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Abstract

Accurate representation of subject-specific bone anatomy in lower-limb musculoskeletal

models is important for human movement analyses and simulations. Mathematical methods

can reconstruct geometric bone models using incomplete imaging of bone by morphing

bone model templates, but the validity of these methods has not been fully explored. The

purpose of this study was to determine the minimal imaging requirements for accurate

reconstruction of geometric bone models. Complete geometric pelvis and femur models of

14 healthy adults were reconstructed from magnetic resonance imaging through segmenta-

tion. From each complete bone segmentation, three sets of incomplete segmentations (set

1 being the most incomplete) were created to test the effect of imaging incompleteness on

reconstruction accuracy. Geometric bone models were reconstructed from complete sets,

three incomplete sets, and two motion capture-based methods. Reconstructions from (in)

complete sets were generated using statistical shape modelling, followed by host-mesh and

local-mesh fitting through the Musculoskeletal Atlas Project Client. Reconstructions from

motion capture-based methods used positional data from skin surface markers placed atop

anatomic landmarks and estimated joint centre locations as target points for statistical

shape modelling and linear scaling. Accuracy was evaluated with distance error (mm) and

overlapping volume similarity (%) between complete bone segmentation and reconstructed

bone models, and statistically compared using a repeated measure analysis of variance

(p<0.05). Motion capture-based methods produced significantly higher distance error than

reconstructions from (in)complete sets. Pelvis volume similarity reduced significantly with

the level of incompleteness: complete set (92.70±1.92%), set 3 (85.41±1.99%), set 2 (81.22

±3.03%), set 1 (62.30±6.17%), motion capture-based statistical shape modelling (41.18

±9.54%), and motion capture-based linear scaling (26.80±7.19%). A similar trend was

observed for femur volume similarity. Results indicate that imaging two relevant bone
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regions produces overlapping volume similarity >80% compared to complete segmented

bone models, and improve analyses and simulation over current standard practice of linear

scaling musculoskeletal models.

Introduction

Musculoskeletal (MSK) lower-limb models are ubiquitous tools used in motion analysis and

simulation. Individual variation in bone anatomy influences muscle attachments (i.e. origins

and insertions), and thus muscle-tendon-unit paths and moment arms. Consequently, individ-

ual variation in bone anatomy influences estimates of muscle-tendon-unit forces, joint contact

forces [1,2], and articular mechanisms [3] in these models. Furthermore, combined variation

in bone anatomy and muscle-tendon-unit force can influence finite element analysis of bone

[4], cartilage [5,6], and tendon [7]. Therefore, generating accurate geometric bone models for

subject-specific MSK models is important for human movement analysis and simulation.

Subject-specific geometric bone models can be reconstructed from 3-dimensional (3D)

medical imaging through segmentation [3], or through mathematical methods that morph a

template bone model to match individual bone geometry [8,9]. Medical image processing soft-

ware is used to segment pixels corresponding to bones in images from x-ray computed tomog-

raphy (CT) and magnetic resonance imaging (MRI), from which geometric bone models can

be reconstructed. Currently, automated segmentation of bone is only possible with CT imag-

ing [10], which, unlike high-fidelity MRI, cannot image soft tissues (i.e. muscle, ligament, car-

tilage, and tendon), which are valuable for MSK modelling and/or finite element analyses.

However, segmentation of complete lower-limb bone models from MRI may take up to 11

hours [3]. Consequently, reconstructing geometric bone models through segmentation of MRI

is resource intensive (i.e. cost and time), making it impractical for studies with large sample

sizes or repeated measures.

As an alternative to complete segmentation from medical imaging, mathematical methods

can be used to reconstruct geometric bone models from incomplete medical imaging segmen-

tation of bone and/or anthropometric measurements by morphing a template bone model.

Examples of mathematical morphing methods include linear scaling, free-form deformation

(i.e. host-mesh fitting), parametrised nodal fitting (i.e. local-mesh fitting), and statistical shape

modelling (SSM) [11,10,12]. Standard musculoskeletal modelling software, OpenSim [13],

applies linear scaling to generic template bone models to personalise models to the individual.

