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Simple Summary: It is widely known that the environment influences phenotypic expression and
that its effects must be accounted for in genetic evaluation programs. The most used method to
account for environmental effects is to add herd and the contemporary group to the model. Although
generally informative, the herd effect treats different farms as independent units. However, if two
farms are located physically close to each other, they potentially share correlated environmental
factors. We introduce a method to model herd effects using physical distances between farms based
on GPS coordinates as a proxy for the correlation matrix of these effects, aiming to account for
similarities and differences between farms due to environmental factors. A population of beef cattle
was used to evaluate the impact on the variance components and on the genomic prediction, of
modelling herd effects as correlated, in comparison to assuming the farms as completely independent
units. The main result was an increase in the reliabilities of the predicted genomic breeding values
compared to reliabilities obtained with traditional models, a finding of practical relevance for genetic
evaluation programs.

Abstract: It is widely known that the environment influences phenotypic expression and that its
effects must be accounted for in genetic evaluation programs. The most used method to account
for environmental effects is to add herd and contemporary group to the model. Although generally
informative, the herd effect treats different farms as independent units. However, if two farms are
located physically close to each other, they potentially share correlated environmental factors. We
introduce a method to model herd effects that uses the physical distances between farms based on
the Global Positioning System (GPS) coordinates as a proxy for the correlation matrix of these effects
that aims to account for similarities and differences between farms due to environmental factors. A
population of Hanwoo Korean cattle was used to evaluate the impact of modelling herd effects as
correlated, in comparison to assuming the farms as completely independent units, on the variance
components and genomic prediction. The main result was an increase in the reliabilities of the
predicted genomic breeding values compared to reliabilities obtained with traditional models (across
four traits evaluated, reliabilities of prediction presented increases that ranged from 0.05 ± 0.01 to
0.33 ± 0.03), suggesting that these models may overestimate heritabilities. Although little to no
significant gain was obtained in phenotypic prediction, the increased reliability of the predicted
genomic breeding values is of practical relevance for genetic evaluation programs.
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1. Introduction

The concept of estimated breeding values and the development of best linear unbi-
ased prediction (BLUP) methodology [1,2] ushered in the modern approach to genetic
evaluation in animal breeding through the integration of pedigree information to calculate
genetic relationships between animals [3]. This allowed the inclusion of performance
measures of relatives to estimate the breeding value of an individual—the animal model.
However, it was only in the late 1980s that computers became powerful enough to enable
the use of animal models for genetic evaluation in practice. From there on, BLUP became
widely adopted as a tool to estimate breeding values of animals for livestock production
and grew into the cornerstone of successful genetic improvement programs of livestock
populations [4].

The accuracy of genetic evaluations using BLUP relies on the pedigree relationships
between individuals [5,6] and on the connections between contemporary groups [7]. With
the development of genomic technologies and models that incorporate dense marker
information [8], these genetic evaluations moved from relying solely on the pedigree re-
lationships between individuals, to relying on the realized genetic relationships between
individuals [9] estimated from their genetic markers. These genomic relationship matrices
(GRM) can then be used instead of the traditional pedigree relationship matrix in a BLUP
extension termed genomic best linear unbiased prediction—GBLUP [9]. In practice, indus-
try largely uses both pedigree and genomic information simultaneously in a combined
model known as single step GBLUP [10].

Genetic evaluation models largely assume that economically important traits are
quantitative, that is, that the traits are influenced by a large number of genes. Many of
these models also try to account for the various environmental effects to which animals
are exposed. The common method to consider the effects of the different environments
is to include herd and the contemporary group in the model [6,11]. Although there is
a case to fit the effects of the contemporary groups (CG) as fixed [12], there are strong
arguments to fit them as random effects in models for genomic prediction [13]. Henderson
did conceptualize CG effects as random, however opted to treat CG as fixed under the
argument that it eliminated bias from the sire model [12]. When sire models were widely
applied, the choice of fixed CG effects was sensible. Nowadays, most genetic evaluation
systems no longer consider the sire model, preferring the animal model instead. Nonethe-
less, CG effects often continue to be treated as fixed, even though in the animal model CG
could be treated as random without compromising BLUP’s unbiasedness property [13].
Moreover, when CG are small, or when animals have relatively low genetic connections,
fitting the CG as random can improve the accuracy of prediction, compared to fitting CG as
fixed [14–18]. Traditionally, the herd effect is modeled by assuming different farms as com-
pletely independent units. However, if two farms are physically close to each other, it is not
unrealistic to expect that some of the climate, geographical factors, management strategies,
and even social aspects of production would be more similar between these two farms than
between two farms farther apart from each other. Treating farms as non-independent units
in genomic prediction is not yet a usual practice. In a study aiming to estimate genotype
by environment (GxE) interactions, management strategies, information about the CG,
and climate data have been used to create correlated environmental information to be
included in the model for genomic prediction [19]. A more recent study that accounted for
the geographical location of farms indicated that adding a correlation structure between
herd effects benefits the genetic evaluation in smallholder breeding programs [20].
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Spatial modelling is widely used in geostatistics studies [21–23]; however, the use of
spatial models is still limited in the context of animal breeding. Most spatial models are
designed with the objective of making inferences for regions where no observations have
been previously collected. For such scenarios, a Gaussian random field [24] is a popular
choice, with the Matérn covariance function [25] being the most commonly used structure
to model spatial covariance.

