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Viral infections can cause rampant disease in human beings, ranging from mild to
acute, that can often be fatal unless resolved. An acute viral infection is characterized
by sudden or rapid onset of disease, which can be resolved quickly by robust innate
immune responses exerted by the host or, instead, may kill the host. Immediately after
viral infection, elements of innate immunity, such as physical barriers, various phagocytic
cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, provide the first
line of defense for viral clearance. Innate immunity not only plays a critical role in rapid
viral clearance but can also lead to disease progression through immune-mediated host
tissue injury. Although elements of antiviral innate immunity are armed to counter the viral
invasion, viruses have evolved various strategies to escape host immune surveillance
to establish successful infections. Understanding complex mechanisms underlying the
interaction between viruses and host’s innate immune system would help develop
rational treatment strategies for acute viral infectious diseases. In this review, we discuss
the pathogenesis of acute infections caused by viral pathogens and highlight broad
immune escape strategies exhibited by viruses.
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INTRODUCTION

Viral pathogens are infectious particles containing either DNA or RNA as their genome. A large
number of viruses belonging to various families cause rampant disease in human beings, ranging
from mild and self-limiting to acute fatal diseases (Herrington et al., 2015; Keighley et al.,
2015; Jacob et al., 2020). Various viral families, such as Filoviridae, Arenaviridae, Bunyaviridae,
Paramyxoviridae, Coronaviridae, Orthomyxoviridae, Flaviviridae, Togaviridae, Hepeviridae, and so
forth, infect humans and/or animals. Unfortunately, emerging and re-emerging viral pathogens
often cause catastrophic pandemics that may take millions of human lives. For example, the most
devastating “Spanish flu” pandemic in 1918 took over 50 million lives. The subsequent emergence

Abbreviations: AP-1, Activator protein 1; EV, Extracellular vesicles; HERV, Human endogenous retrovirus; HIV, Human
immunodeficiency virus; HSV, Herpes simplex virus; IFITM, Interferon-induced transmembrane protein; IKK, I-kappa-
B kinase; KSHV, Kaposi’s sarcoma-associated herpesvirus; MAVS, Mitochondrial antiviral signaling protein; MHV, Mouse
hepatitis virus; MX1, Myxovirus Resistance Protein 1; MyD88, Myeloid differentiation primary response 88; NF-kB, Nuclear
factor kappa-light-chain-enhancer of activated B cells; RIP1, Receptor interacting protein; SIV, Simian immunodeficiency
virus; Syk, Spleen tyrosine kinase; TBK1, TANK-binding kinase 1; TRAF, TNF receptor associated factors; TRIF, TIR-domain-
containing adapter-inducing interferon-β.
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of flu pandemics, such as “Asian flu” and “Hong Kong flu” in
1957 and 1968, respectively, killed about three million people
(Salomon and Webster, 2009). During 2002 and 2003, a novel
severe acute respiratory syndrome coronavirus (SARS-CoV)
infected over 8,000 people, causing 774 deaths in 27 countries
(World Health Organization, 2018). A new virulent Influenza A
Virus (IAV) H1N1 strain (H1N1pdm09) emerged in 2009 that
killed ∼151,700–575,400 people worldwide (Centre for Disease
Control and Prevention (CDC), 2012). A new avian IAV strain
(H7N9), “Bird flu,” and the Middle East respiratory syndrome
(MERS)-CoV in 2013 also emerged (To et al., 2013). Some
viruses re-emerged after a number of years, such as the re-
emergence of the Ebola virus (EBOV) in 2014 (Shen et al.,
2015), resurgences of the Zika virus (ZIKV) in 2015 and 2016
(Shuaib et al., 2016), and so forth (Chauhan et al., 2020; Guo,
2020). The ongoing pandemic caused by SARS-CoV-2 has already
ravaged humanity and is still on the rise across the globe. Health
challenges and economic consequences caused by the ongoing
Covid-19 pandemic are potentially devastating and may remain
an enduring puzzle. Therefore, a better understanding of the
complex underlying mechanisms of viral pathogenesis caused by
acute infections is truly important to the human community.

Innate immunity is a critical first line of defense against
viral invasion. A well-specialized immune system consisting of
distinct physical and chemical barriers, such as mucosal surfaces,
skin, and their secretions, counter against viral invasion during
viral entry into the host. Viruses are further sensed by various
pattern recognition receptors (PRRs) after their entry, which
leads to the activation of innate immune signaling pathways that
control the production of interferons (IFNs), pro-inflammatory
cytokines, and chemokines. Type I and III IFNs produced by
various types of cells stimulate the expression of hundreds of
genes, collectively known as IFN-stimulated genes (ISGs), which
prime cells into an antiviral state (Iwasaki and Pillai, 2014;
Chen et al., 2018). Secreted pro-inflammatory cytokines cause
local and systemic inflammation. Chemokines produced at the
site of infection may recruit additional immune cells, including
neutrophils, monocytes, and natural killer cells (Christensen
and Thomsen, 2009; Chen et al., 2018). Then, virus-infected
cells could be targeted by immune cells, which mediates viral
clearance (Iwasaki and Pillai, 2014). An acute viral infection is
characterized by sudden or rapid onset of disease that may be
fatal. Viral clearance during acute infection correlates with rapid
induction of innate immunity, especially induction of ISGs, and
subsequent induction of adaptive immune responses (Heim and
Thimme, 2014). On the other hand, viruses are ever-evolving
and can emerge and re-emerge into newer/novel virulent strains.
The emergence of viral variants with increased adaptability
and/or virulence indicates that viruses are acquiring new strain-
specific mechanisms of immune escape. Viruses can develop
multiple tactics to subvert innate immune surveillance and escape
detection by innate immune sensors, leading to suppression
of PRRs and their downstream signaling cascades to establish
a successful infection. For instance, non-structural proteins of
influenza and members of Flaviviridae viruses deploy numerous
tactics to potently inhibit type I IFN signaling (Marc, 2014; Li
et al., 2015; Chen et al., 2017). SARS-CoV-2 deregulates type