Linear scaling applies one to three orthogonal scale factors to template bone models to approx-

imate individual bone dimensions. Scale factors are typically determined from motion capture

(MOCAP) markers placed atop bony landmarks and/or using anthropometric measurements.

However, MOCAP-based linear scaling results in pelvis and femur bone dimensions with

width and/or depth errors of ~5–20 mm compared to measurements from medical images

[14]. Therefore, MOCAP-based linear scaling inadequately represent subject-specific bone

geometry. Alternatively, mesh-fitting techniques (i.e. host-mesh and local- mesh fitting)

morph template bone models (i.e. meshes) to individual bone geometry segmented from imag-

ing data. Mesh-fitting is an iterative morphing processes that minimises distance error

between segmentation and closest points on the template bone model. Host-mesh fitting

applies free-form deformation to the template bone model, aiming to minimise distance error

by deforming a host bounding box in which the template bone model is embedded [8]. Local-

mesh fitting is a parametric fitting method, where individual nodes on the template bone

model undergo translation to minimise distance error [15]. Mesh-fitting works with complete
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bone segmentation, but may not adequately adjust (e.g. collapse meshes, surface artefacts)

regions of the template bone model unaccounted for in the incomplete medical imaging [8].

Thus, it remains unclear that these fitting methods alone may accurately reconstruct geometric

bone models.

Data mining methods, such as SSM, analyse variation in bone anatomy within a training set

and can be used to reconstruct geometric bone models. Reconstruction using SSM morphs

bone shape variance along principal components (PCs) of variance, to minimise the distance

error to bone segmentation from medical images and/or anthropometric measurements [11].

A SSM has been used previously to reconstruct bone models from incomplete medical imaging

[16], and the resulting bone models had more accurate anatomic coordinate systems com-

pared to linear scaling. Additionally, Nolte and colleagues [9] demonstrated geometric models

of femur and tibia/fibula can be accurately (average distance error 0.50±0.33 mm) recon-

structed from incomplete bone segmentations (two bone regions) compared to complete bone

segmentation. Though SSM has accurately reconstructed geometric models of lower-limb long

bones from incomplete bone segmentation, the minimal medical imaging required to accu-

rately reconstruct geometric bone models is yet to be investigated.

The purpose of this study was to compare the accuracy of pelvis and femur geometric mod-

els reconstructed from different levels of imaging incompleteness to identify the minimal

imaging requirements for accurate subject-specific bone models. We compared the recon-

struction accuracy of pelvis and femur geometric models using target data comprising com-

plete sets of bone segmentations, three incomplete sets of bone segmentations (each

representing different levels of imaging incompleteness), and two MOCAP-based methods.

We hypothesised that bone models reconstructed from more complete sets would be more

accurate compared to those reconstructed from less complete sets and MOCAP-based

methods.

Methods

This study was approved by Griffith University human research ethics committee (PES/36/10/

HREC). All participants provided written informed consent prior to testing. Fourteen healthy

adults (age = 28.79±4.82 years, height = 1.73±0.85 m, mass = 69.17±16.22 kg), who reported

no history of lower-limb injury and were free from cardiovascular and neuromuscular condi-

tions, participated.

Magnetic resonance imaging, bone segmentation, and motion capture

Complete pelvis and femur bones were imaged using a Philips Ingenia 3 T MRI unit (Eindho-

ven, Netherlands) through a single scan of three separate stacks (sequence name: spoiled gradi-

ent echo (T1-FFE); repetition time: 4.1706 ms; echo time: 2.303 ms). Image sequences were

optimised for bone and muscle visibility, and consisted of ~1100 axial images with 560x560

pixel in-plane resolution, no inter-slice gap, and reconstructed voxel dimension 0.77 mm x

0.77 mm x 1.00 mm (Fig 1.). Complete pelvis (excluding sacrum) and femur geometric models

were reconstructed by merging the three stacks and segmenting pixels corresponding to the

respective bones in each image slice using Mimics version 17 (Materialise, Leuven, Belgium).

