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ABSTRACT

DINIES (drug–target interaction network inference
engine based on supervised analysis) is a web server
for predicting unknown drug–target interaction net-
works from various types of biological data (e.g.
chemical structures, drug side effects, amino acid
sequences and protein domains) in the framework
of supervised network inference. The originality of
DINIES lies in prediction with state-of-the-art ma-
chine learning methods, in the integration of het-
erogeneous biological data and in compatibility with
the KEGG database. The DINIES server accepts any
‘profiles’ or precalculated similarity matrices (or ‘ker-
nels’) of drugs and target proteins in tab-delimited
file format. When a training data set is submitted
to learn a predictive model, users can select either
known interaction information in the KEGG DRUG
database or their own interaction data. The user can
also select an algorithm for supervised network in-
ference, select various parameters in the method
and specify weights for heterogeneous data inte-
gration. The server can provide integrative analyses
with useful components in KEGG, such as biological
pathways, functional hierarchy and human diseases.
DINIES (http://www.genome.jp/tools/dinies/) is pub-
licly available as one of the genome analysis tools in
GenomeNet.

INTRODUCTION

The identification of drug–target interactions, which are
defined as interactions between drugs (or drug candidate
compounds) and target proteins (or target candidate pro-
teins), is an important part of genomic drug discovery. Sev-

eral public databases have been established to store drug–
target interactions, including DrugBank (1), Matador (2),
STITCH (3) and KEGG DRUG (4), but most of the drug–
target interaction network remains undiscovered. Recent
developments in biotechnology have contributed to the in-
crease in the amounts of high-throughput data for com-
pounds and proteins in the genome, transcriptome, pro-
teome, metabolome and phenome, which can be useful
sources for inferring unknown drug–target interaction net-
works on a large scale. In this context, prediction methods
of drug–target interactions, using all available omics data
and other experiments, should be made more easily accessi-
ble to biologists in academic fields and the pharmaceutical
industry to improve their research productivity.

A variety of computational methods have been developed
for predicting drug–target interactions, or more generally
compound–protein interactions, in the context of chemoge-
nomics (5–10). Recently, the use of pharmacological data
for drugs (e.g. pharmaceutical effects, side effects) has been
proposed in the context of pharmacogenomics (11–14).
There are web servers that implement some of these meth-
ods. For example, CDRUG is a web server used for pre-
dicting anticancer activity from chemical structures of com-
pounds encoded by the Daylight fingerprint (15), and COP-
ICAT is a web service for predicting compound–protein
interactions from chemical structures of compounds and
amino acid triplet frequencies of proteins (16). However,
these existing servers have limitations with respect to the
flexibility of the input data and biological interpretability
of the prediction results.

In this study, we present drug–target interaction network
inference engine based on supervised analysis (DINIES;
http://www.genome.jp/tools/dinies/), a web server for pre-
dicting unknown drug–target interaction networks from
various types of biological data (e.g. chemical structures,
drug side effects, amino acid sequences and protein do-
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mains) in the framework of supervised network inference.
The prediction is performed using state-of-the-art ma-
chine learning methods in chemogenomics and pharma-
cogenomics, assuming that similar compounds (not neces-
sarily in chemical structures but in side effect profiles and
other features) are likely to interact with similar proteins.
This method is suitable for predicting potential off-targets
of marketed drugs with known targets, and potential target
profiles of new drug candidate compounds without known
targets. The algorithms in DINIES have been previously
published (6,12,14), and this web server represents the first
public resource that implements these methods. The server
is compatible with the KEGG database (4) by sharing the
same identifiers, a feature that allows integrative analyses
with useful components in KEGG, such as biological path-
ways, functional hierarchy, human diseases and drug classi-
fication.

RATIONALE AND IMPLEMENTATION

Data integration

Figure 1 shows an overview of DINIES, which accepts
any ‘profiles’ of drugs (or drug candidate compounds) and
target proteins (or target candidate proteins) (e.g. chemi-
cal fingerprints, drug side effect profiles, protein domain
profiles) or precalculated similarity matrices of drugs and
target proteins (e.g. chemical structure or amino acid se-
quence similarity matrices) in a tab-delimited file format.
In DINIES, each data set describing drugs or proteins is
transformed into a kernel similarity matrix (e.g. a correla-
tion coefficient matrix) using a kernel function, where each
element in the matrix corresponds to a drug–drug similar-
ity or protein–protein similarity. Multiple similarity matri-
ces generated from heterogeneous data sets are integrated
into a single matrix using a linear combination of the sim-
ilarity matrices (the sum of the identical-weighted matrices
as default), which gives an integrated similarity matrix rep-
resenting drug–drug or protein–protein similarities.