I IFN responses through multiple mechanisms (Acharya et al.,
2020). ZIKV circumvents host innate immunity by targeting the
adaptor proteins MAVS and MITA (Li et al., 2019). Enteroviruses
brilliantly exploit their viral proteinase (3Cpro and 2Apro) to
cleave PRRs (RIG-I, MDA5) and immune adaptor molecules
(MAVS and TRIF), and thereby dampen the production of type I
and III IFNs (Mukherjee et al., 2011; Feng et al., 2014; Lind et al.,
2016). Cooperation among non-structural proteins (NS1, NS4B,
and NS2B3) of ZIKV appeared to attenuate antiviral immunity
(Wu et al., 2017). In this review, we describe the pathogenesis
of acute viral infections in relation to host innate immunity and
discuss how viruses escape innate immune surveillance.

PATHOGENESIS OF ACUTE VIRAL
INFECTIONS

Being obligated intracellular parasitic infectious particles, viruses
replicate only inside their specific host cell or tissue. For
viruses to cause diseases, they must first infect their specific
host, replicate efficiently within the host, and damage targeted
tissues. Viral pathogenesis is complex and disease outcomes
are determined by multiple factors (MacLachlan and Dubovi,
2017). Viruses rely on numerous host factors (determinants) to
replicate efficiently in the host to cause disease (MacLachlan
and Dubovi, 2017; Long et al., 2019; Gerold et al., 2020). Some
hosts are highly susceptible to viral infection, while some are
resistant. Differential host susceptibility to viral infection and
disease progression depends on both viral infectivity (virulence)
and host responses (Long et al., 2019; Gerold et al., 2020). Of
those host responses, innate immunity plays a critical role in viral
clearance and disease progression. During viral infection, various
factors including delicate and dynamic equilibrium between
pro-inflammatory and anti-inflammatory responses, immune
cell activation and deactivation, and IFNs upregulation and
IFN-reversion to the baseline, play important roles in viral
pathogenesis and progression of disease (Virgin et al., 2009;
Osburn et al., 2013; Maarouf et al., 2018; Blanco-Melo et al.,
2020). For example, an imbalanced response that is characterized
by low levels of type I and III IFNs juxtaposed to elevated
chemokines and high expression of IL-6 to SARS-CoV-2 drives
the development of COVID-19 (Blanco-Melo et al., 2020).

An acute viral infection can be resolved quickly by immune
responses exerted by the host. For example, acute Hepatitis B
Virus (HBV) infection can be spontaneously resolved in more
than 90% of infected adults, although HBV can sometimes
result in chronic persistent infection (Shin et al., 2016). The
inflammatory response must be well-regulated in the course of
viral clearance. However, excessive inflammatory responses can
be lethal. Elevated levels of a broad array of pro-inflammatory
cytokines and chemokines have been observed in diseases caused
by various acute viral infections, such as EBOV disease, severe
lung injury by infection of IAV, respiratory syncytial virus (RSV),
and SARS-CoV-2 (Virgin et al., 2009; Shin et al., 2016; Troy
and Bosco, 2016; Maarouf et al., 2018; Blanco-Melo et al., 2020).
Acute respiratory infections are the leading cause of global
disease (Troy and Bosco, 2016). Immune responses and disease
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outcomes in acute HAV (Hepatitis A Virus), HBV, and HCV
infections have been previously described (Shin et al., 2016).
Clinical manifestations, etiology, and outcome of various viral
diseases caused by a large group of numerous viral infections have
been described/reviewed elsewhere (Whitton et al., 2005; Ascenzi
et al., 2008; Gould and Solomon, 2008; Ramos-Casals et al., 2008;
Rojek and Kunz, 2008; Newton et al., 2016; Troy and Bosco, 2016;
Zuberbier et al., 2018).

