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Abstract

Background: Neuronal ceroid lipofuscinoses (NCLs) are the most common autosomal recessive neurodegenerative
disorders in children. Clinical manifestations include progressive cognitive decline, motor impairment, ataxia, visual
loss, seizures and early death. To date more than 440 NCL-causing mutations in 13 genes are known.

Case presentation: We report clinical and genetic characteristics of a 5-year-old girl affected by ceroid
lipofuscinosis type 7 (NCL7). She had progressive motor and mental deterioration since the age of 2,5 years. Later
she developed progressive vision loss, stereotypies, action myoclonus and epilepsy. By the age of 5 years she
stopped walking. Based on symptoms, diagnosis of Rett syndrome was suggested, but no abnormalities were
detected in MeCP2. We identified a novel homozygous mutation in MFSD8 gene (c.525 T > A, p.Cys175Ter). To our
knowledge, this is the first report of MFSD8 gene mutation in a Russian patient with variant late-infantile NCL.

Conclusions: Our results enlarge mutational spectrum of ceroid lipofuscinosis type 7 and demonstrate tremendous
diagnosis value of exome sequencing for pediatric NCLs. Also we confirmed that NCL should be suspected in
patients with Rett-like phenotype at onset and negative MECP2 mutation.
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Background
Neuronal ceroid lipofuscinoses (NCLs), also known as
Batten disease, are a group of autosomal recessive lyso-
somal storage diseases. Autosomal dominant inheritance
has been reported in one adult-onset form [1]. NCL is the
most common of neurodegenerative disorders of child-
hood with prevalence up to 1:14,000 worldwide [2]. NCLs
are associated with progressive loss of cognitive and motor
skills, seizures, myoclonus, loss of vision, and usually re-
duced life expectancy. The age of onset can be variable.
Almost all NCL patients had accumulation of autofluores-
cent lipopigment in lysosomes of neurons and other cell
types. This storage process is associated with selective de-
struction and loss of neurons in brain and retina. The

ultrasructure of the storage deposits varies between differ-
ent forms of NCL [3].
Previously, NCL classification was based on age of on-

set together with clinical presentation. Patients were
grouped in one of four basic NCL types: infantile, late
infantile, juvenile and adult [4].
To date more than 440 NCL-causing mutations in 13

genes are known [5]. The new classification structured in
7 diagnostic axes: responsible gene, precise genetic defect,
clinical characteristics (age at onset, presenting symptoms,
disease progression), biochemical phenotype, ultrastruc-
tural features, functionality and other remarks [6]. But a
direct correlation between the gene that is mutated and
phenotype does not always exist [7].
Within late infantile NCLs, several types with dis-

creet different clinical characteristics are described
and separated into variant late infantile NCL (vLINCL).
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vLINCLs are genetically heterogeneous forms with four
major disease-causing genes: CLN5, CLN6, CLN7 (MFSD8),
CLN8. Homozygous or compound heterozygous mutations
inMFSD8 were previously reported to cause vLINCL called
NCL7 disease (OMIM 610951). MFSD8 gene (OMIM
611124) encodes CLN7, a putative lysosomal transporter
protein [8].
NCL7 form was first described in children from Turkey:

Topcu with colleagues evaluated clinical and histopatho-
logic features of 36 Turkish patients with late-infantile NCL
[9]. This form was considered a distinct clinical and genetic
variant of NCL, but later studies showed that NCL7 disease
is not limited to Turkish population [8, 10, 11]. It is now
evident that Turkish vLINCL is genetically very heteroge-
neous with mutation in three genes: CLN6 [12], CLN8 [13]
and MFSD8 [14]. Clinical phenotype of patients with differ-
ent variants of infantile and late infantile NCLs is quite uni-
form. However, Rett-like onset have been described for
NCL7 disease, produced by MFSD8 gene mutations, and
infantile NCL1 disease [9, 15, 16]. Similar autistic character-
istics and stereotypic movements were observed in several
forms of NCL [17, 18].
In this study we analyzed clinical and genetic characteris-

tics of a 5-year-old girl with cognitive and motor deterior-
ation, vision loss, stereotypies, action myoclonus and
epilepsy.