Supervised network inference

Supervised network inference for drug–target interaction
prediction involves two processes: a training process in
which a predictive model is learned by exploiting the par-
tial knowledge of the interaction network and a test process
in which new drug–target interactions are inferred. Drug–
protein pairs are predicted to interact whenever the predic-
tion scores for the pairs exceed a threshold. There are sev-
eral algorithms for learning an appropriate predictive model
in the training process, including bipartite graph inference
(6), pair-wise support vector machine (SVM) (5,7,8), bi-
partite local model (10) and pair-wise kernel regression
(14). Three algorithms are implemented in DINIES, but the
SVM-based methods are not implemented, owing to the
prohibitive computational cost and to large memory con-
sumption in the on-demand training phase. The detailed
explanations about each method are written in the help
page. Pair-wise kernel regression is the default algorithm in
DINIES because of its computational efficiency, but users
can select other algorithms.

USER INTERFACE AND BASIC FUNCTIONS

The DINIES server provides two options: DINIES Search
and DINIES Prediction.

DINIES Search

The user can explore precalculated drug–target interaction
networks that were predicted with available data in KEGG
or other databases. In this case, the server accepts KEGG
drug ID, drug name, MOL file text, and SMILES string.
The target protein can be input using KEGG protein ID
(e.g. hsa:4988). If the input compound is not present in
the drug–target interaction network, the user can search
for structurally similar drugs in the drug–target interac-
tion network using a SIMCOMP chemical structure simi-
larity search (17); however, this similarity search is not in-
volved in the prediction. The predicted drug–target interac-
tion network is prepared in advance by either a chemoge-
nomic approach based on the precomputed chemical struc-
ture similarity of drugs or a pharmacogenomic approach
based on the precomputed side effect similarity of drugs.
Predictive models in chemogenomic and pharmacogenomic
approaches are trained on known drug–target interactions
not only in KEGG but also in other compound–protein in-
teraction databases. The prediction results are available in
the latest version of DINIES Search. The input threshold
determines the minimum predictive value for the display of
predicted drug–protein interactions.

DINIES Prediction

The possible inputs of DINIES Prediction are any data sets
about drugs and proteins that are represented as text files in
the form of either a tab-delimited profile matrix or a kernel
similarity matrix predefined by the user. For example, sup-
pose we are given two profile matrices for drugs: chemical
fingerprints and side effect profiles. Chemical fingerprints
(or chemical descriptors) can be regarded as a binary (or
real-valued) profile matrix in which rows represent drugs
and columns represent the presence/absence (or numbers)
of various chemical substructures. Side effect profiles can
also be regarded as a binary (or real-valued) profile ma-
trix in which rows represent drugs and columns represent
the presence/absence (or numbers) of previously reported
side effects (such as hyperthermia, gastrointestinal bleed
and hepatic dysfunction). Examples of profile matrices for
proteins are domain composition profiles and gene expres-
sion profiles. Domain composition profiles can be designed
as a binary profile matrix in which rows represent proteins
and columns represent the presence/absence of various do-
mains. Gene expression profiles can be regarded as a real-
valued profile matrix in which rows represent proteins or
genes and columns represent expression levels in the respec-
tive experiments. Examples of similarity matrices for drugs
include 2D chemical structure similarity scores and graph
kernel similarity scores (18). Examples of similarity matri-
ces for proteins include Smith–Waterman scores (19) and
sequence kernel similarity scores (20). This flexibility is one
of the strength of DINIES. If KEGG IDs are used for drugs
or/and human proteins in the input data, drugs and pro-
teins can be mapped onto many useful components in the
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Figure 1. Overview of DINIES. DINIES accepts as inputs tab-delimited text files that must be in the forms of either a ‘profile’ or a ‘kernel matrix’ (a
kernel, in short). We use ‘profile’ to denote an asymmetric matrix in which rows correspond to the objects of interest (drugs or proteins) and columns to
the properties of the objects (such as chemical substructures and domains). We use ‘kernel’ to denote a symmetric matrix where rows and columns both
correspond to objects (drugs or proteins).