From each complete set of bone segmentations, three sets of incomplete bone segmenta-

tions were created (Fig 2). Incomplete bone sets consisted of proximal, middle, and/or distal

bone regions, with each region truncated superiorly and inferiorly. Pelvis truncation was per-

formed at the acetabula, ilia, and ischiopubic rami, while femur truncation was performed at

proximal femur, epicondyles, and mid-shaft. For both pelvis and femur, incomplete segmenta-

tion set 1 was composed of one geometrically-complex bone region (i.e. femoral head or pelvic
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acetabulum), set 2 was composed of set 1 plus a second large bone region, and set 3 was com-

posed of set 2 plus a third small bone region (Fig 2). For the pelvis, set 1 consisted of the ace-

tabula only, truncated superiorly and inferiorly at the acetabulum edge. Set 2 consisted of set 1

plus the ilia, truncated by parallel cuts emanating at the posterior superior and inferior iliac

spines and terminating at the anterior superior iliac spine. Set 3 consisted of set 2 plus part of

the ischiopubic rami. For the femur, set 1 consisted of femoral head and greater trochanter,

truncated at ~10 mm of proximal bone end and inferiorly at approximately half the distance

between greater and lesser trochanters. Set 2 consisted of set 1 plus femoral epicondyles, trun-

cated from the start of the femoral shaft and at ~5 mm of distal bone end. Set 3 consisted of set

2 plus ~10 mm of femoral shaft, located midway between femoral head and epicondyles. Com-

plete and incomplete sets were used to reconstruct pelvis and femur models, and to evaluate

geometric bone model accuracy in comparison to complete bone segmentations.

Fig 1. Coronal view of pelvis and femur bones on a single MRI image, acquired by merging three separate axial

stacks. Brackets indicate the horizontal ‘borders’ of each stack.

https://doi.org/10.1371/journal.pone.0205628.g001
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Motion capture data were also used to reconstruct geometric bone models. Retro-reflective

markers were placed on the skin surface atop bony landmarks while subjects remained in

upright stance. Markers were placed according to the University of Western Australia marker

set [17]. Instantaneous marker positions were acquired with Vicon Nexus version 1.8 at 100

Hz using a 12-camera MOCAP system (Vicon Motion Systems, Oxford, UK).

Bone reconstruction

Morphing techniques were used to reconstruct geometric bone models using target data from

complete and incomplete sets of pelvis and femur segmentations from MRIs or MOCAP

marker data. Morphing was undertaken using the free and open-source software the Musculo-

skeletal Atlas Project (MAP) Client [18] or simple linear scaling of the OpenSim bones.

Morphing via the MAP Client using the complete sets of pelvis and femur segmentations was

used as the gold standard for geometric bone reconstructions.

The MAP Client employs SSM with PC, host-mesh and local-mesh morphing methods.

The lower limb bones of the MAP Client SSM’s were trained using PC analysis performed on

x-ray CT segmentations of cadaveric bones (214 femurs, and 26 full lower-limbs). The MAP

Client SSM for each bone consists of a tessellation of higher-order (3rd and 4th order) Lagrange

piece-wise elements with a fixed number of nodes and boundaries shared by adjacent elements

(Fig 3). Focusing on SSM’s of the pelvis and femur, increasing the number of PCs increases the

total variance accounted for in the resulting bone models and reduces distance errors, but also

accounts for more individual variation from the training set (S1 Table). The optimal number

of PCs (n = 4) for pelvis and femur SSM was established by minimising distance error, while

using the least numbers of PCs [19] (S1 and S2 Figs).