Here we introduce a method for genomic prediction that models the herd effects
through a covariance matrix derived directly from the Euclidian distances between farms
based on their Global Positioning System (GPS) coordinates, which serves as a proxy
for the underlying unknown environmental correlation matrix between herds. Using
the physical distances between individual farms, we defined a herd covariance matrix
that enabled the model to account for their similarities or differences due to climate and
other environmental factors, when these factors are not explicitly measured. The objective
of this study was to evaluate how modelling the herd effects as correlated impacts the
variance components and the genomic prediction, in comparison to assuming the farms as
completely independent units.

2. Material and Methods

The Animal Care and Use Committee of the National Institute of Animal Science
(NIAS), Rural Development Administration (RDA), South Korea, approved the experimen-
tal procedures (data used is part of project with approval no. 2018-293), and appropriate
animal health and welfare guidelines were followed.

2.1. Genotypes, Phenotypes, and GPS Data

We used industry production trait data from a population of Korean Hanwoo cattle
to compare our proposed model with models that did not include the GPS information.
Genomic and phenotypic data were available for a total of 4168 commercial animals
sampled throughout South Korea from a population of the Hanwoo beef cattle breed.
Individuals were genotyped using the 50 k Illumina (San Diego, CA, USA) Bovine SNP50V2
BeadChip array, and after quality control filtering (SNPs with minor allele frequency <0.01
and individuals with >2% missing genotypes were excluded), 43,749 SNP genotypes were
included in the analysis. These were commercial and genetically unrelated animals (no
pedigree was available to these animals, and relationships in the genomic relationship
matrix were low), spread across 124 finishing farms in South Korea. Table 1 summarizes
the number of animals sampled across the farms. All 124 farms had their GPS coordinates
described by their latitude and longitude, and Figure 1 shows their dispersion in South
Korea along with a summary about the locations’ altitude, average temperature, and
average cumulative precipitation (historical means on measurements between the years
2000 and 2019).

Table 1. Summary of the number of Hanwoo cattle sampled per farm.

Sample Size Number of Farms

<5 41
6–10 34

11–20 14
21–50 22
51–100 8

101–350 4
1562 1
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Figure 1. Dispersion of the Hanwoo farms in South Korea with a summary about the locations’ (a) altitude (1–147 m),
(b) average temperature (10.0–15.3 ◦C), and (c) average cumulative precipitation (83.2–138.3 mm). Average temperature
and precipitation are historical means on measurements between the years 2000 and 2019 [26,27].

All animals were born between 2014 and 2015 and slaughtered in 2017, at ages that
ranged from 25 to 35 months. The data set comprised only male animals that were classified
as bulls or steers. Beef production traits were recorded, and we performed our analyses
on four of these traits: backfat thickness (BFT), eye muscle area (EMA), carcass weight
(CWT), and marbling score (MS). BFT was measured in millimeters at the cross-sectional
slice between the thoracic and the 1st lumber vertebrae perpendicular to the vertebral
column, EMA was also measured from the same region in squared centimeters using a
dot-grid; carcass weight was measured in kilograms at the end of refrigeration for 24 h
after slaughter; marbling scores were visually classified according to standard grading
guidelines into nine ordinal levels [28,29]. Table 2 presents a summary of the traits and
number of animals per sex and age group.

2.2. Prediction Models

Five prediction models were compared, with their equations fully described in Table 3.
Each model consisted of the fixed effects (denoted along with their design matrix as Xb),
and of a varying combination of the breeding values (g) and the herd effects (η), in our
analyses represented by the farms, either assuming the farms as completely independent
units (ηFARM) or correlated by their geographical distances (ηGPS). We assumed herd
effects as random in all models that accounted for these effects. Models GRM, FARM, and
GPS fitted each of these three random components alone, and models GRM + FARM and
GRM + GPS fitted the breeding values with the herd effects simultaneously, with the two
components (breeding values and herd effects) fitted as independent from one another.
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Table 2. Summary of traits (mean ± standard deviation) and number of animals (N), detailed by age, sex, and on all observations (in bold). Traits evaluated were recorded for all animals
available for this study.