KEGG database, such as biological pathways in KEGG
PATHWAY and functional hierarchies in KEGG BRITE.
Examples of input data files can be seen on the help page
(http://www.genome.jp/tools/dinies/help.html).

In DINIES Prediction, there are two possible modes,
‘Simple mode’ and ‘Advanced mode’. Simple mode is pro-
vided for the users who choose to obtain the results with
the default settings. In the simple mode, profile matrices are
converted into kernel similarity matrices by linear kernel,
and all kernels are integrated with the same weight. Fur-
thermore, supervised learning by pair-wise kernel regres-
sion is performed using known drug–protein interactions in
KEGG DRUG as training data. After the prediction result
is obtained, the details of the default settings can be checked
and modified to perform the prediction again with different
parameters.

In advanced mode, users can choose one of the algo-
rithms, kernel functions, training interaction data and some
parameters in the method. In the default settings, known
drug–protein interactions registered in KEGG DRUG are

used as training data, although users also can use their own
drug–protein interactions.

The computational cost depends on the numbers of drugs
and target proteins in the training drug–target interaction
data; it takes a few minutes to perform both training and
prediction tasks, for example, when the training data con-
sist of 600 drugs and 300 target proteins. If the calculation
would require a long time, the users can select the e-mail op-
tion and be able to receive an e-mail notification when the
calculation is complete.

Output of DINIES

The output of DINIES, for either DINIES Search or
DINIES Prediction, is a weighted bipartite graph with
drugs and proteins as nodes and prediction scores for drug–
protein pairs as edges. The prediction results are provided
in the following ways (Figure 2): Inferred list, BRITE map-
ping, Pathway mapping and Downloadable text files. An ex-
ample of the output can be observed at http://www.genome.

http://www.genome.jp/tools/dinies/help.html
http://www.genome.jp/tools-bin/dinies?mode=path%26id=example
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Figure 2. Output example of DINIES. (1) Inferred list classifies the drug–target interaction network into training–new, prediction–prediction and new–
training, where ‘training’ and ‘new’ denote drugs/targets found and not found in the training data (KEGG DRUG in the default settings), respectively.
Text files with the same format can be downloaded using the Download option. (2) The BRITE mapping option enables the user to find drugs or proteins of
interest from the functional hierarchy defined in the KEGG BRITE database. (3) The Pathway mapping option shows the predicted drug–target interactions
grouped on the basis of KEGG PATHWAY maps.
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Figure 3. BRITE mapping of the predicted drug–target interactions. Left and right panels show BRITE functional hierarchies for drugs and human
proteins, respectively. Solid and dotted gray lines represent known and predicted drug–protein interactions, respectively.

jp/tools-bin/dinies?mode=path&id=example. The first op-
tion, Inferred list, provides the predicted interaction pairs
categorized into (i) new drugs versus new proteins, (ii) train-
ing drugs versus new proteins, (iii) new drugs versus train-
ing proteins, (iv) training drugs versus training proteins
and (v) all (including all predicted interactions and known
interactions), where ‘training’ and ‘new’ correspond, re-
spectively, to presence and absence in the training interac-
tion data. Each drug–protein pair is assigned a prediction
score. Higher score (closer to 1) can be interpreted more
reliable (high confidence), lower score (closer to 0) can be
interpreted less reliable (low confidence). The second op-
tion, BRITE mapping, outputs the predicted interactions
grouped into many functional hierarchies in KEGG BRITE
(e.g. protein families, drug classes and human diseases).
When the user selects one of the protein families, the drugs
that are predicted to interact with proteins in the selected
family will be highlighted. The third option, Pathway map-
ping, outputs the predicted interactions grouped into bio-
logical pathway maps in KEGG PATHWAY (e.g. signalling
pathways, metabolic pathways). When the user selects one
of the pathways, proteins that are predicted to interact with
drugs in the selected pathway will be highlighted. The last
option, Download, provides a list of predicted drug–protein
pairs downloadable as a tab-delimited text file, which can
be viewed with network-visualizing software, such as Cy-
toscape (http://www.cytoscape.org/) (21).