Case presentation
The patient was a 5 year-old girl from Russia. She had un-
remarkable perinatal, neonatal and family history (parents
and brother are clinically healthy).
She was born from the fifth pregnancy, the second child-

birth and was delivered by Caesarean section. Her birth
weight was 3800 g and height was 53 cm. Apgar scores
were 8 and 8 at 1 and 5 min respectively. No abnormalities
were noted in neonatal period. Up to 2.5 years the girl de-
veloped according to her age without delay of speech and
motor development. At the age of 2,5 years against a back-
ground of trauma of little finger, girl stopped talking. Grad-
ually speech was restored, but vocabulary decreased. At
3 years the first febrile seizure attack occurred. Later par-
ents noticed significant deterioration in her speech and
communication. She became socially withdrawn. Brain
magnetic resonance imaging revealed diffuse lesions
in the white matter and hypoplasia of the lower cere-
bellar vermis. At the age of 3, 5 years stereotypic move-
ments appeared. From 3, 5 years patient was commenced
on valproic acid (antiepileptic drug). But motor deterior-
ation progressed: by the age of 5 she stopped walking.
Based on observed symptoms, diagnosis of Rett syn-

drome was suggested. Prior to clinical exome sequencing
the following studies were carried out: measurement of
palmitoyl protein thioesterase (PPT) level in leukocyte,
tandem mass spectroscopy, sequencing of MeCP2 and

TPP1, analysis of common mitochondrial DNA mutations.
All studies showed no abnormalities.
At the age of 5 years 8 months she was admitted to Sci-

entific and Practical Center of Pediatric Psychoneurology
with motor and mental deterioration, visual impairment
and stereotypies.
She had normal physical development: she was 20, 5 kg

in weight and 111 cm in height. Head was normal shape,
head circumference was 50, 5 cm (normal). The skin was
normal and clean. Abdomen was soft, painless. Stool and
micturition were normal. Basic blood and urine tests were
normal.
There was no interest in environment, no play activity.

Orientation in space and time was absent. Speech and un-
derstanding of speech is disturbed: she used only speech
sounds and syllables. She had stereotypic movements of
hands and face. The girl have myoclonus in her hands, legs
and facial muscles. Tactile stimulation enhances myoclonus.
She does not walk, does not stand, does not crawl. A girl
can only hold her head, roll over, sit with periodic falls.
Ophthalmological evaluation revealed partial atrophy of

optic nerves, nistagmus, retinitis pigmentosa and mixed
astigmatism.
EEG (electroencephalography) revealed a significant

delay in the formation of cortical electrogenesis and
poorly-structured epileptiform activity in the occipital-
parietal-posterior temporal regions.
MRI (Magnetic Resonance Imaging) revealed cortical at-

rophy, periventricular leukopathy of both hemispheres of
the brain and atrophy of the cerebellum (Fig. 1).
ECG (electrocardiography) showed severe sinus bra-

dyarrhythmia. The heart rate was 48–84 bpm.
In the hospital, she received treatment with anticon-

vulsant drugs: topiramate (100 mg/day) and levetirace-
tam (1200 mg/day).
Clinical exome sequencing was carried out by Genotek

Ltd. Genomic DNA from peripheral blood sample was ex-
tracted using QIAamp DNA Mini Kit (Qiagen) according
to manufacturerʼs protocol. DNA libraries were prepared
using AmpliSeq Exome (ThermoFisher Scientific) accord-
ing to manufacturerʼs protocol. Sequencing was performed
on Ion Proton System (ThermoFisher Scientific). After se-
quencing we trimmed 3′-nucleotides with read quality
below 10 using Cutadapt [19]. Raw reads were aligned to
reference genome hg19 (GRCh37.p13) using BWA MEM
[20]. FastQС was used for data quality control [21]. We
called short variants using GATK HaplotypeCaller [22] ac-
cording to GATK Best Practices DNA-seq [23, 24]. The ef-
fect of each mutation was assessed using snpEff [25] To
assess pathogenicity and conservatism, the data was ex-
tracted from the dbNSFP [26], Clinvar [27, 28], OMIM
database (Online Mendelian Inheritance in Man) [29] and
HGMD [30], as well as using the SIFT [31] and PolyPhen-2
[32, 33] utilities to predict pathogenicity of the mutation.
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Information on the frequency of mutations was taken from
1000Genomes project [34, 35], ExAC [36, 37] and Genotek
frequency data. Description of mutations and their patho-
genicity were predicted according to the Standards and
Guidelines developed by ACMG (American College of
Medical Genetics and Genomics), AMP (Association for
Molecular Pathology) and CAP (College of American Pa-
thologists) [38]. Copy number alterations were determined
using CNVkit [39].
MFSD8 variant identified by exome sequencing was

confirmed by Sanger sequencing.

