like liver lesions	48 (50 lesions)	65+15	0.9:1	2.4 or 4.8 mL SonoVue	Histopathology	MyLab 70 Twice scanner (Esaote)	N/A	D multifrequency (2.5–5 MHz) convex probes
Feng et al. China (98)	Retrospective Liver	HCC differentiatic	on 271 (374 lesions)	49.25 + 17	3.9:1.0	2.4 mL SonoVue	Histopathology	iU22 system (Philips)	<0.1	(5–2 MHz) convex transducer (C5-2).
Iwamoto et al. Japan (99)	Retrospective Liver	Macroscopic HO	C 77 (79 lesions)	70 ± 9	2.7:1	0.015 ml/kg Sonazoid	Histopathology	(tissue harmonic grayscale imaging) LOGIQ 7 or E9 US	0.2-0.3	Convex or linear probes with a frequency of 2–5 or 4–9 MHz
										(Continued)

10

Kodewyseth apart Ferrospective Liver NS-HCC 56 (35 lestore) 66 + 13.75 2.9.1 C0015 mUrg Histopathology erad. etal.(100) algaen Remospective Liver Uver metastasia 86 (14) lestore) 66 + 11.2 1.7.1 Sonazoid Histopathology erad. Lue et Al.(12) Remospective Liver Hysterchold Histopatholic 66 (45 lestore) 55 ± 10 0.8.1 1.5 mL of Sono/us-Histopatholic Cuasa et al. (100) Remospective Liver Benjørvs. 46 (55 lestore) 55 ± 10 0.8.1 2.4 mL Sono/use Histopatholic Cuasa et al. (100) Remospective Liver Benjørvs. 46 (55 lestore) 55 ± 10 0.8.1 1.5 mL of Sono/use Histopatholic Cuasa et al. (100) Remospective Liver Benjørvs. 46 (55 lestore) 56 ± 1 / 1.7 5.7.1 1.5 mL of Sono/use Histopatholic Cuasa et al. (100) Remospective Liver Benjørvs. 46 (55 lestore) 56 ± 1 / 1.7 5.7.1 1.5 mL of Sono/use Histopatholic Cuasa et al. (100) Remospective Liver Derecuprecuive Liver Histopatholic <td< th=""><th>References</th><th>Country</th><th>Study (</th><th>Organ</th><th>Condition</th><th>Patients/ Lesions (N)</th><th>Age (Years)</th><th>Male: Female</th><th>Contrast agent</th><th>Reference test</th><th>US technique</th><th>Mechanical index</th><th>Probe</th></td<>	References	Country	Study (Organ	Condition	Patients/ Lesions (N)	Age (Years)	Male: Female	Contrast agent	Reference test	US technique	Mechanical index	Probe
Kodbejeeki Japan Retrospective Liver Liver metactasis 80 (48 Esions) 6.46 ± 11.2 1.7.1 0.0075 m.Uq Histopathology Lu et al. (10) Prospective Liver Hyperchoic HT 102 (135 Esions) 51.4 ± 12.5 2.81 1.5 mL of SonoVue Histopathology Lu et al. (10) Prospective Liver Berlign vs. 46 (55 Issions) 55 ± 10 0.81 2.4 mL SonoVue Histopathology Cluaia et al. (103) Retrospective Liver Berlign vs. 46 (55 Issions) 61.4 ± 15.25 1.11 1.2 ml bolus of and Error for patients 1.6 molus of and Error for patients 2.4 mL SonoVue Histopathology Cloai Retrospective Liver Liver Dio (100 Esions) 61.4 ± 1.1.7 5.7 i 1.5 mL SonoVue Histopathology Standrose USA Retrospective Liver Liver Retrospective Liver Retrospective Liver Retrospective Liver Retrospective Liver Retrospective Liver Liver SonoVue Histopathology Cluai Cluai Metal Cluai Retrospective Liver Live	Kobayashi et al. (100)	Japan	Retrospective L	Liver	NS-HOC	85 (85 lesions)	66 + 13.75	2.9:1	0.015 ml/kg Sonazoid	Histopathology	Wide-band pulse-inversion harmonic imaging (HI VISION Ascendus (Hitachi))	0.16-0.2	Microconvex probe (EUP- C715, 3.5 MHz
Luetal. (12) Tisme Prospective Liver Hypercholicity 15.1±12.5 2.81.1 15.mL of SonoVue Histopathology Outaia et al. Italy Retrospective Liver Berign vs. 46 (55 lesions) 55 ± 10 0.81.1 15.mL of SonoVue Histopathology Outaia et al. (102) Ush Retrospective Liver Berign vs. 46 (55 lesions) 55 ± 10 0.81.1 12.mL bonoVue Histopathology SonoVue Retrospective Liver Retrospective Liver Berign vs. 46 (55 lesions) 61 ± 7.17 5.71 12.mL bonoVue Histopathology SonoVue Macroscopic Hot Liver Macroscopic Hot No 2.4mL SonoVue Histopathology Schellhaus Germany Prospective Liver Macroscopic Hot 16.1 17.17 5.71 15.71 16.717 9.71 Schellhaus Germany Prospective Liver Macroscopic Hot Macroscopic Hot Macroscopic Hot 16.1 17.71 5.71 15.71 16.71 16.71 16.71 16.71 16.71 16.71 16.71 16.71 16.71 16.71 16.71 16.7	Kobayashi et al. (101)	Japan	Retrospective I	Liver	Liver metastasis	98 (148 lesions)	66.46 ± 11.2	1.7:1	0.0075 mL/kg Sonazoid	Histopathology	SSA 770A or 790 A US system (Toshiba)	0.17-0.27	3.75-MHz convex probe
Outline Tarty is the parametriner indication indindication indindication indication indindication indindication in	Liu et al. (12)	China	Prospective L cohort	Liver	Hyperechoic HFL	102 (135 lesions)	51.4 ± 12.5	2.8:1	1.5 mL of SonoVu	e Histopathology	GE Logiq9 color Doppler ultrasonography	0.11	convex array probe (frequency: 3.5–5 MHz)
Sandrose USA Retrospective Liver CT undetermined 78 (163 lesions) 61.4 + 15.25 1.1.1 1.2m loolus of un Histopathology un Schellhaas Germany Prospective Liver HCC by CEUS 100 (100 lesions) 66.1 + 7.17 5.7:1 1.5ml Sono/ue Histopathology up Schellhaas Germany Prospective Liver Macroscopic HCC 99 (99 lesions) 65.1 + 7.17 5.7:1 1.5ml Sono/ue Histopathology inaging Tada et al. (10-3) ontort Macroscopic HCC 99 (99 lesions) 67.8 ± 10.4 2.7:1 1.5ml Sono/ue Histopathology inaging (105) ontort No No 2.7:1 2.7:1 2.7:1 2.7:1 2.7:1 1.5ml Sono/ue Histopathology inaging (105) ontort No No 2.7:1 2.7:1 2.4:1 2.4ml Sono/ue Histopathology inaging (105) Mix et al. Mix et al. Onort Sono/ue Histopathology inaging Instantosy (103) Mix et al. Onort Eoral hepatic 2.7 <td< td=""><td>Quaia et al. (102)</td><td>Italy</td><td>Retrospective I</td><td>Liver</td><td>Benign vs. malignant liver lesions in cirrhotic patients</td><td>46 (55 lesions)</td><td>55 ± 10</td><td>0.8:1</td><td>2.4 mL SonoVue</td><td>Histopathology</td><td>Sequoia, Acuson-Siemens AND IU22 (IU22; Philip)</td><td>0.09-0.14</td><td>Convex array 2-4 MHz 4C1 transducer AND 2-5-MHz broadband curvilinear probe</td></td<>	Quaia et al. (102)	Italy	Retrospective I	Liver	Benign vs. malignant liver lesions in cirrhotic patients	46 (55 lesions)	55 ± 10	0.8:1	2.4 mL SonoVue	Histopathology	Sequoia, Acuson-Siemens AND IU22 (IU22; Philip)	0.09-0.14	Convex array 2-4 MHz 4C1 transducer AND 2-5-MHz broadband curvilinear probe