Prior to bone model reconstructions via the MAP Client, the average SSMs were rigidly reg-

istered to the bone segmentation sets to minimise distance error using an iterative closest-

point method [20]. Subsequently, bone model reconstructions proceeded using SSM, followed

by host-mesh fitting, and then local-mesh fitting (henceforth referred to as “MAP Client

morphing process”). SSM was performed first since it was the coarsest morphing technique

with the fewest degrees of fitting freedom (using 4 PCs). Local-mesh fitting was performed

Fig 2. Example of proximal, middle, and distal bone regions for incomplete sets of the femur and pelvis created

from complete bone segmentations from magnetic resonance imaging. Femur (black brackets) and pelvis (blue

brackets) segmentation sets 1 through 3, with each bone region truncated superiorly and inferiorly. Incomplete pelvis

sets were truncated at the acetabula, ilia, and ischiopubic rami, and femur truncation was performed at proximal

femur, epicondyles, and mid-shaft.

https://doi.org/10.1371/journal.pone.0205628.g002
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last, because it had the greatest degrees of fitting freedom, adjusting each individual mesh node

(pelvis contains 1946 nodes and femur contains 634 nodes). Host-mesh fitting was performed

second as it had intermediate degrees of fitting freedom. Finally, using a subset of participants

(n = 5) we also showed that smaller distance errors resulted from combinations of morphing

techniques (SSM, host-mesh, and local-mesh fitting) compared to SSM alone (S2 Table).

Each morphing technique (SSM, host-mesh and local-mesh fitting) was constrained using

penalty weights to ensure bone surface smoothness and prevent unnatural shape. With SSM,

penalty was applied to the Mahalanobis distance, which quantifies the similarity of morphed

and mean SSM. The higher the Mahalanobis distance, the more dissimilar the morphed and

mean SSM, and the penalty weight (range 0–1) was set to 0.1. Host-mesh fitting involved three

different smoothing terms. The first pertained to the host bounding box and was a 3D second-

order weighted Sobolev term [21]. The second and third terms pertained to the slave mesh (i.e.

embedded SSM) and were a 2D second-order weighted Sobolev term and smoothing term

based on piece-wise element boundary normal, respectively. The 2D Sobolev smoothing

weights penalise high curvature within piece-wise elements (i.e. along boundaries and across

surfaces) [22]. Boundary normal smoothing weights [15] penalise large angles between nor-

mals of nodes shared by adjacent piece-wise elements. Both Sobolev and boundary normal

smoothing reduce occurrences of mesh self-intersection and creasing [13]. In local-mesh fit-

ting, penalties were applied through the 2D Sobolev term and boundary normal smoothing

terms. The 2D Sobolev penalties were larger for bone model reconstruction from incomplete

(10e-3 to 10e-5) sets to constrain morphing at open end bone truncations relative to complete

(10e-5 to 10e-6) bone segmentations.

Bone models reconstructed from MOCAP data used 3D marker positions to identify sur-

face landmarks and joint centre locations as target points (Fig 4). Hip joint centre locations

were estimated from marker positions using the equations of Harrington and colleagues [23],

while knee joint centres were estimated to be the average of medial and lateral femoral con-

dyles. For the MAP Client, SSM was only used with 4 PCs to fit nodal points to MOCAP target

points [24]. The same MOCAP target points were also used to linearly scale generic bone mod-

els from OpenSim version 3.3 [13] using a custom Python program (Python Software Founda-

tion, Delaware, United States). Scaling factors for each bone’s orthogonal dimensions were

determined by the quotient of the distance between two (or more) MOCAP makers defining

bony landmarks or joint centre locations with corresponding virtual markers on the generic

bone models. Detailed information regarding linear scaling method we applied can be found

in the supplementary material (S1 File).

Analyses

Reconstruction accuracy of pelvis and femur geometric models were evaluated using two met-

rics. First, the distance error between (in)complete bone segmentation (i.e. a point cloud) and

the closest nodes on reconstructed bone models was calculated using the root mean square

error (RMSE, mm). The RMSE is an average error which has been applied in previous studies

for comparing bone reconstruction accuracy [9, 16, 24]. Second, the overlapping volume simi-

larity of complete bone segmentation and reconstructed geometric bone model was calculated

using the Jaccard index (%) [25]. The Jaccard index was calculated in addition to the RMSE,

Fig 3. The Musculoskeletal Atlas Project Client statistical shape model for femur, which consists of Lagrange piece-wise

elements and element nodes. Statistical shape model elements are 2-dimensional, higher-order, quadrilateral or triangular, and

consists of fixed element numbering (yellow sections), fixed node distribution (red dots), and shared boundaries (grey lines) with

adjacent elements. Figure inset—enlargement of proximal femur.

https://doi.org/10.1371/journal.pone.0205628.g003
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because it accounts for absolute differences in overlapping volume of geometric bone models.