Discussion and conclusions
In this article we described a case of 5-year old girl with
motor and mental deterioration, progressive vision loss,
stereotypies, action myoclonus and epilepsy. Disease had
Rett-like onset (psychomotor regression, stereotypic hands
movements). Therefore, prior to clinical exome sequencing
Rett syndrome was excluded by analysis of MeCP2. Also
analysis of frequent mutations and biochemical indi-
ces was performed for several diseases: aminoacido-
pathies, organic aciduria, NCL1, NCL2, mitochondrial
fatty acid betta-oxidation disorders, MELAS (mitochondrial

encephalopathy, lactic acidosis and stroke-like episodes),
MERRF syndrome (myoclonic epilepsy with ragged red fi-
bers), NARP (neuropathy, ataxia, and retinitis pigmentosa).
All results were negative.
Exome sequencing revealed homozygous c.525 T >A

variant in exon 6 of the MFSD8 (NM_152778.2). This vari-
ant leads to a premature stop codon (p.Cys175Ter). This
homozygous mutation was confirmed by Sаnger sequen-
cing (Fig. 2).
This mutation is not reported in 60,706 subjects in ExAC

[34] or in 2535 subjects in 1000 Genomes Browser [32].
This mutation was not found in our 2000 in-house exomes.
Discovered variant was predicted to be pathogenic.

This variant affects 175 aa of protein in transmembrane
ɑ helix. This nonsense variant may result in truncated
protein that is nonfunctional or leads to degradation of
mRNA through nonsense-mediated decay [40].
This mutation was not described previously, but homozy-

gous or compound heterozygous mutations in this gene are
associated with ceroid lipofuscinosis. To date, 38 mutations
in MFSD8 were described previously, most being homozy-
gous missense mutations [5, 11]. This mutations predomin-
antly lead to NCL7 disease - subtype of vLINCL form.

Fig. 1 Brain MRI of 5-year-old girl with NCL7. a. Diffuse cortical atrophy, increased intensity of the MR signal in periventricular white matter. Axial
T2 weighted FLAIR image. b. Diffuse cortical and subcortical atrophy of the brain. Axial T1 weighted image. c. Atrophy of the cerebellum, cortical
atrophy of the brain. Sagittal T1 weighted image. d. Diffuse cortical and subcortical atrophy of the brain, atrophy of the cerebellum. Frontal T1
weighted image
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Phenotypes of almost all affected individuals are very simi-
lar regardless of mutation type [41].
The symptoms of NCL7 disease typically begin between

ages 2 and 11 (mean onset 5 years). The initial features usu-
ally include seizures and the loss of previously acquired
skills. As the disease progressed, mental regression, myoclo-
nus, speech impairment, loss of vision developed [15].
MFSD8 gene, which is located on chromosome

4q28.1-q28.2, encodes CLN7, a putative lysosomal
transporter with suggested topology of 12 transmembrane
domains that was shown to be localized to the lysosomal
membrane and belongs to the major facilitator superfam-
ily (MFS). These proteins are single-polypeptide carriers
that are able to transport small solutes by using chemios-
motic ion gradients [42]. Specific molecules that MFSD8
transports across the lysosomal membrane have not been
identified. Although this protein is ubiquitously expressed,
high transcript concentrations have been identified in sev-
eral brain locations, such as cerebellar cortex and hippo-
campus [43].
Despite advances in diagnosis of neurodegenerative

disorders, NCLs remain a challenge for pediatric
neurologists, because clinical signs in young children
or toddlers are subtle and often overlap with other
congenital neurodegenerative diseases, such as mito-
chondrial disorders, Rett syndrome or early-onset Parkin-
sonism. Craiu with colleagues concluded that NCL should
be suspected in patients with Rett-like phenotype at onset
and negative MECP2 mutation [15]. Disease of our patient
also had Rett-like signs at onset which caused diagnostic
delay. Both Rett syndrome and NCLs usually have normal
development until age 9–24 months. Patient in Craiu et al.
article has NCL7 disease with Rett-like onset at 18 months.
Our case has late manifestation at 2,5 years which made it
more difficult to diagnose. Increase in genetic understand-
ing of NCLs has led to improved diagnostic approaches.
Our study revealed that early ophthalmological examin-
ation of patients with motor and mental regression can be
useful for diagnosis.

Although there is no treatment for this condition, cor-
rect and early diagnosis is important for appropriate
low-vision management, educational planning, and gen-
etic counseling.
This report describes the first case of NCL7 disease in

Russia. Our findings expanded variant diversity of MFSD8
and proved value of exome sequencing for pediatric NCLs.
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