Schedithates Germany Prospective ophort Liver Hoc by CEUs 100 (100 lesions) 66.1 + 7.17 5.71 1.5ml SonoVue Histopathology Tada et al. (10.4) Japan Prospective Liver Macroscopic HCC 99 (99 lesions) 67.8 ± 10.4 2.71 0.015 m/kg of Histopathology Tada et al. Japan Prospective Liver Macroscopic HCC 99 (99 lesions) 67.8 ± 10.4 2.71 0.015 m/kg of Histopathology Tada et al. Japan Prospective Liver 50 (50 lesions) 52 + 14.25 1.41 2.4ml SonoVue Histopathology (105) cohort Prospective Liver Superficial HFL 27 (27 lesions) NA 2.41 SonoVue Histopathology (105) cohort Drospective Liver SonoVue SonoVue Histopathology (105) Mat al. China Prospective Liver SonoVue SonoVue Prospective (107) China Prospective Liver SonoVue SonoVue Prospective<	Sandrose et al. (103)	NSA	Retrospective L	Liver	CT undetermined HFL	78 (163 lesions)	61.8 + 15.25	1.1:1	1.2 ml bolus of SonoVue	Histopathology and PET/CT follow up	Pulse inversion / harmonic imaging (GE LOGIQ 9E)	N/A	N/A
Tada et al. Japan Prospective ophotogy Liver Macroscopic HCC 99 (99 lesions) 67.8 ± 10.4 2.7.1 0.015 m/kg of lesions) Histopathology (105) cohort Liver Hor 50 (80 lesions) 52 ± 14.25 1.4.1 2.4ml Sono/vie Histopathology (106) cohort Nu Prospective Liver Boperficial HFL 27 (27 lesions) N/A 2.4.1 2.4ml Sono/vie Histopathology (107) cohort Liver Superficial HFL 27 (27 lesions) N/A 2.4.1 2.4mL dose of Histopathology (107) cohort Prospective Liver Focal hepatic 46 (55 lesions) 46.5 + 15.2 1.2.1 2.4mL dose of Histopathology Wu et al. Prospective Liver Focal hepatic 46 (55 lesions) 46.5 + 15.2 1.2.1 2.4mL dose of Histopathology Wu et al. Prospective Liver Focal hepatic 46 (55 lesions) 46.5 + 15.2 1.2.1 2.4-mL dose of Histopathology Vin et al.(107) O	Schellhaas et al. (104)	Germany	Prospective L cohort	Liver	HCC by CEUS and ESCULAP	100 (100 lesions)	66.1 + 7.17	5.7:1	1.5 ml SonoVue	Histology and imaging	GE Logiq E9 AND Siemens Acuson S2000 AND Toshiba Aplio 500	N/A	N/A
Thakur et al. India Prospective Liver HCC 50 (50 lesions) 52 + 14.25 1.4:1 2.4 ml Sono/ue Histopathology (106) oohort Superficial HFL 27 (27 lesions) N/A 2.4:1 2.4 ml Sono/ue Histopathology Wang et al. Germany Prospective Liver Superficial HFL 27 (27 lesions) N/A 2.4:1 2.4 ml Sono/ue Histopathology (64) oohort Iver Focal hepatic 46 (55 lesions) A6.5 + 15.2 1.2:1 2.4 ml Sono/ue Histopathology (107) oohort Iver al. (108) China Prospective Liver Focal hepatic 46 (55 lesions) 46.5 + 15.2 1.2:1 2.4-mL dose of Histopathology Vin et al. (107) oohort Iver al. (108) China Prospective Liver Cholangiocarcinomado (40 lesions) 58.7 + 9.701 1.4:1 1.5mL of Sono/ue Histopathology Vin et al. (108) China Prospective Liver vs. inflammatory 58.7 + 9.701 1.4:1 1.5mL of Sono/ue Histopathology Vin et al. (108) China Prospective Liver Vs. inflammatory Iver So	Tada et al. (105)	Japan	Prospective L cohort	Liver	Macroscopic HCC	. 99 (99 lesions)	67.8 ± 10.4	2.7:1	0.015 ml/kg of Sonazoid	Histopathology	Wideband harmonic imaging (Aplio XG system, Toshiba)	(0.18-0.28)	5-MHz convex transducer 1.4 and 5.3 MHz
Wang et al. Germany Prospective Liver Superficial HFL 27 (27 lesions) N/A 2.4:1 2.4 ml SonoVue Histopathology (64) oohort Iver Eventicial HFL 27 (27 lesions) N/A 2.4:1 2.4 ml SonoVue Histopathology Wu et al. Ohina Prospective Liver Focal hepatic 46 (55 lesions) 46.5 + 15.2 1.2:1 2.4-mL dose of Histopathology Vin et al. Ohina Prospective Liver tesions 46.5 + 15.2 1.2:1 2.4-mL dose of Histopathology Vin et al. Ohina Prospective Liver Cholangiocarcinom40 (40 lesions) 58.7 + 9.701 1.4:1 1.5mL of SonoVue Histopathology Vin et al. (108) Ohina Prospective Liver vs. inflammatory 1680 nov. 166 (176 lesions) 50.7 + 16.25 1.9:1 2.4mL of SonoVue Histopathology Zhang et al. Ohina Prospective Liver vs. inflammatory 156 (176 lesions) 50.7 + 16.25 1.9:1 2.4mL of SonoVue Histopathology (109) oohort Liver Prospective Liver 156 (176 lesions) <	Thakur et al. (106)	India	Prospective 1 cohort	Liver	НОС	50 (50 lesions)	52 + 14.25	1.4:1	2.4 ml SonoVue	Histopathology, CT and MRI	Xario XG (Toshiba)	<0.2	
Wu et al. China Prospective Liver Focal hepatic 46 (55 lesions) 46.5 + 15.2 1.2:1 2.4-mL dose of Histopathology (107) cohort lesions de.5 + 15.2 1.2:1 2.4-mL dose of Histopathology (107) cohort lesions de.5 + 15.2 1.2:1 2.4-mL dose of Histopathology Yin et al. (108) China Prospective Liver Cholangiocarcinom40 (40 lesions) 58.7 + 9.701 1.4:1 1.5mL of Sono/ue Histopathology oohort vs. inflammatory lesions vs. inflammatory lesions 50.7 + 16.25 1.9:1 2.4-mL of Sono/ue Histopathology Zhang et al. China Prospective Liver Benign vs. 156 (176 lesions) 50.7 + 16.25 1.9:1 2.4-mL of Sono/ue Histopathology (109) cohort lesions 50.7 + 16.25 1.9:1 2.4-mL of Sono/ue Histopathology	Wang et al. (64)	Germany	Prospective L cohort	Liver	Superficial HFL	27 (27 lesions)	N/A	2.4:1	2.4 ml SonoVue	Histopathology, one patient by MR	Philips iU22, LOGIQ I E9, Aplio 500	N/A	High frequency transducer (7.5–12 MHz)
Yin et al. (108) China Prospective Liver Cholanglocarcinom40 (40 lesions) 58.7 + 9.701 1.4:1 1.5mL of Sono/ue Histopathology cohort vs. inflammatory lesions sono/ue listopathology Zhang et al. China Prospective Liver Benign vs. 156 (176 lesions) 50.7 + 16.25 1.9:1 2.4 mL of Sono/ue Histopathology (109) cohort malignant liver lesions 50.7 + 16.25 1.9:1 2.4 mL of Sono/ue Histopathology	Wu et al. (107)	China	Prospective L cohort	Liver	Focal hepatic lesions	46 (55 lesions)	46.5 + 15.2	1.2:1	2.4-mL dose of SonoVue	Histopathology, CECT and MRI	Philips iU22 US system	0.06	5C2 multi- frequency convex probe
Zhang et al. China Prospective Liver Benign vs. 156 (176 lesions) 50.7 + 16.25 1.9:1 2.4 mL of SonoVue Histopathology (109) cohort malignant liver (109) lesions	Yin et al. (108)	China	Prospective L cohort	Liver	Cholangiocarcinon vs. inflammatory lesions	n á 0 (40 lesions)	58.7 + 9.701	1.4:1	1.5 mL of SonoVu	e Histopathology	LOGIQ E9 (GE Healthcare)	<0.1	C5-1, 2.0–4.0 MHz
	Zhang et al. (109)	China	Prospective L cohort	Liver	Benign vs. malignant liver lesions	156 (176 lesions)	50.7 + 16.25	1.9:1	2.4 mL of SonoVu	e Histopathology	Acuson S2000 ultrasound system Seimens	N/A	4C1 convex array probe; frequency 2.0–4.0 MHz