The accuracy metrics of the different bone reconstruction methods were statistically compared

(p<0.05) using a repeated measure analysis of variance followed by multiple pairwise compari-

sons with Bonferroni adjustment in the Statistical Package for the Social Sciences version 25

(SPSS Inc., Chicago, United States).

Results

Distance errors of geometric bone models reconstructed from (in)complete sets of bone seg-

mentation through the MAP Client morphing process were significantly lower than MOCAP-

based reconstructions of both pelvis and femur (Table 1). The distance error of reconstructed

bone models from MOCAP-based SSM was also significantly lower than MOCAP-based linear

scaling. Notably, femur models reconstructed from complete sets of segmentation had signifi-

cantly higher distance error compared to reconstructions from incomplete sets 3.

Overlapping volume similarity for the pelvis bone models significantly reduced with the

level of incompleteness. Jaccard indices were highest for pelvis geometric models recon-

structed from complete sets (92.70±1.92%), reducing to 85.41±1.99%, 81.22±3.03%, 62.30

±6.17% for incomplete sets 3, 2, and 1, respectively. Notably, Jaccard indices reduced signifi-

cantly further in pelvis bone models reconstructed from MOCAP-based SSM (41.18±9.54%)

and MOCAP-based linear scaling (26.80±7.19%) (Fig 5). A similar pattern of reduction in vol-

ume similarity was found for femur geometric models, except between reconstructions from

incomplete sets 1 and MOCAP-based SSM (Fig 6). Jaccard indices of reconstructed femur

Fig 4. Overview of subject-specific bone reconstruction methods performed using both magnetic resonance

imaging (MRI) and motion capture (MOCAP) data. Four different MRI segmentation sets were used: one complete

and three sets of incomplete bone segmentations were created for pelvis and femur for each subject to reconstruct

subject-specific geometric bone models through the MAP Client morphing process (i.e. statistical shape modelling

(SSM), followed by host-mesh, and then local-mesh fitting). Motion capture marker positions on pelvis and femur

bony landmarks were used to calculate pelvis dimensions, as well as hip joint and knee joint centres. These landmarks

and joint centres were then used to 1) perform SSM and 2) calculate three orthogonal scaling factors for each bone type

for linear scaling of generic OpenSim bone models. Then, bone reconstructions from MOCAP-based methods were

rigidly registered to the complete bone segmentation. In total, six bone models were generated for each bone type

(excluding pelvis sacrum) and each subject, and subsequently evaluated for modelling accuracy using root mean

square error (RMSE) and Jaccard index.

https://doi.org/10.1371/journal.pone.0205628.g004
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bone models were 96.49±7.19%, 90.44±2.35%, 85.41±5.03%, 66.02±10.83%, 68.22±11.33%,

and 49.38±11.57% for complete set, incomplete sets 3, 2, 1, MOCAP-based SSM, and

MOCAP-based linear scaling, respectively.

Discussion

The purpose of our study was to compare the accuracy of bone geometric models mathemati-

cally reconstructed from different levels of imaging incompleteness, and to identify the mini-

mal imaging requirements for accurate representation of subject-specific bones. Our

hypothesis, that geometric bone models reconstructed from more complete segmentations are

more accurate than those reconstructed from less complete or MOCAP-based data, was par-

tially supported. We found that pelvis and femur bone models reconstructed from different

levels of imaging incompleteness had significantly different volume similarities compared to

complete bone segmentations, but not significant different distance errors. Results suggest that

imaging of only 2 bone regions, as represented by set 2 in this study, is sufficient (>80% vol-

ume similarity) to accurately reconstruct subject-specific pelvis and femur bone models.