INNATE IMMUNITY

Innate Detection of Viral Infections
Immediately after viral infection, elements of innate immunity,
such as physical barriers, various phagocytic cells, group of
cytokines, IFNs, and IFN-stimulated genes, provide the first
line of defense for viral clearance. Physical barriers, such as
mucosa, skin, mucous membranes, tears, earwax, mucus, and
stomach acid provide preliminary defense against invading
viruses (Sanders et al., 2011; Doran et al., 2013; Chen et al.,
2018). If viral invaders breach physical barriers, viruses are
detected/sensed by germline-encoded immune molecules PRRs
(Lazear et al., 2013; Iwasaki and Pillai, 2014; Chen et al., 2018;
Chiang and Liu, 2019). Toll-like receptors (TLRs), such as
TLR2/3/4/7/8/9 are important immune detectors involved in the
induction of innate immunity (Kawai and Akira, 2010). TLR2 and
4 detect extracellular viral proteins at the cell surface. Intracellular
viral dsRNA, ssRNA, and DNA are recognized by TLR3, TLR7,
TLR8, and TLR9, at intracellular endosomal compartments
during endocytosis and autophagy (Kawai and Akira, 2010;
Maarouf et al., 2018). Retinoic acid-inducible gene I (RIG-I)
like receptors, including RIG-I and melanoma differentiation-
associated protein 5 (MDA5), are key intracellular sensors of
viral RNA (Kawai and Akira, 2010; Morgan Brisse, 2019). RIG-
I plays an important role in the detection of several viruses,
such as orthomyxoviruses, rhabdoviruses, and arenaviruses, and
MDA5 preferentially detects picornaviruses. Additionally, many
other viruses, such as flaviviruses, paramyxoviruses, reoviruses,
and others are also detected by both RIG-I and MDA5 (Morgan
Brisse, 2019). Cumulative pieces of evidence have also shown
that paramyxoviruses, some flaviviruses [for example, Dengue
Virus (DENV) and West Nile Virus (WNV)], and reoviruses,
may be sensed by both RIG-I and MDA5 (Kawai and Akira,
2010; Goubau et al., 2013; Chan and Gack, 2016; Morgan
Brisse, 2019). Well-known viral pathogens responsible for acute
respiratory infections, such as SARS-CoV, SARS-CoV-2, and
MERS-CoV are detected by endosomal PRRs, including TLR3
and 7, and/or cytoplasmic sensors, such as RIG-I and MDA5
(Felsenstein et al., 2020; Liu et al., 2020). NOD-like receptors
(NLRs) are a large family of intracellular PRRs. Members of
the NLR family assemble into large multiprotein complexes,
termed inflammasomes. Many viruses, including rotavirus,
Sendai Virus (SeV), and IAV, can activate inflammasomes
(Shrivastava et al., 2016). Cyclic-GMP-AMP (cGAMP) synthase
(cGAS) and gamma-IFN-inducible protein 16 (IFI16) are well
characterized as intracellular detectors of DNA viruses and viral
DNA intermediates (Koyama et al., 2008; Ma et al., 2018).

Innate Immune Signaling
Innate immune signaling is initiated by sensing specific viral
components, called pathogen associate molecular patterns
(PAMPs), such as viral dsRNA, ssRNA, DNA, transcription
products, and other viral components including replication
intermediates. The sense of PAMPs by PRRs leads to the
activation of downstream molecules including mitochondrial
antiviral signaling protein (MAVS), stimulator of IFN genes
(STING) or MYD88, and transcription factors, such as interferon
regulatory factors (IRF3/5/7), NF-kB, AP1, and so forth (Koyama
et al., 2008; Ishikawa et al., 2009; Kawai and Akira, 2010;
Rathinam and Fitzgerald, 2011; Jensen and Thomsen, 2012;
Goubau et al., 2013; Lazear et al., 2013; Iwasaki and Pillai,
2014; Goraya et al., 2015; Chan and Gack, 2016; Shrivastava
et al., 2016; Chen et al., 2018; Ma et al., 2018; Chiang and Liu,
2019; Morgan Brisse, 2019; Felsenstein et al., 2020; Liu et al.,
2020). The PRR-mediated signaling pathways ultimately lead to
the secretion of numerous antiviral molecules, including type I
and type III IFNs, and other pro-inflammatory cytokines and
chemokines (Koyama et al., 2008; Ishikawa et al., 2009; Kawai
and Akira, 2010; Rathinam and Fitzgerald, 2011; Jensen and
Thomsen, 2012; Goubau et al., 2013; Lazear et al., 2013; Iwasaki
and Pillai, 2014; Goraya et al., 2015; Chan and Gack, 2016;
Shrivastava et al., 2016; Chen et al., 2018; Ma et al., 2018; Chiang
and Liu, 2019; Morgan Brisse, 2019; Felsenstein et al., 2020; Liu
et al., 2020). The secreted IFNs bind to their respective receptors
and activate Janus protein tyrosine kinase-signal transducer and
activator of transcription (JAK-STAT) pathway (Majoros et al.,
2017) that results in the production of hundreds of downstream
antiviral ISGs, such as MX1, ISG15, IFITM3, and viperin, which
establish an antiviral state to impede virus infection (Iwasaki
and Pillai, 2014; Schoggins, 2014; Figure 1). Recently, activation
of the innate immunity independently of cytokine signaling
through RIG-I/MAVS/Syk/STAT1 pathway at the early stage of
viral infection has also been reported (Liu et al., 2021). The
mechanistic basis of innate immune signaling induced by several
viral infections has been extensively reviewed elsewhere (see
review papers Koyama et al., 2008; Ishikawa et al., 2009; Kawai
and Akira, 2010; Rathinam and Fitzgerald, 2011; Jensen and
Thomsen, 2012; Goubau et al., 2013; Lazear et al., 2013; Iwasaki
and Pillai, 2014; Schoggins, 2014; Goraya et al., 2015; Chan and
Gack, 2016; Shrivastava et al., 2016; Majoros et al., 2017; Chen
et al., 2018; Ma et al., 2018; Chiang and Liu, 2019; Morgan Brisse,
2019; Felsenstein et al., 2020; Liu et al., 2020, 2021).