TABLE 2 O	ontinued											
References	Country	Study design	Organ	Condition	Patients/ Lesions (N)	Age (Years)	Male: Female	Contrast agent	Reference test	US technique	Mechanical index	Probe
Takahashi et al. (110)	Japan	Prospective cohort	Liver	HFL < 30 mm	56 (67 lesions)	65.8 ± 10.1	2.5:1	0.0075 mL/kg Sonazoid	Histopathology	SSA-790A ultrasound system (Aplio	(0.20-0.25)	3.75 MHz convex probe
Taimr et al. (111)	Canada	Prospective cohort	Liver	Liver metastasis	89 (89 lesions)	31–87	1.6:1	1.5–2.4 mL SonoVue	Histopathology	Contrast-tuned imaging Hitachi 900 and Hitachi Preirus	N/A	2.5–5.0 MHz probe
Cantisani et al. (9)	Italy	Prospective cohort	Thyroid	Thyroid nodules	48 (53 lesions)	49.4 + 8.75	2.7:1	4.8 mL SonoVue	Histopathology	MyLab 70XvG, Esaote	N/A	Linear probe (7–12 MHz) (N:36)
Deng et al. (69)	China	Prospective cohort	Thyroid	Malignant thyroid nodule	146 (175 nodules) 46.36 ± 12.5	0.4:1	2.4 mL of the SonoVue	Histopathology	Siemens Acuson S2000 US machine	0.1	9L4, 5.0 MHz to 14.0 MHz
Diao et al. (112)	China	Prospective cohort	Thyroid	Benign vs. malignant thyroid nodules	77 (87 lesions)	52.4 ± 17.2	N/A	1.5mL SonoVue	Histopathology	Siemens Acuson S2000 US	0.06-0.1	5- to 14-MHz linear array transducer (9L4)
Giusti et al. (113)	Italy	Prospective cohort	Thyroid	Benign vs. malignant thyroid nodules	63 (HP in 38 lesions)	55.9 ± 14.7	0.2:1	4.8ml of SonoVue	Histopathology	MyLab 70 US scanner	N/A	7.5-MHz linear probe
Jiang et al. (114)	China	Prospective cohort	Thyroid	Benign vs. malignant calcified thyroid nodules	122 (122 nodules) 46 + 12	0.4:1	2.4 mL of the SonoVue	Histopathology	Contrast pulse sequencing (CPS) (ACUSON Sequoia 512 (Siemens Healthcare)	0.32	15L8w high- frequency linear transducer
Wu et al. (107)	China	Retrospective	e Thyroid	Benign vs. malignant thyroid nodules	133 lesions	46.3 + 10	0.5:1	1.2mL SonoVue	Histopathology	ESAOTE MyLab 90 X-vision	0.05-0.07)	L522 (3–9 MHz) linear-array probe
Zhang et al. (46)	China	Prospective cohort	Thyroid	Benign vs. malignant thyroid nodules	70 (200 lesions)	49.6 + 12.8	0.3:1	2.0mL SonoVue	Histopathology	Acuson S2000	<0.10	9-MHztransducer
Zhang et al. (90)	China	Prospective cohort	Thyroid	Benign vs. malignant thyroid nodules	246 (319 patients) 46.1 土 15.2	0.5:1	2.4 ml SonoVue	Histopathology	Contrast pulsed sequencing (CPS) Siemens Acuson S2000	A/A	9 L4 transducer
Zhang et al. (90)	China	Prospective cohort	Thyroid	Benign vs. malignant thyroid nodules	111 (145 nodules) 48 + 13.45	0.2:1	1.6mL SonoVue	Histopathology	Contrast tuned imaging Mylab Twice Esaote	N/A	LA522 transducer (3–9 MHz)
Zhou et al. (115)	China	Prospective cohort	Thyroid	Benign vs. malignant thyroid nodules	161 (167 lesions)	44.14 + 12.01	0.4:1	2.4 ml SonoVue	Histopathology	DC-8EXP; Mindray	0.15	L12-3E transducer

heterogeneity was observed for sensitivity (p < 0.0001) and specificity (p < 0.0001).

Renal Cancer

The sensitivity of CEUS ranged from 0.71 to 0.98 with a pooled sensitivity of 0.87 (95% CI, 0.85, 0.88).

Specificity ranged from 0.50 to 0.97 with a pooled specificity of 0.84 (95% CI, 0.82, 0.87). The pooled positive and negative LRs were 5.55 (95% CI, 3.74, 8.22) and 0.12 (95% CI, 0.07, 0.19), respectively. The overall DOR was 53.44 (95% CI, 29.89, 95.56) with an AUROC of 0.95, **Figure 5A**. Significant heterogeneity

was observed for sensitivity (p < 0.0001) and specificity (p < 0.0001).

Prostate Cancer

The sensitivity of SWE ranged from 0.42 to 0.96 with a pooled sensitivity of 84% (95% CI, 0.80, 0.87). Specificity ranged from

0.70 to 0.95 with a pooled specificity of 0.84 (95% CI, 0.82, 0.86). The pooled positive and negative LRs were 4.59 (95% CI, 2.68, 7.87) and 0.18 (95% CI, 0.07, 0.44), respectively. The overall DOR was 25.35 (95% CI, 7.15, 89.89) with an AUROC of 0.89 (**Figure 5A**). Significant heterogeneity was observed for sensitivity (p < 0.0001) and specificity (p < 0.0001) (**Figure 5B**).

TABLE 3 Summary of the results of pooled sensitivity, specificity, positive, and negative likelihood ratios for SWE and CEUS in different cancers.

Cancer	Test	Sensitivity	Specificity	+ ve LR	-ve LR	DOR	AUROC
Breast cancer	SWE	0.84 (95% Cl, 0.83, 0.86)	0.86 (95% Cl, 0.85, 0.87)	7.12 (95% Cl, 5.54, 9.15)	0.18 (95% Cl, 0.15, 0.22)	46.22 (95% Cl, 31.33, 68.18)	0.93
	CEUS	0.89 (95% Cl, 0.85, 0.92)	0.85 (95% Cl, 0.81, 0.89)	6.13 (95% Cl, 4.70, 8.01)	0.12 (95% Cl, 0.07, 0.21)	49.66 (95% Cl, 29.42, 83.82)	0.92
Hepatic cancer	SWE	0.82 (95% Cl, 0.77, 0.87)	0.83 (95% Cl, 0.76, 0.89)	4.30 (95% Cl, 2.85, 6.48)	0.29 (95% Cl, 0.12, 0.71)	14.46 (95% Cl, 4.09, 51.04)	0.90
	CEUS	0.78 (95% Cl, 0.76, 0.81)	0.89 (95% Cl, 0.87, 0.91)	6.51 (95% Cl, 3.90, 10.85)	0.13 (95% Cl, 0.06, 0.25)	57.94 (95% Cl, 24.78, 135.45)	0.95
Thyroid cancer	SWE	0.67 (95% Cl, 0.64, 0.69)	0.77 (95% Cl, 0.76, 0.79)	3.50 (95% Cl, 2.93, 4.18)	0.33 (95% Cl, 0.25, 0.45)	11.17 (95% Cl, 8.04, 15.51)	0.84
	CEUS	0.81 (95% Cl, 0.78, 0.84)	0.88 (95% Cl, 0.86, 0.90)	6.01 (95% Cl, 3.88, 9.31)	0.23 (95% Cl, 0.17, 0.31)	28.54 (95% Cl, 16.79, 48.51)	0.91
Renal carcinoma	CEUS	0.87 (95% Cl, 0.85, 0.88)	0.84 (95% Cl, 0.82, 0.87)	5.55 (95% Cl, 3.74, 8.22)	0.12 (95% Cl, 0.07, 0.19)	53.44 (95% Cl, 29.89, 95.56)	0.95
Prostate cancer	SWE	84% (95% Cl, 0.80, 0.87)	0.84 (95% Cl, 0.82, 0.86)	4.59 (95% Cl, 2.68, 7.87)	0.18 (95% CI, 0.07, 0.44)	25.35 (95% Cl, 7.15, 89.89)	0.89

AUROC, Area under the receiving-operating curve; CEUS, contrast-enhanced ultrasound; DOR, Diagnostic odds ratio; LR, Likelihood ratio; SWE, Shear wave elastography.