Table 1. Comparison of root mean square error (RMSE, mm) for pelvis and femur bone models reconstructed by the different methods. Pelvis and femur geometric

models were reconstructed from complete sets of bone segmentations, three incomplete sets of bone segmentations (sets 1 through 3, as depicted in Fig 2), motion capture

(MOCAP)-based statistical shape modelling (SSM), and MOCAP-based linear scaling.

Morphing Method MAP morphing process MAP morphing process MAP morphing process MAP morphing process MAP

SSM

Linear scaling

Target Data Medical Imaging complete Medical Imaging set 3 Medical Imaging set 2 Medical Imaging set 1 MOCAP MOCAP

Pelvis 1.41±0.05 1.40±0.02 1.38±0.03 1.41±0.04 6.32±1.94�^ 13.95±1.90�

Femur 1.41±0.03† 1.37±0.03 1.38±0.12 1.44±0.14 4.25±2.02�^ 9.85±1.50�

�Significantly different to complete, set 3, set 2, and set 1 (p<0.05)

^Significantly different to linear scaling (p<0.05)

†Significantly different to set 3

https://doi.org/10.1371/journal.pone.0205628.t001

Fig 5. Comparisons of Jaccard index (%) for pelvis bone models reconstructed by the different methods. Pelvis

geometric models were reconstructed from complete sets of bone segmentations, three incomplete sets of bone

segmentations (sets 1 through 3, as depicted in Fig 1), motion capture (MOCAP)-based statistical shape modelling

(SSM), and MOCAP-based linear scaling. Jaccard index (%), a measure for overlapping volume similarity, was

calculated between complete bone segmentation and each reconstructed geometric pelvis model. Significant difference

(�) from all reconstruction methods (p<0.05).

https://doi.org/10.1371/journal.pone.0205628.g005
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Contrary to our hypothesis, pelvis and femur bone models reconstructed from different lev-

els of incompleteness had comparable distance errors, indicating the MAP Client morphing

process reconstructed accurate geometric models, even when reconstructed from incomplete

sets of bone segmentations. Surprisingly, distance error of femur bone reconstructions from

complete segmentation was significantly higher than reconstructions from incomplete set 3,

which may be due to a low number of nodes on the femur shaft of the SSM (Fig 2). A low num-

ber of nodes on the femur shaft may have artificially raised the RMSE calculated between the

large numbers of points on the femur shaft and closest points on the SSM. Given that RMSE,

possibly may not capture meaningful geometric differences, pelvis and femur reconstructions

from different levels of incompleteness show variations in overlapping volume similarity (Jac-

card Index), which reveal a different interpretation of reconstruction accuracy.

Consistent with our hypothesis, pelvis geometric models had significant lower volume simi-

larity (i.e. lower reconstruction accuracy) with the greater level of incompleteness, from com-

plete sets, to incomplete sets 3, 2, and 1, MOCAP-based SSM, and linear scaling, respectively.

Volume similarity of femur bone models showed a similar trend of significant reduction,

except between femur reconstructions from incomplete set 1 and MOCAP-based SSM. Nota-

bly, higher volume similarity of reconstructions from incomplete sets is likely achievable when

proximal and distal bone ends are imaged, as these constrain morphing that is meaningful to

physical boundaries. Moreover, inclusion of bone terminals allows for a reduction in smooth-

ing penalties, which has direct implications for reconstruction accuracy. Differences in volume

similarity are likely caused by the differences in geometric bone regions used as inputs, and, to

a lesser extent, from the different smoothing penalties applied to incomplete and complete sets

of segmentation in the morphing process. Imposition of smoothing penalties caused overlap-

ping volume similarity to be less than 100% for pelvis (~93%) and femur (~96%) geometric

models reconstructed from complete segmentations. Although the application of smoothing

constraints is necessary to prevent bone surface artefacts in regions of the template bone

model unaccounted for in incomplete imaging it does produce imperfect reconstruction.