Roles of Interferons in Antiviral
Responses
Interferons (IFNs), a family of cytokines, are critical elements
of innate immunity responsible for rapid and efficient viral
clearance (Fensterl and Sen, 2009). Virtually all nucleated cells
could express IFNs during viral infection and IFN production
is the key antiviral process of innate immunity during viral
infection. Type I (IFN-α/β) and Type III IFNs are principal
IFNs produced during viral infection as a key part of the
innate immune response. The typical feature of IFNs is to
induce upregulation of a wide array of intracellular antiviral
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FIGURE 1 | General overview of intracellular innate immune signaling and some representative viral immune escape mechanisms. Sensing virus by PRRs initiates
innate immune signaling through the hierarchical activation of PRRs family-specific adaptor proteins (TRIF, MAVS, STING, MYD88, and so forth) to activate
transcriptional factors, such as IRF3/5/7, NF-kB, and others. Activated transcriptional factors translocate into nucleus and induce robust expression of IFNs.
Secreted IFNs bind to their respective receptors and activate JAK-STAT signaling and form a transcriptional factor called ISGF3. ISGF3, then, translocates into
nucleus to induce expression of numerous antiviral effectors (ISGs) to impede viral infection. Although antiviral innate immunity consists of well-equipped arsenals to
impede viral infection and invasion, viruses circumvent or escape from these antiviral arsenals to establish successful infection through several mechanisms. Of these
escape mechanisms, viral components inhibit innate immune signaling by diversified tactics, such as interacting directly or indirectly with crucial innate elements,
targeting and cleaving adaptor proteins involved in innate immune signaling or interference of IFN signaling, degradation of JAK/STAT components, and so forth.
Some representative viral immune escape tactics are shown in the Figure 1.

effectors called ISGs through JAK-STAT signal pathway (Fensterl
and Sen, 2009; Schoggins, 2014; Majoros et al., 2017; Paul
et al., 2018). Type I and type III IFNs bind to their respective
receptors on the infected cell and neighboring cells, which leads
to activation of JAK-STAT pathway and nuclear translocation
of STAT1/STAT2/IRF9 (ISGF3) (Reviewed in Fensterl and
Sen, 2009; Schoggins, 2014; Paul et al., 2018) and results in
induction of numerous ISGs, such as Mx proteins, ISG15, protein
kinase PKR, 2’-5’-oligoadenylate synthetases (OAS), ribonuclease
L (RNaseL), IFN-inducible dsRNA-dependent protein kinase
(PKR), adenosine deaminase RNA-specific and apolipoprotein
B mRNA-editing enzyme, catalytic polypeptide 3, and others to
establish an antiviral state (Iwasaki and Pillai, 2014; Chen et al.,
2018). Of note, some ISGs, such as OAS and PKR, are further
activated by dsRNA, which, in turn, inhibit viral replication by
various mechanisms (Ishikawa et al., 2009; Iwasaki and Pillai,
2014; Chen et al., 2018). Additionally, IFNs may also exert
immunomodulatory functions that affect cell migration, cross-
presentation, CD4+ T cell stimulation or CD8+ T cell clonal
expansion, and B cell activation, and enhance antiviral humoral
responses (Iwasaki and Pillai, 2014). Thus, before the effective

adaptive immunity is initiated, IFN-mediated innate immune
response plays critical roles in eliminating virus invasion (Iwasaki
and Pillai, 2014). Although viral infection induces the rapid
expression of IFNs and antiviral effectors, at the same time, viral
components can suppress IFNs signaling. Theoretically, virus-
induced robust IFNs production, IFN-reversion to baseline by
viral antagonisms, and optimal ISGs expression could establish a
steady, delicate, and dynamic equilibrium. However, destruction
of such a steady state, particularly in acute viral infection, by
hyper-production of IFNs and hyper-effective immune evasion
is the primary cause of viral pathogenesis (Maarouf et al.,
2018; Blanco-Melo et al., 2020). Both hyper-production of IFNs
and hyper-effective immune evasion are disadvantageous to the
host. Imbalanced levels of IFNs expression and differential ISGs
production differ across type of viruses, which also determines
the viral pathogenesis. For instance, among three Hepatitis (A,
B, and C) viruses, HCV infection induces the robust expression
of a large number of ISGs, whereas HAV infection minimally
induces ISG expression and HBV infection might not induce ISG
expression (Shin et al., 2016). Moreover, viruses are ever-evolving
to escape away from innate immunity, particularly at acute
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infection. For example, IFITM is a critical antiviral ISG against
several viruses including Human Immunodeficiency Virus (HIV-
1), however, transmitted founder HIV-1viruses are uniquely
IFITM resistant, a property that is lost during chronic infection.
This is in part due to escape mutations acquired in response to
autologous neutralizing responses (Foster et al., 2016).