 Table 3 summarizes the diagnostic results for both tests in different cancer sites.

Outcomes of Network Meta-Analysis

Corresponding network plots and forest plots of network metaanalysis between CEUS and SWE are shown in **Figure 6**. In breast cancer, NMA showed that CEUS was associated with significantly higher DOR than SWE (DOR = 27.14, 95% CI [2.30, 51.97], p = 0.011). While NMA showed no significant difference between CEUS and SWE in detecting hepatic (DOR = -6.67, 95% CI [-15.08, 1.74, p = 0.61]) and thyroid malignant lesions (DOR = 3.79, 95% CI [-3.10, 10.68], p= 0.58). No significant heterogeneity or inconsistency were observed between the pooled studies for breast ($I^2 = 10\%$, p = 0.30) and hepatic cancer ($I^2 = 20\%$, p = 0.21). While a p-value of 0.05 indicated significant heterogeneity among the studies of thyroid cancer; therefore, the random-effects model was employed.

Ranking Diagnostic Tests

According to Glas et al. (116), the DOR is considered as an indicator of ranking of competing diagnostic tests. According to our results, CEUS achieved the highest DOR in detecting breast and thyroid malignant lesions, while SWE achieved the highest DOR in detecting hepatic malignant lesions.

DISCUSSION

This meta-analysis of DTA studies provides a comprehensive assessment and comparison of the diagnostic accuracy of two US modalities in differentiating malignant tumors in different body organs. It showed relatively high sensitivity (between 78 and 89%) and specificity (between 84 and 89%) for CEUS in identifying malignant lesions in the breast, liver, thyroid and kidneys. Moreover, it demonstrated relatively high sensitivity (between 82 and 84%) and specificity (between 83 and 86%) for SWE in differentiating malignant tumors within the breast, liver

plot CEUS vs. SWE of thyroid cancer.

and prostate. However, it had relatively lower sensitivity (67%) and specificity (77%) in identifying malignant nodules within the thyroid gland.

Our results support some recent practice guidelines that endorse the use of CEUS and SWE in differentiating malignant lesions within the liver and the breast (117, 118). Moreover, it provides new data on a comparison that can impact the clinical practice. Through NMA, we compared the diagnostic accuracy of CEUS and SWE in three organs (where data on both tests were available in the literature). Our network and ranking analysis showed that CEUS was more accurate than SWE in differentiating breast and thyroid lesions (although the difference was not significant in thyroid malignancy according to NMA). On the other hand, SWE ranked higher in terms of diagnostic accuracy in differentiating hepatic malignant lesions (although the difference was not significant according to NMA).

Our results are in agreement with a former meta-analysis by Sadigh et al. that showed high sensitivity and specificity for SWE in differentiating breast malignant lesions [88 and 83% in comparison to 84 and 86% in our analysis; (11)]. However, our sensitivity and specificity results are quite lower than those obtained by Liu et al. in a meta-analysis on SWE accuracy in differentiating thyroid malignancy [sensitivity 81% and specificity 84%; (12)]. Likewise, another meta-analysis reported high sensitivity and specificity (93 and 90%, respectively) for CEUS in identifying hepatic malignant lesions (119). The observed discrepancy between our findings and those of the aforementioned meta-analyses may be attributed to the different sample size (being larger in our analysis) or the lesional characteristics of enrolled patients (being easier to identify in the studies included in the other meta-analysis i.e., less depth and clear contrast from the surrounding tissue).

Interestingly, a meta-analysis by Guang et al. showed comparable diagnostic accuracy for SonoVue-enhanced US with contrast-enhanced computed tomography and magnetic resonance imaging (8). Moreover, CEUS has other advantages over these modalities as ease of access, lack of radiation exposure or nephrotoxic materials; limitations that affect the use of CT and MRI in several diagnostic applications (120, 121). It is also fair to recognize that both tests have limitations as well. For example, SWE suffers from operator-dependency and manual compression, while the adverse effects of the contrast agent is a concern with CEUS use. Further technical improvements with both modalities would further enhance their clinical potential.

Strength Points

This NMA directly compares the diagnostic accuracies of CEUS and SWE in different cancer sites and using different analytic approaches as pairwise, network and ranking pooled analyses. Therefore, it provides a holistic evaluation of the comparison of both techniques in different body organs. We performed a thorough literature search and retrieved a large number of studies (relatively large sample size), which adds to the validity and generalizability of our findings. Unlike former reviews that retrieved a small number of studies and focused on one test in one organ, we aimed to provide a comprehensive assessment of both tests in different organs and a high quality comparison whenever suitable data were provided.

Limitations and Future Research Implications

Our meta-analysis has some limitations. First, the observed heterogeneity in the majority of our outcomes may be due to differences in study design and patient characteristics. Second, we could not examine the effects of lesion characteristics, such as size and depth on the diagnostic accuracy of both tests due to lack of data. Third, many of the included studies did not mention whether the results of CEUS or SWE were interpreted with blinding to the findings of histopathology or not. Future studies should report diagnostic accuracy data based on the size and depth of the lesions to allow more detailed analysis. Moreover, they should adhere to the Standards for Reporting of Diagnostic Accuracy "STRAD" checklist in reporting their methods and findings to allow a more thorough critical appraisal.

CONCLUSION

Both diagnostic tests (CEUS and SWE) showed relatively high sensitivity and specificity in detecting malignant tumors in different organs; CEUS had higher diagnostic accuracy than SWE in detecting breast and thyroid cancer, while SWE had higher accuracy in detecting hepatic cancer (the differences in the latter two cancer types were not statistically significant). These results endorse the use of both tests for malignancy detection and rank their accuracy in different organs. Future studies should provide more data to allow characterization of both tests in lesions of different size or depth.

AUTHOR CONTRIBUTIONS

YS developed the concept, designed the study, and prepared the manuscript. RH acquired the data, controlled quality of the work, analyzed the data, and prepared the manuscript. LJ acquired the data. YX analyzed the data. YG acquired the data. HR acquired the data and conducted the analysis. ZW analyzed the data and prepared the manuscript.

FUNDING

This work was supported by funding from National Natural Science Foundation of China. Award Number 31300137 received by RH.

ACKNOWLEDGMENTS

We are extremely thankful to authors of all the included papers for proving suitable data for analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc. 2019.00102/full#supplementary-material

Supplementary File I | PRISMA checklist for systematic reviews/meta-analysis.

Supplementary File II | Bibliographic Information of Included Studies.

Supplementary File III | Additional Pairwise Meta-analysis Figures.