Fig 6. Comparisons of Jaccard index (%) for femur bone models reconstructed by the different methods. Femur

geometric models were reconstructed from complete sets of bone segmentations, three incomplete sets of bone

segmentations (sets 1 through 3, as depicted in Fig 1), motion capture (MOCAP)-based statistical shape modelling

(SSM), and MOCAP-based linear scaling. Jaccard index (%), a measure for overlapping volume similarity, was

calculated between complete bone segmentation and each reconstructed geometric femur model. Significant difference

(�) from all reconstruction methods (p<0.05). Significant difference (^) from complete set, set 3, sets 2, and motion

capture-based linear scaling (p<0.05).

https://doi.org/10.1371/journal.pone.0205628.g006
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Regardless of the need of smoothing constraints, volume similarity could distinguish recon-

struction accuracy from different levels of imaging incompleteness.

Importantly, bone models reconstructed from incomplete set 2 had volume similarities of

~80% and ~85% for pelvis and femur, respectively. Reconstructions from complete sets

improved volume similarity by ~11% for both pelvis and femur compared to set 2 reconstruc-

tions. The practical relevance of improvements this size is unclear and depends, at least in part,

on the impact downstream in MSK modelling and/or finite element analyses. This is an open

research question and worthy of further investigation. Nonetheless, our findings relating to

volume similarity suggest that an incomplete segmentation (i.e. set 2) is sufficient to recon-

struct accurate (>80%) subject-specific geometric pelvis and femur bone models through the

MAP Client morphing process, which is a marked improvement over bone models recon-

structed through standard MOCAP-based linear scaling of generic bone models (i.e. +54.42%

for pelvis and +36.04% for femur). Such improvement in subject-specific bone geometry may

result in different outcomes compared to MSK simulations generated from linear scaled

generic models for two reasons. First, previous studies have demonstrated that improved ana-

tomic axes systems for bones, which are a direct result of subject-specific bone geometry

acquired from MRI, can simulate more accurate joint movement. Second, previous work has

demonstrated that anatomic landmark and/or joint centre locations [12, 26], which vary sig-

nificantly when subject-specific bone geometry is acquired from MRI, can significantly alter

peak estimates of kinematic, kinetic, and muscle force estimations [27]. Therefore, reconstruc-

tion from incomplete segmentation (i.e. set 2) is a practical alternative to linearly scaling

generic MSK models without the need (and burden) for complete bone imaging.

Consistent with previous findings [9, 16, 24] regarding the distance errors of reconstruc-

tions, our study has shown that the volume similarity of pelvis and femur bone models recon-

structed through MOCAP-based SSM is significantly larger (+14.38% for pelvis and +18.84%

for femur) than MOCAP-based linear scaling. The volume similarity of femur geometric mod-

els reconstructed from incomplete set 1 and MOCAP-based SSM were not significantly differ-

ent, which may be explained by the least complete bone target data (i.e. single bone region and

a set of anatomical target points) being used, the lower natural variance and/or complexity of

femur bone shape in comparison to pelvis bone shape, and/or by the high percentage of vari-

ance (~98%) accounted for by the femur SSM (using 4 PCs). Regardless of the reason, our find-

ings corroborate previous investigations that show geometric bone model reconstruction via

shape variance of SSM is more accurate compared to linear scaling.

With their custom-derived SSM, Nolte and colleagues [9] reconstructed femur geometric

models from complete segmentations with RMSE lower than our result (~0.50 mm and ~1.41

mm respectively). A possible explanation for our higher RMSE is the nodal density, as their

SSM was composed of>10,000 nodes, whereas the MAP Client femur SSM consisted of only

~600 nodes. When nodes from the SSM are fewer in number than the complete bone segmen-

tation (multiples of ten thousand points when segmented from high resolution MRI), a single

SSM node could serve as closest point for multiple segmentation points. Thus, a lower distri-

bution of nodes will artificially increase the RMSE between closest points. The MAP Client

SSM uses element-based fixed surface node numbering for three important reasons. First, to

improve computation time of mathematical morphing. Second, to regulate bone smoothness

and Lagrange continuity of piece-wise elements nodes, which is beneficial for subsequent finite

element modelling. Third, to enable surface node allocation of muscle origin and insertion

areas, muscle wrapping surfaces, and, implicitly, muscle pathways. This eliminates fitting of

muscle origin and insertions and muscle pathway to resulting geometric bone models as pro-

posed by Nolte and colleagues [9]. Nonetheless, both our approach and that of Nolte and col-

leagues [9] achieved RMSE within the distance error of adjacent imaging voxels (up to 2 mm),
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which means that further improvement on final RMSE is unnecessary. However, RMSE is sen-

sitive to nodal distribution which differs across custom-derived SSM, and may suggest that dis-

tance error is less meaningful than volume similarity for the evaluation of geometric bone

models.