CYTOKINE STORM CAUSED BY ACUTE
VIRAL INFECTION

Optimal activation of innate immunity in the course of viral
infection is very important for viral clearance. However, an
acute viral infection usually causes over-activation of innate
immunity. Such over-activation may induce robust and hyper-
production of IFNs, proinflammatory and anti-inflammatory
cytokine, and chemokines, including excessive secretion of TNF-
α, vascular endothelial growth factors (VEGF-A), IL-1, IL-6,
IL-10, IL-8, CCL2, CXCL10, and so on, leading to cytokine storms
(Wauquier et al., 2010; Liu et al., 2016; Srikiatkhachorn et al.,
2017; Teijaro, 2017; Blanco-Melo et al., 2020; Gerges Harb et al.,
2020; Mahmudpour et al., 2020; Vabret et al., 2020). Cytokine
storms released during acute viral infection can result in single
or multiple organ damage and even death (Wauquier et al.,
2010; Liu et al., 2016; Srikiatkhachorn et al., 2017; Teijaro, 2017;
Maarouf et al., 2018; Blanco-Melo et al., 2020; Gerges Harb
et al., 2020; Mahmudpour et al., 2020; Vabret et al., 2020). For
example, in COVID-19, the cytokine storm is an important
factor leading to the death of many patients (Mahmudpour
et al., 2020; Vabret et al., 2020). Cytokine storms caused by
acute viral infection, such as influenza virus, coronavirus, Ebola
virus, dengue virus, and so forth have been extensively reviewed
elsewhere (Wauquier et al., 2010; Liu et al., 2016; Srikiatkhachorn
et al., 2017; Teijaro, 2017; Gerges Harb et al., 2020; Mahmudpour
et al., 2020; Vabret et al., 2020).

VIRAL INNATE IMMUNE ESCAPE
STRATEGIES

Nonetheless, the host is well-equipped with innate antiviral
arsenals to eliminate invading viral pathogens; viruses evolved
strategies to escape innate immune surveillance. At the early stage
of viral entry into the host, viruses breach hosts’ physical barriers
by various ways. Upon breaching physical barriers, viruses
exploit diverse mechanisms to inhibit the activation of PRRs
and their downstream signaling cascades, such as concealing
their PAMPs, interacting directly or indirectly with crucial innate
elements, such as PRRs, transcriptional factors, targeting and
cleaving adaptor proteins involved in innate immune signaling
or interference of IFN signaling, degradation of JAK/STAT
components, and so forth (Table 1). A broad mechanism of viral
innate immune escape tactics is discussed below.

Penetrating Physical Barriers
Physical barriers, such as skin or the surface of the respiratory,
genital, or gastrointestinal tracts, including fluid repleted with

antimicrobials, neutralizing immunoglobulins, mucus, and the
epithelial cell layers, guard viral invaders. Viruses breach such
barriers in a multitude of ways. For instance, specific viral
proteins interact with cell receptor proteins present in the apical
junctional complex to modify the barrier properties of the
epithelium (Gonzalez-Mariscal et al., 2009). Interestingly, lower
pathogenic avian influenza viruses generally do not cause severe
pneumonia because mucus restrains and removes these viruses
before approaching lower respiratory tracts, however, highly
pathogenic IAV can breach such mucosal barriers (Van Riel et al.,
2010). Although the skin is the most important physical barrier,
it contains numerous permissive cells for flavivirus infection,
such as ZIKV, DENV, and WNV, therefore, these viruses exploit
permissive cells at the first site of infection (Garcia et al., 2017).
HIV and SIV appear to be capable of flexibly exploiting multiple
mechanisms to transit different epithelial barriers and gain
access to susceptible target cells to establish a systemic infection
(Keele and Estes, 2011).

Escaping From the Recognition From
PRRs
Knowing that viruses are sensed by PRRs, viruses
circumvent/minimize PRRs’ sensing through numerous
viral tactics, such as by sequestering/hiding viral genome,
interacting with PRRs, targeting/cleaving adapter proteins,
and so on. An in vitro study determined the effect of HCV
proteins (NS3, NS3/4A, NS4B, or NS5A) on the TLR signaling
pathways, where cells expressing these proteins were found
to inhibit the activation of the TLR2, TLR4, TLR7, and TLR9
signaling pathways (Abe et al., 2007). Several viral proteins can
specifically interact with PRRs. For an example, p7 of HCV
associates with DNA sensor IFI6-16 (Qi et al., 2017). HBV
conceals its genome into the viral capsid to escape away from
cGAS sensing (Verrier et al., 2018). The human papillomavirus
(HPV) E6 oncoprotein targets USP15 and TRIM25 to suppress
RIG-I-mediated innate immune signaling (Chiang et al., 2018).
Some viruses have evolved with strategies to modify viral
RNAs and viral RNA-binding proteins to escape away from
sensing by RIG-I, MDA5 (Bowie and Unterholzner, 2008).
Viral dsRNA genome is highly susceptible to recognition by
MDA5; both positive-sense RNA viruses and some DNA viruses
produce dsRNA intermediate during their replication cycle,
while some viruses conceal their dsRNA by encoding dsRNA
binding proteins or even sequester viral RNA (Table 1). More
interestingly, unlike positive-strand RNA and DNA viruses,
negative-sense RNA viruses uniquely do not produce dsRNA
intermediates; this unique property minimizes detection by
PRRs (Weber et al., 2006). Moreover, a recent report showed
that SARS-CoV-2 RNAs are capped at the 5’ end and escape
recognition from PRRs (Encinar and Menendez, 2020). Viral
mechanisms of escaping from PRRs’ recognition have been
reviewed elsewhere (Weber et al., 2006; Abe et al., 2007; Bowie
and Unterholzner, 2008; Chan and Gack, 2016; Qi et al., 2017;
Chiang et al., 2018; Verrier et al., 2018; Encinar and Menendez,
2020; Kikkert, 2020; Lhomme et al., 2020; Liu et al., 2020;
Zhu and Zheng, 2020).
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TABLE 1 | Representative immune escape strategies.