REFERENCES

- Hatzung G, Grunwald S, Zygmunt M, Geaid AA, Behrndt PO, Isermann R, et al. Sonoelastography in the diagnosis of malignant and benign breast lesions: initial clinical experiences. *Ultraschall Med.* (2010) 31:596–603. doi: 10.1055/s-0029-1245526
- Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. *Radiology*. (2011) 260:892–9. doi: 10.1148/radiol.11110206
- Zhan J, Diao X-H, Chen L, Jin J-M, Chen Y. Role of contrast-enhanced ultrasound in diagnosis of thyroid nodules in acoustic radiation force impulse "Gray Zone." *Ultras Med Biol.* (2017) 43:1179–86. doi: 10.1016/j.ultrasmedbio.2017.02.006
- Cooper P. What can we learn from old wetlands? Lessons that have been learned and some that may have been forgotten over the past 20 years. *Desalination*. (2009) 246:11–26. doi: 10.1016/j.desal.2008.03.040
- Bertolotto M, Cicero C, Perrone R, Degrassi F, Cacciato F, Cova MA. Renal masses with equivocal enhancement at CT: characterization with contrast-enhanced ultrasound. *Am J Roentgenol.* (2015) 204:W557–65. doi: 10.2214/AJR.14.13375
- Lencioni R, Crocetti L. Radiofrequency ablation of liver cancer. Tech Vasc Interv Radiol. (2007) 10:38–46. doi: 10.1053/j.tvir.2007.08.006
- Zhao H, Xu R, Ouyang Q, Chen L, Dong B, Huihua Y. Contrast-enhanced ultrasound is helpful in the differentiation of malignant and benign breast lesions. *Eur J Radiol.* (2010) 73:288–93. doi: 10.1016/j.ejrad.2009.05.043
- Guang Y, Xie L, Ding H, Cai A, Huang Y. Diagnosis value of focal liver lesions with SonoVue[®]-enhanced ultrasound compared with contrast-enhanced computed tomography and contrast-enhanced MRI: a meta-analysis. J Cancer Res Clin Oncol. (2011) 137:1595. doi: 10.1007/s00432-011-1035-8
- Cantisani V, Consorti F, Guerrisi A, Guerrisi I, Ricci P, Di Segni M, et al. Prospective comparative evaluation of quantitative-elastosonography (Q-elastography) and contrast-enhanced ultrasound for the evaluation of thyroid nodules: preliminary experience. *Eur J Radiol.* (2013) 82:1892–8. doi: 10.1016/j.ejrad.2013.07.005
- Tranquart F, Bleuzen A, Pierre-Renoult P, Chabrolle C, Sam Giao M, Lecomte P. Elastosonography of thyroid lesions. J Radiol. (2008) 89:35–9. doi: 10.1016/S0221-0363(08)70367-6
- Sadigh G, Carlos RC, Neal CH, Dwamena BA. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. *Breast Cancer Res Treat.* (2012) 134:923–31. doi: 10.1007/s10549-012-2020-x
- Liu H, Zhao L-X, Xu G, Yao M-H, Zhang A-H, Xu HX, et al. Diagnostic value of virtual touch tissue imaging quantification for benign and malignant breast lesions with different sizes. *Int J Clin Exp Med.* (2015) 8:13118–26.
- Elmoneam GA, Almolla RM, Ahmed AF, Al Ekrashy MA. Supersonic shear waves quantitative elastography and kinetic magnetic resonance dynamic curve in discriminating BI-RADS 4 breast masses: a comparative study. *Egypt J Radiol Nuclear Med.* (2016) 47:1773–82. doi: 10.1016/j.ejrnm.2016.08.004
- McInnes MD, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. *JAMA*. (2018) 319:388–96. doi: 10.1001/jama.2017.19163
- Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. *BMC Med Res Methodol*. (2003) 3:25. doi: 10.1186/1471-2288-3-25
- 16. Li D-D, Xu H-X, Guo L-H, Bo X-W, Li X-L, Wu R, et al. Combination of two-dimensional shear wave elastography with ultrasound breast imaging reporting and data system in the diagnosis of breast lesions: a new method to increase the diagnostic performance. *Eur Radiol.* (2016) 26:3290–300. doi: 10.1007/s00330-015-4163-8
- 17. Yang Y-P, Xu X-H, Guo L-H, He Y-P, Wang D, Liu B-J, et al. Qualitative and quantitative analysis with a novel shear wave speed imaging for differential diagnosis of breast lesions. *Sci Rep.* (2017) 7:40964. doi: 10.1038/srep40964
- 18. Yang Y-P, Xu X-H, Bo X-W, Liu B-J, Guo L-H, Xu JM, et al. Comparison of virtual touch tissue imaging & quantification (VTIQ) and Virtual touch

tissue quantification (VTQ) for diagnosis of thyroid nodules. *Clin Hemorheol Microcirc.* (2017) 65:137–49. doi: 10.3233/CH-16142

- 19. Kim SJ, Ko KH, Jung HK, Kim H. Shear wave elastography: is it a valuable additive method to conventional ultrasound for the diagnosis of small (≤ 2 cm) breast cancer? *Medicine*. (2015) 94:e1540. doi: 10.1097/MD.00000000001540
- Youk JH, Son EJ, Park AY, Kim JA. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa). *Ultrasonography*. (2014) 33:34–9. doi: 10.14366/usg.13005
- Tang L, Xu H-X, Bo X-W, Liu B-J, Li X-L, Wu R, et al. A novel two-dimensional quantitative shear wave elastography for differentiating malignant from benign breast lesions. *Int J Clin Exp Med.* (2015) 8:10920–8.
- 22. Choi H, Sohn Y-M, Seo M. Comparison of 3D and 2D shear-wave elastography for differentiating benign and malignant breast masses: focus on the diagnostic performance. *Clin Radiol.* (2017) 72:878–86. doi: 10.1016/j.crad.2017.04.009
- 23. Golatta M, Schweitzer-Martin M, Harcos A, Schott S, Gomez C, Stieber A, et al. Evaluation of virtual touch tissue imaging quantification, a new shear wave velocity imaging method, for breast lesion assessment by ultrasound. *Biomed Res Int.* (2014) 2014:960262. doi: 10.1155/2014/960262
- Youk JH, Gweon HM, Son EJ, Han KH, Kim JA. Diagnostic value of commercially available shear-wave elastography for breast cancers: integration into BI-RADS classification with subcategories of category 4. *Eur Radiol.* (2013) 23:2695–704. doi: 10.1007/s00330-013-2873-3
- Ko KH, Jung HK, Kim SJ, Kim H, Yoon JH. Potential role of shearwave ultrasound elastography for the differential diagnosis of breast non-mass lesions: preliminary report. *Eur Radiol.* (2014) 24:305–11. doi: 10.1007/s00330-013-3034-4
- Lee EJ, Jung HK, Ko KH, Lee JT, Yoon JH. Diagnostic performances of shear wave elastography: which parameter to use in differential diagnosis of solid breast masses? *Eur Radiol.* (2013) 23:1803–11. doi: 10.1007/s00330-013-2782-5
- Ng WL, Rahmat K, Fadzli F, Rozalli FI, Mohd-Shah MN, Chandran PA, et al. Shearwave elastography increases diagnostic accuracy in characterization of breast lesions. *Medicine*. (2016) 95:e3146. doi: 10.1097/MD.000000000003146
- Tian J, Liu Q, Wang X, Xing P, Yang Z, Wu C. Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses. *Sci Rep.* (2017) 7:41216. doi: 10.1038/srep41216
- Olgun DÇ, Korkmazer B, Kiliç F, Dikici AS, Velidedeoglu M, Aydogan F, et al. Use of shear wave elastography to differentiate benign and malignant breast lesions. *Diagn Intervent Radiol.* (2014) 20:239. doi: 10.5152/dir.2014.13306
- Chang JY, Moon JH, Koh SH, Park SY, Lee KS. Clinical application of shear wave elastography in breast masses. *Iran J Radiol.* (2017) 14:e39585. doi: 10.5812/iranjradiol.39585
- Yao M, Wu J, Zou L, Xu G, Xie J, Wu R, et al. Diagnostic value of virtual touch tissue quantification for breast lesions with different size. *Biomed Res. Int.* (2014) 2014:142504. doi: 10.1155/2014/142504
- 32. Seo M, Ahn HS, Park SH, Lee JB, Choi BI, Sohn YM, et al. Comparison and combination of strain and shear wave elastography of breast masses for differentiation of benign and malignant lesions by quantitative assessment: preliminary study. J Ultras Med. (2018) 37:99–109. doi: 10.1002/jum.14309
- 33. Au FWF, Ghai S, Moshonov H, Kahn H, Brennan C, Dua H, et al. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter. *Am J Roentgenol.* (2014) 203:W328–36. doi: 10.2214/AJR.13.11693
- 34. Chang JM, Won J-K, Lee K-B, Park IA, Yi A, Moon WK. Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions. *Am J Roentgenol.* (2013) 201:W347–56. doi: 10.2214/AJR.12.10416
- Choi JS, Han B-K, Ko EY, Ko ES, Shin JH, Kim GR. Additional diagnostic value of shear-wave elastography and color Doppler US for evaluation of breast non-mass lesions detected at B-mode US. *Eur Radiol.* (2016) 26:3542– 9. doi: 10.1007/s00330-015-4201-6
- 36. Chung J, Lee WK, Cha E-S, Lee JE, Kim JH, Ryu YH. Shear-wave elastography for the differential diagnosis of breast papillary lesions. *PLoS* ONE. (2016) 11:e0167118. doi: 10.1371/journal.pone.0167118