APPLICATION AND PERFORMANCE EVALUATION
The validity of supervised network inference algorithms for
drug–target interaction prediction from single data sets for
drugs or proteins has been shown in many previous studies
by our groups and others (5–8,10,12,14). Here we show an
application of DINIES to the integration of multiple het-
erogeneous data: two drug-related data sets, i.e. 2D chemi-
cal structure similarity (18) and Food and Drug Adminis-

tration (FDA) side effect profiles (14) and two target-related
data sets, i.e. protein amino acid sequence similarity (20)
and PFAM domain composition profiles (22).

First, we performed a large-scale prediction of the un-
known drug–target interaction network for 4227 drugs and
471 target proteins using the DINIES system based on
learning with known drug–target interactions in KEGG
DRUG. When the prediction score threshold was set to 0.5,
the DINIES system predicted 733 drug–protein pairs as po-
tential interacting pairs. We investigated the newly predicted
drug–target pairs (absent from KEGG DRUG) using the
other compound–protein interaction databases DrugBank
(1), Matador (2), ChEMBL (23), PDSP Ki (24) and TTD
(25). We were able to confirm the validity of 84 pairs with
DrugBank, 23 pairs with Matador, 70 pairs with ChEMBL,
17 pairs with PDSP Ki and 24 pairs with TTD. The de-
tailed list of confirmed drug–protein pairs can be seen in the
supplemental materials on the help page. These results sug-
gest the reasonable performance of DINIES. There remain
many unconfirmed drug–target pairs, so experimental val-
idation of the other unconfirmed drug–target pairs would
be an important future task.

Figure 3 shows examples of the predicted drug–target
interactions mapped onto KEGG BRITE, which illus-
trates the association between drug Anatomical Therapeu-
tic Chemical (ATC) classification and protein family hier-
archy in terms of predicted drug–target interactions. For
example, Diazepam (D00293), a sedative–hypnotic drug,
was predicted to interact with GLRA1 (glycine receptor,
alpha 1) [hsa:2741], GLRA2 (glycine receptor, alpha 2)
[hsa:2742] and GLRB (glycine receptor, beta) [hsa:2743].
These predictions were confirmed in Matador (2). Bupiva-
caine (D07552), an anesthetic drug, was predicted to inter-
act with SCN2A (voltage-gated sodium channel, type II)
[has:6326] and SCN3A (voltage-gated sodium channel, type
III) [has:6328]. Mepivacaine (D08181), an anesthetic drug,

http://www.genome.jp/tools-bin/dinies?mode=path%26id=example
http://www.cytoscape.org/
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Table 1. AUC scores and AUPR scores in the 3-fold cross-validation experiments

Cross-validation Drug data Target data AUC ± S.D. AUPR ± S.D.

Pair-wise Chemical Sequence 0.936 ± 0.010 0.579 ± 0.079
Pair-wise Chemical Domain 0.925 ± 0.095 0.355 ± 0.069
Pair-wise Side effect Sequence 0.922 ± 0.010 0.481 ± 0.087
Pair-wise Side effect Domain 0.903 ± 0.086 0.336 ± 0.072
Pair-wise Integration Integration 0.952 ± 0.006 0.593 ± 0.087
Block-wise Chemical Sequence 0.870 ± 0.004 0.485 ± 0.006
Block-wise Chemical Domain 0.843 ± 0.005 0.282 ± 0.001
Block-wise Side effect Sequence 0.847 ± 0.005 0.364 ± 0.016
Block-wise Side effect Domain 0.829 ± 0.001 0.237 ± 0.007
Block-wise Integration Integration 0.892 ± 0.001 0.507 ± 0.008

was also predicted to interact with SCN2A and SCN3A.
These predictions were confirmed in ChEMBLE (23). As
observed above, DINIES provides comprehensive predic-
tion of drug–protein interactions based on various het-
erogeneous inputs. Furthermore, mapping predicted drug–
target pairs onto KEGG BRITE and KEGG PATHWAY
may provide us with biological understanding of drug ef-
fects at the level of molecular interaction networks. Such
knowledge could be useful for avoiding possible side ef-
fects or discovering new effects of existing drugs for dif-
ferent therapies (drug repositioning). In practice, users may
want to know the specificity of the drug–target interaction
of interest to design a novel drug that binds specifically to
the target. DINIES does not provide direct evidence but
provides clues, such as the number of predicted interaction
partners for the drugs/proteins of interest.