Viruses Innate elements and mechanisms References

Penetrating physical barrier

Several viruses, such as Coxsackie,
swine vesicular disease virus,
adenovirus, reovirus, and others

Breach mucosa by targeting proteins of the apical junctional complex Gonzalez-Mariscal et al.,
2009

ZIKV, DENV, and WNV Breach skin barrier by infecting permissive cells Garcia et al., 2017

HIV/SIV Penetrate physical barrier in multiple ways Keele and Estes, 2011

Interference with PRRs signaling

HCV Extracellular vesicles mask HCV dsRNA to reduce activation of TLR3. Grünvogel et al., 2018

SARS-CoV Viral Papain-Like Protease antagonize the TLR7 signaling through removing Lys63-Linked
polyubiquitination of TNF receptor-associated factors (TRAF3 and TRAF6)

Li et al., 2016

Marburg virus (MARV) and EBOV VP35 protein binds to viral dsRNA genomes to inhibit viral sensing by RIG-1 and MDA-5. Ramanan et al., 2012

HBV Escape from cGAS sensing by the packaging of the genome into the viral capsid Verrier et al., 2018

Vaccinia virus (VACV) and IAV E3L and NS1 proteins of respective viruses sequester viral dsRNA to escape away from sensing by
PRRs

Chang et al., 1992; Hatada
and Fukuda, 1992

Enterovirus (EV) Viral proteinases 3Cpro and 2Apro counteracts PRRs signaling by targeting RIG-I and MDA5,
respectively.

Feng et al., 2014; Lind
et al., 2016

HCV NS5A protein inhibits TLR signaling by associating with MYD88 Abe et al., 2007

VACV A46R targets multiple Toll-like-interleukin-1 receptor adaptors Stack et al., 2005

Inhibition of transcriptional factors IRF3/7, NF-kB, and AP1

SARS-CoV-2 Suppresses the activation of TRAF3 and TRAF3 and thereby inhibit IRF3/7 and NF-kB activation Liu et al., 2020

MERS-CoV Accessory protein ORF8b suppresses MDA5 and TBK1 medicated NF-κB signaling and M protein
suppresses type TBK1-dependent phosphorylation of IRF3

Lui et al., 2016; Lee et al.,
2019

IAV NS1 protein inhibits nuclear translocation of IRFs and NF-kB Wang et al., 2000

HPV Interfere in critical ubiquitination events upstream of IRF-3 and NFκB by upregulating the cellular
deubiquitinase UCHL1

Karim et al., 2013

HCV NS5A viral protein inhibits nuclear translocation of AP-1 by interacting with Grb2 Macdonald et al., 2003

VACV Several viral proteins, such as A46, A49, A52, and others inhibit NF-kB activation by multiple
mechanisms.

Smith et al., 2013

EV Viral 3C proteases cleavs IRF7 Lei et al., 2013

SARS-CoV Viral M protein inhibits IRF3/7 activation targeting TBK1/IKKε Siu et al., 2009

EBOV VP35 protein inhibits IRF3 phosphorylation and subsequent dimerization Basler et al., 2003

Human papilloma virus 16 Viral E6 oncoprotein binds to IRF3 and inhibits its transcriptional activity Ronco et al., 1998

Interference of JAK-STAT signaling

HPV 18 Viral E6 oncoprotein binds with Tyk2 and impairs JAK-STAT activation Li et al., 1999

Mumps virus (MUV) V protein induces degradation of STAT-1 and STAT-3 Ulane et al., 2003

HSV-1 Inhibits JAK-STAT signaling by inducing SOCS3 Yokota et al., 2004

SeV C protein inhibits the phosphorylation of STAT1 and STAT2 Oda et al., 2017

ZIKV, DENV Induce STAT2 degradation Morrison et al., 2013; Grant
et al., 2016

ZIKV NS2B3 protein promotes the degradation of Jak1 Wu et al., 2017

EBOV EBOV VP24 binds to the α5 and α6 subunits of importin, which are the essential components of the
nuclear transporter, to block the nuclear translocation of phosphorylated STAT1

Shabman et al., 2011

Rotavirus NSP1 protein inhibits STAT1 activation Sen et al., 2014

Nipah and Hendra virus Nucleoproteins inhibit the nuclear accumulation of STAT1 and STAT2 and interfere with their
complex formation

Sugai et al., 2017

Parainfluenza virus type 1 C protein binds and retains STAT1 in perinuclear aggregates at the late endosome Schomacker et al., 2017

Porcine reproductive and
respiratory syndrome virus (PRRSV)

Nsp11 protein interacts with IRF9 and formation and nuclear translocation of the transcription factor
complex IFN-stimulated gene factor 3 (ISGF3)

Wang et al., 2019

Antagonizing ISGs

VACV Viral E3 protein interacts with human and mouse ISG15 Eduardo-Correia et al.,
2014

MERS-CoV NS4b proteins cause enzymatic degradation of OAS-RNase L Thornbrough et al., 2016

HIV-2 Antagonize tetherin by interacting with viral Rod envelope glycoprotein Le Tortorec and Neil, 2009