- Dobruch-Sobczak K, Nowicki A. Role of shear wave sonoelastography in differentiation between focal breast lesions. *Ultras Med Biol.* (2015) 41:366– 74. doi: 10.1016/j.ultrasmedbio.2014.08.024
- Guo X, Liu Y, Li W. Diagnostic accuracy of shear wave elastography for prediction of breast malignancy in patients with pathological nipple discharge. BMJ Open. (2016) 6:e008848. doi: 10.1136/bmjopen-2015-008848
- Hong S, Woo OH, Shin HS, Hwang S-Y, Cho KR, Seo BK. Reproducibility and diagnostic performance of shear wave elastography in evaluating breast solid mass. *Clin Imaging*. (2017) 44:42–5. doi: 10.1016/j.clinimag.2017. 03.022
- Kim GR, Choi JS, Han B-K, Ko EY, Ko ES, Hahn SY. Combination of shearwave elastography and color Doppler: feasible method to avoid unnecessary breast excision of fibroepithelial lesions diagnosed by core needle biopsy. *PLoS ONE.* (2017) 12:e0175380. doi: 10.1371/journal.pone.0175380
- Klotz T, Boussion V, Kwiatkowski F, Dieu-de Fraissinette V, Bailly-Glatre A, Lemery S, et al. Shear wave elastography contribution in ultrasound diagnosis management of breast lesions. *Diagn Intervent Imag.* (2014) 95:813–24. doi: 10.1016/j.diii.2014.04.015
- 42. Lee BE, Chung J, Cha ES, Lee JE, Kim JH. Role of shear-wave elastography (SWE) in complex cystic and solid breast lesions in comparison with conventional ultrasound. *Eur J Radiol.* (2015) 84:1236–41. doi: 10.1016/j.ejrad.2015.04.005
- 43. Shi XQ, Li JL, Wan WB, Huang Y. A set of shear wave elastography quantitative parameters combined with ultrasound BI-RADS to assess benign and malignant breast lesions. *Ultras Med Biol.* (2015) 41:960–6. doi: 10.1016/j.ultrasmedbio.2014.11.014
- Sim Y, Vinnicombe S, Whelehan P, Thomson K, Evans A. Value of shear-wave elastography in the diagnosis of symptomatic invasive lobular breast cancer. *Clin Radiol.* (2015) 70:604–9. doi: 10.1016/j.crad.2015.02.004
- Wu S, Cui X, Huang L, Bai X. Combining virtual touch tissue imaging and BI-RADS may improve solid breast lesion evaluation. *Breast Care.* (2017) 12:97–100. doi: 10.1159/000456026
- 46. Zhang S-P, Zeng Z, Liu H, Yao M-H, Xu G, Wu R. Combination of conventional ultrasonography and virtual touch tissue imaging quantification for differential diagnosis of breast lesions smaller than 10 mm. *Clin Hemorheol Microcirc.* (2017) 67:59–68. doi: 10.3233/CH-170249
- 47. Cong R, Li J, Wang X. Comparing performance of combinations of shear wave elastography and B-mode ultrasound in diagnosing breast masses: is it influenced by mass size? *Ultras Med Biol.* (2017) 43:2133-43. doi: 10.1016/j.ultrasmedbio.2017.04.015
- Park J, Woo OH, Shin HS, Cho KR, Seo BK, Kang EY. Diagnostic performance and color overlay pattern in shear wave elastography (SWE) for palpable breast mass. *Eur J Radiol.* (2015) 84:1943–8. doi: 10.1016/j.ejrad.2015.06.020
- Park AY, Son EJ, Han K, Youk JH, Kim J-A, Park CS. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. *Eur J Radiol*. (2015) 84:407–12. doi: 10.1016/j.ejrad.2014.11.019
- Wang S, Zhong Z, Wan J, Tan W, Wu G, Chen M, et al. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. *Am J Chin Med.* (2013) 41:177–96. doi: 10.1142/S0192415X13500134
- Kasai Y, Moriyasu F, Saito K, Hara T, Kobayashi Y, Nakamura I, et al. Value of shear wave elastography for predicting hepatocellular carcinoma and esophagogastric varices in patients with chronic liver disease. *J Med Ultras*. (2015) 42:349–55. doi: 10.1007/s10396-014-0603-3
- Gerber L, Fitting D, Srikantharajah K, Weiler N, Kyriakidou G, Bojunga J, et al. Evaluation of 2D-shear wave elastography for characterisation of focal liver lesions. *J Gastrointest Liver Dis.* (2017) 26:283–90. doi: 10.15403/jgld.2014.1121.263.dsh
- Özmen E, Adaletli I, Kayadibi Y, Emre S, Kiliç F, Dervişoglu S, et al. The impact of share wave elastography in differentiation of hepatic hemangioma from malignant liver tumors in pediatric population. *Eur J Radiol.* (2014) 83:1691–97. doi: 10.1016/j.ejrad.2014.06.002
- 54. Tian W-S, Lin M-X, Zhou L-Y, Pan F-S, Huang G-L, Wang W, et al. Maximum value measured by 2-D shear wave elastography helps in differentiating malignancy from benign focal liver lesions. *Ultras Med Biol.* (2016) 42:2156–66. doi: 10.1016/j.ultrasmedbio.2016.05.002

- Ahmad S, Cao R, Varghese T, Bidaut L, Nabi G. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. *Surg Endosc.* (2013) 27:3280–7. doi: 10.1007/s00464-013-2906-7
- Boehm K, Salomon G, Beyer B, Schiffmann J, Simonis K, Graefen M, et al. Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. *J Urol.* (2015) 193:794–800. doi: 10.1016/j.juro.2014.09.100
- Porsch M, Wendler JJ, Liehr U-B, Lux A, Schostak M, Pech M. New aspects in shear-wave elastography of prostate cancer. *J Ultrasonogr.* (2015) 15:5–14. doi: 10.15557/JoU.2015.0001
- Woo S, Kim SY, Cho JY, Kim SH. Shear wave elastography for detection of prostate cancer: a preliminary study. *Korean J Radiol.* (2014) 15:346–55. doi: 10.3348/kjr.2014.15.3.346
- Correas JM, Tissier AM, Khairoune A, Vassiliu V, Mejean A, Helenon O, et al. Prostate cancer: diagnostic performance of real-time shearwave elastography. *Radiology*. (2015) 275:280–89. doi: 10.1148/radiol.141 40567
- Glybochko P, Alyaev Y, Amosov A, Krupinov G, Ganzha T, Vorobev A, et al. Prostate cancer detection by assessing stiffness of different tissues using shear wave ultrasound elastog-raphy. *Urologiia*. (2016) 2016:56–61.
- Zhang H, Shi Q, Gu J, Jiang L, Bai M, Liu L, et al. Combined value of Virtual Touch tissue quantification and conventional sonographic features for differentiating benign and malignant thyroid nodules smaller than 10 mm. J Ultras Med. (2014) 33:257–64. doi: 10.7863/ultra.33.2.257
- Zhang P, Zhou P, Tian S-M, Qian Y, Li J-L, Li RZ. Diagnostic performance of contrast-enhanced sonography and acoustic radiation force impulse imaging in solid liver lesions. *J Ultras Med.* (2014) 33:205–14. doi: 10.7863/ultra.33.2.205
- Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, et al. Thyroid nodules and shear wave elastography: a new tool in thyroid cancer detection. *Ultras Med Biol.* (2015) 41:2855–65. doi: 10.1016/j.ultrasmedbio.2015.06.021
- 64. Wang W-P, Dong Y, Cao J, Mao F, Xu Y, Si Q, et al. Detection and characterization of small superficially located focal liver lesions by contrastenhanced ultrasound with high frequency transducers. *Med Ultrason*. (2017) 19:349–56. doi: 10.11152/mu-1276
- Duan S-B, Yu J, Li X, Han Z-Y, Zhai H-Y, Liang P. Diagnostic value of twodimensional shear wave elastography in papillary thyroid microcarcinoma. *Onco Targets Ther.* (2016) 9:1311–7. doi: 10.2147/OTT.S98583
- Liu R, Xing M. TERT promoter mutations in thyroid cancer. *Endocr Relat* Cancer. (2016) 23:R143–55. doi: 10.1530/ERC-15-0533
- Liu B-J, Zhao C-K, Xu H-X, Zhang Y-F, Xu J-M, Li DD, et al. Quality measurement on shear wave speed imaging: diagnostic value in differentiation of thyroid malignancy and the associated factors. *Oncotarget*. (2017) 8:4948–59. doi: 10.18632/oncotarget.13996
- Kim H, Kim J-A, Son EJ, Youk JH. Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. *Eur Radiol.* (2013) 23:2532–7. doi: 10.1007/s00330-013-2847-5
- 69. Deng J, Zhou P, Tian SM, Zhang L, Qian Y. Comparison of diagnostic efficacy of contrast-enhanced ultrasound, acoustic radiation force impulse imaging, and their combined use in differentiating focal solid thyroid nodules. *PLoS ONE*. (2014) 9:e90674. doi: 10.1371/journal.pone.0090674
- Baig FN, Liu SY, Lam H-C, Yip S-P, Law HK, Ying M. Shear wave elastography combining with conventional grey scale ultrasound improves the diagnostic accuracy in differentiating benign and malignant thyroid nodules. *Applied Sciences*. 7:1103. doi: 10.3390/app7111103
- 71. Dobruch-Sobczak K, Zalewska EB, Guminska A, Słapa RZ, Mlosek K, Wareluk P, et al. Diagnostic performance of shear wave elastography parameters alone and in combination with conventional B-mode ultrasound parameters for the characterization of thyroid nodules: a prospective, dual-center study. *Ultras Med Biol.* (2016) 42:2803–11. doi: 10.1016/j.ultrasmedbio.2016.07.010
- Liu B-X, Xie X-Y, Liang J-Y, Zheng Y-L, Huang G-L, Zhou LY, et al. Shear wave elastography versus real-time elastography on evaluation thyroid nodules: a preliminary study. *Eur J Radiol.* (2014) 83:1135–43. doi: 10.1016/j.ejrad.2014.02.024

- Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho NY, et al. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. *PLoS ONE.* (2014) 9:e100429. doi: 10.1371/journal.pone.0100429
- 74. Samir AE, Dhyani M, Anvari A, Prescott J, Halpern EF, Faquin WC, et al. Shear-wave elastography for the preoperative risk stratification of follicular-patterned lesions of the thyroid: diagnostic accuracy and optimal measurement plane. *Radiology*. (2015) 277:565–73. doi: 10.1148/radiol.2015141627
- Yang GC, Fried KO, Scognamiglio T. Sonographic and cytologic differences of NIFTP from infiltrative or invasive encapsulated follicular variant of papillary thyroid carcinoma: a review of 179 cases. *Diagn Cytopathol.* (2017) 45:533–41. doi: 10.1002/dc.23709
- Zhou H, Zhou XL, Xu HX, Li DD, Liu BJ, Zhang YF, et al. Virtual Touch tissue imaging and quantification in the evaluation of thyroid nodules. J Ultras Med. (2017) 36:251–60. doi: 10.7863/ultra.15.12070
- 77. Cai Y, Du L, Li F, Gu J, Bai M. Quantification of enhancement of renal parenchymal masses with contrast-enhanced ultrasound. Ultras Med Biol. (2014) 40:1387–93. doi: 10.1016/j.ultrasmedbio.2014.02.003
- Chen L, Wang L, Diao X, Qian W, Fang L, Pang Y, et al. The diagnostic value of contrast-enhanced ultrasound in differentiating small renal carcinoma and angiomyolipoma. *Biosci Trends.* (2015) 9:252–8. doi: 10.5582/bst.2015.01080
- Chen Y, Wu N, Xue T, Hao Y, Dai J. Comparison of contrast-enhanced sonography with MRI in the diagnosis of complex cystic renal masses. *J Clin Ultras.* (2015) 43:203–9. doi: 10.1002/jcu.22232
- Chen D, Ma Y, Wang X, Yu S, Li L, Dai B, et al. Clinical characteristics and disease predictors of a large Chinese cohort of patients with autosomal dominant polycystic kidney disease. *PLoS ONE*. (2014) 9:e92232. doi: 10.1371/journal.pone.0092232
- Defortescu G, Cornu JN, Béjar S, Giwerc A, Gobet F, Werquin C, et al. Diagnostic performance of contrast-enhanced ultrasonography and magnetic resonance imaging for the assessment of complex renal cysts: a prospective study. *Int J Urol.* (2017) 24:184–9. doi: 10.1111/iju.13289
- Li X, Liang P, Guo M, Yu J, Yu X, Cheng Z, et al. Real-time contrast-enhanced ultrasound in diagnosis of solid renal lesions. *Discov Med.* (2013) 16:15–25. Available online at: http://www.discoverymedicine.com/Xin-Li/2013/07/ 26/real-time-contrast-enhanced-ultrasound-in-diagnosis-of-solid-renallesions/
- Lu Q, Xue LY, Huang BJ, Wang WP, Li CX. Histotype differentiation of hypo-echoic renal tumors on CEUS: usefulness of enhancement homogeneity and intensity. *Abdom Imaging*. (2015) 40:1675–83. doi: 10.1007/s00261-014-0340-5
- Nicolau C, Buñesch L, Paño B, Salvador R, Ribal MJ, Mallofré C, et al. Prospective evaluation of CT indeterminate renal masses using US and contrast-enhanced ultrasound. *Abdom Imaging*. (2015) 40:542–51. doi: 10.1007/s00261-014-0237-3
- Oh TH, Lee YH, Seo IY. Diagnostic efficacy of contrast-enhanced ultrasound for small renal masses. *Korean J Urol.* (2014) 55:587–92. doi: 10.4111/kju.2014.55.9.587
- 86. Sanz E, Hevia V, Gómez V, Álvarez S, Fabuel JJ, Martínez L, et al. Renal complex cystic masses: usefulness of contrast-enhanced ultrasound (CEUS) in their assessment and its agreement with computed tomography. *Curr Urol Rep.* (2016) 17:89. doi: 10.1007/s11934-016-0646-7
- Tamas-Szora A, Socaciu M, Crisan N, Dobrota F, Prundus P, Bungardean C, et al. Investigation of renal cell carcinoma by contrast-enhanced ultrasound-predictive value of time intensity curve analysis in establishing local tumor invasion and stage: a pilot study. Urol J. (2015) 12:2173–81. doi: 10.22037/uj.v12i3.2851
- Wei S-P, Xu C-L, Zhang Q, Zhang Q-R, Zhao Y-E, Huang PF, et al. Contrastenhanced ultrasound for differentiating benign from malignant solid small renal masses: comparison with contrast-enhanced CT. *Abdom Radiol.* (2017) 42:2135–45. doi: 10.1007/s00261-017-1111-x
- Yong C, Teo Y-M, Kapur J. Diagnostic performance of contrast-enhanced ultrasound in the evaluation of renal masses in patients with renal impairment. *Med J Malaysia*. (2016) 71:193–8. Available online at: http:// www.e-mjm.org/2016/v71n4/contrast-enhanced-ultrasound.pdf
- 90. Zhang Y, Luo YK, Zhang MB, Li J, Li J, Tang J. Diagnostic accuracy of contrast-enhanced ultrasound enhancement patterns for thyroid