This study has limitations that need to be considered. First, this study did not include all

lower-limb bones, such as the patella, tibia/fibula bones, and bones comprising the feet. We

chose to reconstruct geometric pelvis and femur models, because femur RMSE results could

be evaluated against findings from the literature [9], and to evaluate similarity of femur

model reconstruction accuracy to that of the pelvis (for which no findings from medical

imaging based reconstruction is reported in the literature). Second, the nodal density of

MAP Client SSM can potentially be increased by interpolation between fixed nodal points

after the morphing process, which may alter RMSE calculation of the reconstructed geomet-

ric bone models. However, the nodal density of MAP Client SSM with which RMSE calcula-

tion would converge is unclear. Third, the reconstruction accuracy achieved through other

combinations of morphing techniques is unknown beyond our preliminary evaluation of 5

participants. However, the diverse anthropometric range of this subset could suggest that

differences between combinations of morphing techniques could remain similar. Fourth,

mathematical techniques established for morphing and smoothing are specific to the MAP

Client and may only be transferrable to other SSM frameworks by adapting the algorithms.

Fifth, the population examined were healthy adults, and the methods and results of this

study may change when considering populations with different physical characteristics (e.g.

paediatric or pathologic). Importantly, future research should be directed to identifying opti-

mal parameterisation of SSM for reconstruction of bone models including training set size,

node distribution, and smoothing constraints. Sixth, a potential limitation of incomplete

imaging is a loss of information regarding muscle volume, origin/insertion points, optimal

fibre length, and physiological cross sectional area. These features enhance the subject-speci-

ficity of MSK models, and could be directly assessed using additional medical imaging

modes such as diffusion tensor and ultrasound imaging. For paediatric or pathological popu-

lations, it may be necessary to acquire complete lower-limb medical imaging to ensure the

specific features of these important variables are captured. As such, incomplete imaging

methods presented in this paper may not be appropriate for capturing subject-specific mus-

cle properties for paediatric or pathological population. However, for healthy individuals,

muscle volume can be accurately estimated from body length and mass using the regression

equations developed by Handsfield and colleagues [28], and combined with literature esti-

mates of pennation angle, optimal fibre length, and specific muscle stress, the maximum iso-

metric contraction force can be determined. Additionally, the advantage of using incomplete

compared to complete imaging is the reduction of resources required to acquire and process

medical imaging. Bone volume of set 2 consisted of approximately 65% of the complete pel-

vis or femur models. Imaging cost and segmentation time could therefore potentially be

reduced by up to 35% for each bone of the lower-limbs. The MAP morphing process is also

largely automated, and as such, adds little extra time to the reconstruction process. Conse-

quently, the acquisition of and reconstruction process for incomplete imaging is both effec-

tive and efficient.

Conclusions

Volume similarity of reconstructed geometric pelvis and femur models reduces as imaging

becomes more incomplete. Using the MAP Client morphing process (i.e. SSM, followed by

host-mesh, and then local-mesh fitting), medical imaging of only 2 relevant and truncated
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bone regions (set 2) is sufficient to accurately reconstruct both pelvis and femur bone models

of healthy adults. In the absence of MRI, MOCAP-based SSM in the MAP Client is superior to

MOCAP-based linear scaling of pelvis and femur bone models. These findings suggest that

input of incomplete imaging and application of morphing techniques would improve analyses

and simulation with adult subject-specific MSK models compared to standard practice of lin-

ear scaling generic MSK models.
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