In addition, we evaluated the performance of DINIES
by cross-validation experiments. In benchmark data con-
struction, we removed very similar drugs, sharing a chemi-
cal structure similarity of 0.8 or above, and very similar pro-
teins, sharing a sequence similarity of 0.8 or above, to avoid
overestimating prediction accuracy because of data duplica-
tion or close homologs. We obtained benchmark data con-
sisting of 678 diverse drugs, 277 diverse proteins and their
1804 interactions. We assume primarily two practical situa-
tions: (i) detection of missing interactions between existing
drugs and known target proteins and (ii) prediction of po-
tential interactions involving newly discovered drug candi-
date compounds and newly discovered target candidate pro-
teins. From these two viewpoints, we performed two types
of 3-fold cross-validation: pair-wise and block-wise cross-
validation. In the pair-wise cross-validation, drug–target
pairs in the benchmark data were randomly split into a
training set and a test set. In the block-wise cross-validation,
drugs (resp. target proteins) were split into training drugs
(or training target proteins) and test drugs (resp. test tar-
get proteins). The associated drug–target pairs in the bench-
mark data were then split into a training set and a test set.
Note that drugs (resp. target proteins) in the test set did not
overlap with those in the training set in block-wise cross-
validation. In both types of cross-validation, we trained a
predictive model only on the training set and evaluated pre-
diction accuracy on the test set. Table 1 shows the aver-
ages and standard deviations of area under the ROC curve
(AUC) and area under the precision–recall curve (AUPR)
scores over three repetitions. Multiple data integration gave
the highest AUC and AUPR scores. The performance mea-
sures in block-wise cross-validation tended to be lower than

those in pair-wise cross-validation, implying that predicting
all potential targets of drugs that have no known targets is
more difficult than predicting missing targets (off-targets)
of drugs with known targets (that have at least one known
target protein).

CONCLUSIONS AND FUTURE DIRECTIONS

DINIES enables users to predict unknown parts of drug–
target interaction networks on a genome-wide scale in the
framework of supervised network inference. The algorithms
for supervised network inference have been presented in pre-
vious publications (6,12,14), but this is the first paper pre-
senting the web server. One of the advantages of the server
is the flexibility of the input data, providing high potential
to analyze drug–target interaction networks in various as-
pects. As an example, we showed an application using chem-
ical structure and side effect data for drugs and amino acid
sequence and domain composition data for proteins. How-
ever, users can input any other type of data as long as they
are represented in the form of profile or similarity matrices,
such as cellular phenotype profiles for drugs and gene ex-
pression profiles for proteins. DINIES is potentially useful
for detailed analysis of drug–target interactions of interest
to users in various applications.
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18. Mahé,P., Ueda,N., Akutsu,T., Perret,J.L. and Vert,J.P. (2005) Graph
kernels for molecular structure-activity relationship analysis with
support vector machines. J. Chem. Inf. Model., 45, 939–951.

19. Smith,T. and Waterman,M. (1981) Identification of common
molecular subsequences. J. Mol. Biol., 147, 195–197.

20. Saigo,H., Vert,J.P., Ueda,N. and Akutsu,T. (2004) Protein homology
detection using string alignment kernels. Bioinformatics, 20,
1682–1689.

21. Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T.,
Ramage,D., Amin,N., Schwikowski,B. and Ideker,T. (2003)
Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res., 13, 2498–2504.

22. Finn,R., Tate,J., Mistry,J., Coggill,P., Sammut,J., Hotz,H., Ceric,G.,
Forslund,K., Eddy,S., Sonnhammer,E. et al. (2008) The PFAM
protein families database. Nucleic Acids Res., 36, D281–D288.

23. Gaulton,A., Bellis,L.J., Bento,A.P., Chambers,J., Davies,M.,
Hersey,A., Light,Y., McGlinchey,S., Michalovich,D., Al-Lazikani,B.
et al. (2012) ChEMBL: a large-scale bioactivity database for drug
discovery. Nucleic Acids Res., 40, D1100–D1107.

24. Roth,B., Lopez,E., Patel,S. and Kroeze,W. (2000) The multiplicity of
serotonin receptors: uselessly diverse molecules or an embarrassment
of riches?. Neuroscientist, 6, 252–262.

25. Zhu,F., Shi,Z., Qin,C., Tao,L., Liu,X., Xu,F., Zhang,L., Song,Y.,
Liu,X.H., Zhang,J.X. et al. (2012) Therapeutic target database update
2012: a resource for facilitating target-oriented drug discovery.
Nucleic Acids Res., 40, D1128–D1136.