nodules. *Med Sci Monit.* (2016) 22: 4755–64. doi: 10.12659/MSM. 899834

- Miyamoto Y, Ito T, Takada E, Omoto K, Hirai T, Moriyasu F. Efficacy of sonazoid (perflubutane) for contrast-enhanced ultrasound in the differentiation of focal breast lesions: phase 3 multicenter clinical trial. *Am J Roentgenol.* (2014) 202:W400–7. doi: 10.2214/AJR.12.10518
- Xia H-S, Wang X, Ding H, Wen J-X, Fan P-L, Wang WP. Papillary breast lesions on contrast-enhanced ultrasound: morphological enhancement patterns and diagnostic strategy. *Eur Radiol.* (2014) 24:3178–90. doi: 10.1007/s00330-014-3375-7
- Xiao X, Jiang Q, Wu H, Guan X, Qin W, Luo B. Diagnosis of subcentimetre breast lesions: combining BI-RADS-US with strain elastography and contrast-enhanced ultrasound—a preliminary study in China. *Eur Radiol.* (2017) 27:2443–50. doi: 10.1007/s00330-016-4628-4
- Yuan Z, Quan J, Yunxiao Z, Jian C, Zhu H, Liping G. Diagnostic value of contrast-enhanced ultrasound parametric imaging in breast tumors. J Breast Cancer. (2013) 16:208–13. doi: 10.4048/jbc.2013.16.2.208
- Aubé C, Oberti F, Lonjon J, Pageaux G, Seror O, N'kontchou G, et al. EASL and AASLD recommendations for the diagnosis of HCC to the test of daily practice. *Liver Int.* (2017) 37:1515–25. doi: 10.1111/liv.13429
- 96. Beyer LP, Wassermann F, Pregler B, Michalik K, Rennert J, Wiesinger I, et al. Characterization of focal liver lesions using CEUS and MRI with liver-specific contrast media: experience of a single radiologic center. Ultr Med Eur J Ultras. (2017) 38:619–25. doi: 10.1055/s-0043-105264
- Corvino A, Catalano O, Corvino F, Sandomenico F, Petrillo A. Diagnostic performance and confidence of contrast-enhanced ultrasound in the differential diagnosis of cystic and cysticlike liver lesions. *Am J Roentgenol.* (2017) 209:W119–27. doi: 10.2214/AJR.16.17062
- Feng Y, Qin X-C, Luo Y, Li Y-Z, Zhou X. Efficacy of contrastenhanced ultrasound washout rate in predicting hepatocellular carcinoma differentiation. *Ultras Med Biol.* (2015) 41:1553–60. doi: 10.1016/j.ultrasmedbio.2015.01.026
- Iwamoto T, Imai Y, Kogita S, Igura T, Sawai Y, Fukuda K, et al. Comparison of contrast-enhanced ultrasound and gadolinium-ethoxybenzyldiethylenetriamine pentaacetic acid-enhanced MRI for the diagnosis of macroscopic type of hepatocellular carcinoma. *Dig Dis.* (2016) 34:679–86. doi: 10.1159/000448855
- 100. Kobayashi T, Aikata H, Hatooka M, Morio K, Morio R, Kan H, et al. Usefulness of combining gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging and contrastenhanced ultrasound for diagnosing the macroscopic classification of small hepatocellular carcinoma. *Eur Radiol.* (2015) 25:3272–81. doi: 10.1007/s00330-015-3725-0
- 101. Kobayashi K, Maruyama H, Kiyono S, Yokosuka O, Ohtsuka M, Miyazaki M, et al. Histology-based assessment of sonazoid-enhanced ultrasonography for the diagnosis of liver metastasis. *Ultras Med Biol.* (2017) 43:2151–8. doi: 10.1016/j.ultrasmedbio.2017.06.014
- 102. Quaia E, De Paoli L, Angileri R, Cabibbo B, Cova MA. Indeterminate solid hepatic lesions identified on non-diagnostic contrast-enhanced computed tomography: assessment of the additional diagnostic value of contrastenhanced ultrasound in the non-cirrhotic liver. *Eur J Radiol.* (2014) 83:456– 62. doi: 10.1016/j.ejrad.2013.12.012
- 103. Sandrose S, Karstrup S, Gerke O, Rafaelsen S. Contrast enhanced ultrasound in CT-undetermined focal liver lesions. *Ultras Int Open.* (2016) 2:E129. doi: 10.1055/s-0042-120272.
- 104. Schellhaas B, Görtz RS, Pfeifer L, Kielisch C, Neurath MF, Strobel D. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS. Eur J Gastroenterol Hepatol. (2017) 29:1036–44. doi: 10.1097/MEG.00000000000916
- 105. Tada T, Kumada T, Toyoda H, Ito T, Sone Y, Kaneoka Y, et al. Utility of contrast-enhanced ultrasound with perflubutane for diagnosing the macroscopic type of small nodular hepatocellular carcinomas. *Eur Radiol.* (2014) 24:2157–66. doi: 10.1007/s00330-014-3254-2
- 106. Thakur S, Jhobta A, Dhiman D, Sood R, Chauhan A, Thakur CS. Role of contrast enhanced ultrasound in characterization of focal liver lesions. *Egypt J Radiol Nuclear Med.* (2014) 45:7–17. doi: 10.1016/j.ejrnm.2013.11.001

- 107. Wu JP, Shu R, Zhao YZ, Ma GL, Xue W, He QJ, et al. Comparison of contrast-enhanced ultrasonography with virtual touch tissue quantification in the evaluation of focal liver lesions. J Clin Ultras. (2016) 44:347–53. doi: 10.1002/jcu.22335
- 108. Yin S, Cui Q, Yan K, Yang W, Wu W, Bao L, et al. Effect of contrast-enhanced ultrasound on differential diagnosis of intrahepatic cholangiocarcinoma and arterial phase enhanced hepatic inflammatory lesions. *Chin J Cancer Res.* (2017) 29:272. doi: 10.21147/j.issn.1000-9604.2017.03.13
- 109. Zhang F, Zhu H, Wu Y, Dou Z, Zhang Y, Kleinman N, et al. HIV, hepatitis B virus, and hepatitis C virus co-infection in patients in the China National Free Antiretroviral Treatment Program, 2010–12: a retrospective observational cohort study. *Lancet Infect Dis.* (2014) 14:1065– 72. doi: 10.1016/S1473-3099(14)70946-6
- 110. Takahashi M, Maruyama H, Shimada T, Kamezaki H, Sekimoto T, Kanai F, et al. Characterization of hepatic lesions (≤ 30 mm) with liver-specific contrast agents: a comparison between ultrasound and magnetic resonance imaging. *Eur J Radiol.* (2013) 82:75–84. doi: 10.1016/j.ejrad.2012.05.035
- 111. Taimr P, Jongerius VL, Pek CJ, Krak NC, Hansen BE, Janssen HL, et al. Liver contrast-enhanced ultrasound improves detection of liver metastases in patients with pancreatic or periampullary cancer. *Ultras Med Biol.* (2015) 41:3063–9. doi: 10.1016/j.ultrasmedbio.2015.06.019
- Diao X, Zhan J, Chen L, Chen Y, Liu Y. Quantification of solid hypo-echoic thyroid nodule enhancement with contrast-enhanced ultrasound. *Transl Cancer Res.* (2017) 6:1078–87. doi: 10.21037/tcr.2017.09.15
- 113. Giusti M, Orlandi D, Melle G, Massa B, Silvestri E, Minuto F, et al. Is there a real diagnostic impact of elastosonography and contrast-enhanced ultrasonography in the management of thyroid nodules? *J Zhejiang Univ Sci B*. (2013) 14:195–206. doi: 10.1631/jzus.B1200106
- 114. Jiang J, Shang X, Wang H, Xu Y-B, Gao Y, Zhou Q. Diagnostic value of contrast-enhanced ultrasound in thyroid nodules with calcification. *Kaohsiung J Med Sci.* (2015) 31:138–44. doi: 10.1016/j.kjms.2014.12.001
- 115. Zhou X, Zhou P, Hu Z, Tian SM, Zhao Y, Liu W, et al. Diagnostic efficiency of quantitative contrast-enhanced ultrasound indicators for discriminating benign from malignant solid thyroid nodules. *J Ultras Med.* (2018) 37:425–37. doi: 10.1002/jum.14347

- 116. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. (2003) 56:1129–35. doi: 10.1016/S0895-4356(03)00177-X
- 117. Claudon M, Dietrich CF, Choi BI, Cosgrove DO, Kudo M, Nolsøe CP, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver-update 2012. Ultraschall Med. (2013) 34:11–29. doi: 10.1016/j.ultrasmedbio.2012. 09.002
- Lee T, Mendhiratta N, Sperling D, Lepor H. Focal laser ablation for localized prostate cancer: principles, clinical trials, and our initial experience. *Rev Urol.* (2014) 16:55.
- 119. Friedrich-Rust M, Buggisch P, De Knegt R, Dries V, Shi Y, Matschenz K, et al. Acoustic radiation force impulse imaging for non-invasive assessment of liver fibrosis in chronic hepatitis B. *J Viral Hepatitis.* (2013) 20:240–7. doi: 10.1111/j.1365-2893.2012.01646.x
- 120. Morris MJ, Akhurst T, Osman I, Nunez R, Macapinlac H, Siedlecki K, et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. *Urology*. (2002) 59:913–8. doi: 10.1016/S0090-4295(02)01509-1
- Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, et al. Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography guidelines update. J Am Soc Echocardiogr. (2018) 31:241–74. doi: 10.1016/j.echo.2017.11.013

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Huang, Jiang, Xu, Gong, Ran, Wang and Sun. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.