HCV, HIV, IAV, and VACV E2/NS5A, Tat, NS1, and E3l/K3L viral proteins of respective viruses interact with PKR Reviewed in Short, 2009
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Inactivation of Transcriptional Factors
At the basal level, transcriptional factors are inactive. After viral
infection, transcriptional factors, such as IRF3/5/7, NF-κB, AP1,
and others translocate into the nucleus and then induce the
robust expression of IFNs (Christensen and Thomsen, 2009;
Iwasaki and Pillai, 2014; Chen et al., 2018). Several conserved
viral proteins, predominantly non-structural (NS) proteins, are
extensively reported to exert potent antagonistic effects of IFN
responses by several mechanisms. Viruses are reported to inhibit
IFN induction by inducing degradation transcription factors,
inhibiting their activation by blocking downstream signaling of
PRRs, sequestering them, impeding their nuclear translocation,
or inhibiting their binding to promoters of downstream antiviral
genes, and so forth (Table 1). For example, IAV NS1 protein,
extensively characterized as a potent antagonist of IFN-signaling,
inhibits activation and nuclear translocation of IRF3 and NF-κB
(Wang et al., 2000). Human cytomegalovirus (HCMV) is well-
known for establishing long-term latent infections. The innate
immune escape strategy of HCMV is appeared to be pivotal for
establishing such infections. UL44 protein of HCMV decelerates
antiviral responses by inhibiting the binding of IRF3 and NF-κB
to the promoters of downstream antiviral genes (Fu et al., 2019).

Regulating the Transcriptional and
Translation of Key Elements of Innate
Immunity
Transcription and translation of key elements of antiviral innate
immunity, such as PRRs, IRFs, IFNs, STATs, ISGs, and others
are very important for eliciting an antiviral response. Cumulative
reports suggest that viruses can deregulate the transcription
and translation of such elements. Caliciviridae, Coronaviridae,
Picornaviridae, Orthomyxoviridae, Reoviridae, and many others
exploit multiple tactics to induce host translational shut-off and
thus prevent the infected cells from synthesizing new peptides
and proteins, including those IFN-stimulated IRFs and STATs
(reviewed in Chiang and Liu, 2019). HIV-1 Vpu protein potently
suppresses NF-κB-elicited antiviral immune responses at the
transcriptional level (Langer et al., 2019). Epstein-Barr virus
BRLF1 inhibits the transcription of IRF3 and IRF7 (Bentz et al.,
2010). IAV induces rapid degradation of eukaryotic translation
initiation factor 4B (an integral component of the translation
initiation apparatus) and contributes to viral replication at least
by suppressing IFITM3 protein expression (Wang et al., 2014).

Antagonizing IFN Induced JAK-STAT
Signaling
Besides the aforementioned viral escape strategies, viruses
have evolved strategies to antagonize IFN and its downstream
signaling through numerous sophisticated mechanisms.
Mechanisms include targeting degradation of IFNs receptors,
retention of suppression of STATs in the cytoplasm, inhibition of
STAT activation, degradation of STATs through the proteasome,
and so forth. NS4B protein of several flaviviruses inhibits IFN
signaling-induced JAK-STAT signaling in a multitude of ways
(Munoz-Jordán et al., 2005). Flavivirus NS5 protein dysregulates
HSP90 to inhibit JAK/STAT signaling (Roby et al., 2020). NS2A,

NS2B, NS3, NS4A, and NS4B proteins of WNV block STAT1 and
STAT2 activation (Liu et al., 2005). 2A proteinase of Enterovirus
71 degrades IFNAR1 (Lu et al., 2012). HCV and flaviviruses
hijack cellular mechanisms for nuclear STAT2 degradation by
up-regulation of PDLIM2 (Joyce et al., 2019). Nsp5 protein
of porcine deltacoronavirus, an emerging coronavirus, cleaves
STAT2 (Zhu et al., 2017). Orf6 of SARS-CoV-2 hijacks Nup98 to
block STAT nuclear import (Miorin et al., 2020). There is a range
of literature regarding the viral invasion of innate immunity by
antagonizing IFN and IFN induced downstream signaling (Liu
et al., 2005, 2020; Lu et al., 2012; Chan and Gack, 2016; Scott and
Nel, 2016; Zhu et al., 2017; Maarouf et al., 2018; Joyce et al., 2019;
Acharya et al., 2020; Miorin et al., 2020).

Viral Invasion of ISGs
Global ISG response plays a very important role in viral clearance.
Delayed ISG production is advantageous for viral replication
and spread into host tissues. Viruses also exploit several distinct
approaches to antagonize the global ISG response (Short, 2009).
Highly pathogenic influenza viruses and coronaviruses induce
repressive histone modifications, which downregulates the global
expression of ISG subsets (Menachery et al., 2014). Although
interferon-induced transmembrane proteins (IFITMs) play an
antiviral role against a large group of viruses, particularly during
viral invasion to the host at entry stage, human cytomegalovirus
can exploit IFITM proteins to facilitate morphogenesis of the
virion assembly compartment (Xie et al., 2015). Viral invasion of
ISGs has been extensively reviewed elsewhere (Table 1; Kanodia
et al., 2007; Short, 2009; Su et al., 2016).

Regulating Autophagy
Autophagy, an autonomous arm of innate immunity, is a
cytosolic lysosome-dependent catabolic process that mediates
viral clearance. Autophagy can be upregulated upon virus
detection by pathogen receptors, including membrane-
bound and cytosolic PRRs, and which may further facilitate
PRR-dependent signaling and also contribute induction
of type I IFNs (Richetta and Faure, 2013). Beclin-1 is an
essential macro-autophagy protein that constitutes part of the
phosphatidylinositol-3 kinase complexes that mark membranes
for autophagosome generation and facilitate autophagosome
fusion with lysosomes (Münz, 2011). α-herpesvirus Akt-like
Ser/Thr kinase limits autophagy to stimulate virus replication
by inhibition of ULK1 and Beclin1 (Rubio and Mohr, 2019).
Pseudorabies virus infection inhibits autophagy in permissive
cells in vitro (Sun et al., 2017). Viral proteins ICP34.5, orf16, and
M11 of viruses HSV-1, KSHV, and MHV-68, respectively, block
autophagosome generation, whereas nef and M2 viral proteins
of HIV and IAV, respectively, inhibit autophagosome maturation
(Choi et al., 2018). Readers can also refer to some previously
published review papers (Münz, 2011; Richetta and Faure, 2013;
Jackson, 2015; Lennemann and Coyne, 2015; Sun et al., 2017;
Choi et al., 2018; Rubio and Mohr, 2019).

Other Mechanisms
In addition to the aforementioned viral immune escape
mechanisms, a large group of viruses often encode proteins
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to inactivate released cytokines or chemokines by binding,
solubilizing, and altering the cellular responsiveness (Lucas
et al., 2001). Numerous viruses including HIV-1, HCV, HBV,
HSV-1, RSV, EBOV, IAV, and others induce robust expression
of suppressors of cytokine signaling (SOCS) proteins (Akhtar
and Benveniste, 2011). SOCS proteins induced by cytokine
signaling during viral infection function as negative feedback
regulators to reduce inflammation and promote viral replication
(Akhtar and Benveniste, 2011). More interestingly, some viruses
can directly induce SOCS proteins independently of cytokine
signaling. For example, the influenza virus induces the expression
of SOCS3 in a cytokine-independent manner to circumvent IL-
6/STAT3-mediated immune response (Liu et al., 2019). Virus-
induced stress granules, the cytoplasmic dense aggregates of
proteins and RNAs produced when cells are in stress, can also
play an important role in innate immunity by recruiting viral
sensors, such as RIG-I, MDA5, PKR, and so forth to initiate
downstream antiviral innate immune signaling (McCormick
and Khaperskyy, 2017). Several viruses brilliantly inhibit such
stress granule formation by diverse mechanisms (Wu et al.,
2014; McCormick and Khaperskyy, 2017). Moreover, viruses
can also circumvent antiviral immunity through sequestering
critical elements of innate immunity, such as TBK1, IKKε,
and IRF3 into viral inclusion bodies (Wu et al., 2014). Other
famous escape mechanisms include hijacking transcriptional
and translational machineries for their survival, which can
also mediate the circumvention of innate immune response in
multiple ways. For example, the Nsp1 protein of SARS-CoV-2
mediates host translation shutdown and evades innate immunity
(Thoms et al., 2020).

PERSPECTIVES AND CONCLUSION

Obstructing viral immune invasion could potentially provide an
alternative approach for the prevention and treatment of disease
caused by an acute infection of viral pathogens. Increasing data
regarding viral innate immune escape mechanisms have been
reported. However, most of these data are limited to in vitro
(cell culture system) and in vivo animal models. The relevance
of viral escape mechanisms identified by these models may
not apply the same in human. Therefore, this issue remains to
be addressed by extensive ex vivo experiments in the human
model. The molecular basis of antiviral innate immune signaling
is complex, multi-waved, inter-connected, and may not always
be antiviral. For instance, it is well-known that TLR signals
induce robust expression of antiviral innate immunity for viral
clearance. However, in certain circumstances, the activation
of particular TLR responses by pathogens might serve as an
escape mechanism from the host defense (Netea et al., 2004).
Furthermore, studies for the in-depth understanding of virus-
host interaction are very important because the molecular basis of
viral escape mechanisms and crosstalk among immune signaling
for the progression of disease are still largely unexplored.

Of several conserved viral proteins, predominantly NS
proteins appear to be major antagonists of the elements of
innate immunity. Since viral NS proteins play a vital role
in innate immune escape mechanisms, there is a pressing
need for scientists to uncover host factors countering those
viral NS proteins. Supportively, recent reports have arguably
characterized host factors countering such viral proteins. For
instances, virus-induced TRIM22, viperin, and p27Kip1 mediate
rapid degradation of HCV NS5A, ZIKA NS, and IAV NS1
proteins, respectively (Yang et al., 2016; Panayiotou et al., 2018;
Rai et al., 2020). Identification and characterization of such types
of host factors countering these viral proteins in the future are
truly indispensable in elaborating antiviral innate immunity.

A virus may exploit numerous and multiple immune escape
tactics collectively and cooperatively for effective immune
evasion. However, most of the previously published experimental
data are mostly limited to viral escape tactics specifically at
the individual level. Comprehensive studies on how viruses
exploit their overall immune escape tactics together for disease
progression or host killing in acute viral infection or in
establishing successful infection should have been experimentally
substantiated. Moreover, the consequences of cytokine storms
in acute viral infection have been widely studied but the
mechanistic basis of differential cytokine storm production and
why the magnitude of cytokine storm production differs from one
individual to another are largely unknown.

In conclusion, an acute viral infection can cause sudden or
rapid onset of disease that may be resolved quickly or may
be fatal. Innate immunity provides the first line of defense
for viral clearance. However, viruses have evolved strategies to
escape the host’s antiviral innate immune surveillance that may
kill the host or establish persistent infections. There are still
many unanswered questions regarding the impact of viral escape
strategies on host killing and viral persistence. Comprehensive
understanding of the underlying complex molecular basis of viral
escapology would help provide landmark achievements in our
ongoing battle against viral infections.
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