Trait Sex
Age (Months)

25 26 27 28 29 30 31 32 33 34 35 All

Backfat Thickness (mm)

Bull 12.9
±4.4

12.8
±2.7

13.9
±5.0

12.1
±3.7

15.1
±6.2

14.0
±5.1

14.2
±4.2

13.1
±4.8

12.6
±3.8

15.3
±5.7

14.2
±5.7

13.9
±5.0

Steer 12.7
±5.5

13.2
±5.4

13.3
±4.8

14.0
±5.0

14.0
±4.8

14.6
±5.1

14.4
±5.1

15.0
±5.0

14.5
±5.1

14.1
±6.0

14.9
±6.2

14.4
±5.1

All 12.8
±5.0

13.1
±4.9

13.4
±4.8

13.7
±4.9

14.1
±4.8

14.6
±5.1

14.4
±5.0

14.9
±5.0

14.3
±5.0

14.5
±5.9

14.7
±6.0

14.3
±5.1

Eye Muscle Area (cm2)

Bull 81.7
±16.7

84.1
±12.1

89.7
±15.4

85.5
±12.4

89.2
±8.5

84.1
±10.8

86.5
±8.8

86.7
±13.7

87.6
±12.0

90.7
±10.9

90.5
±14.6

87.8
±12.2

Steer 87.6
±14.1

92.7
±16.7

95.2
±11.7

97.8
±12.6

96.4
±11.6

98.3
±11.6

98.7
±11.2

97.5
±11.4

96.7
±11.2

96.8
±11.6

99.0
±12.8

97.6
±11.7

All 85.5
±15.0

90.9
±16.1

93.8
±12.9

96.1
±13.3

96.0
±11.5

97.9
±11.8

98.2
±11.4

96.9
±11.9

95.6
±11.7

94.7
±11.7

96.0
±14.0

96.7
±12.1

Carcass Weight (kg)

Bull 319.9
±76.8

339.9
±44.4

344.9
±52.1

344.1
±44.4

362.0
±44.5

338.7
±47.1

350.8
±25.6

355.5
±47.9

360.2
±44.6

379.9
±48.2

367.6
±53.0

356.2
±48.3

Steer 406.9
±50.7

418.4
±57.4

430.2
±48.7

444.5
±47.5

445.4
±46.9

450.2
±46.1

455.4
±45.9

456.7
±49.8

452.9
±48.5

448.4
±58.1

465.2
±59.4

450.1
±48.2

All 375.9
±73.4

402.4
±63.2

408.2
±62.0

430.9
±58.2

440.9
±50.4

447.1
±49.7

450.8
±50.0

450.3
±55.4

441.2
±57.0

425.4
±63.7

430.5
±73.8

442.0
±54.9

Marbling Score (9 levels)

Bull 4.6
±2.1

4.5
±2.2

5.0
±2.2

4.7
±1.9

5.3
±1.6

5.2
±2.2

5.1
±2.2

4.1
±1.9

4.4
±1.9

5.5
±1.8

4.9
±2.0

4.9
±2.0

Steer 5.1
±1.8

6.4
±2.1

6.4
±1.8

6.8
±1.6

6.5
±1.7

6.7
±1.6

6.6
±1.6

6.5
±1.6

6.4
±1.6

6.6
±1.7

6.5
±1.7

6.6
±1.7

All 4.9
±1.9

6.0
±2.2

6.1
±2.0

6.5
±1.8

6.4
±1.8

6.7
±1.6

6.6
±1.7

6.4
±1.8

6.1
±1.8

6.2
±1.8

5.9
±2.0

6.4
±1.8

N
Bull 10 10 34 41 44 27 39 30 31 54 38 358
Steer 18 39 98 261 775 925 855 448 215 107 69 3810
All 28 49 132 302 819 952 894 478 246 161 107 4168
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Table 3. Models used for prediction.

Model Equation

GRM y = Xb + g + ε
FARM y = Xb + ZηFARM + ε
GPS y = Xb + ZηGPS + ε

GRM + FARM y = Xb + g + ZηFARM + ε
GRM + GPS y = Xb + g + ZηGPS + ε

A preliminary study indicated that age (fitted as a continuous covariate), sex (bull/steer),
and size of the contemporary group of the herd (fitted as a continuous covariate, with size
being the number of animals from each herd) were statistically significant enough to be
included as fixed effects in all the models. Year, month, and season of birth were not found
to be significant effects in our models. Our data consisted of animals slaughtered in the
same year (2017), therefore year of slaughter was not included in the model. Although
animals were slaughtered from March 2017 to November 2017, the vast majority (~65%)
were slaughtered in the summer months (July–September), and neither season nor month
were found to be significant effects.

Breeding values were assumed to be distributed g ∼ N
(

0, Gσ2
g

)
, where G denoted

the genomic relationship matrix (GRM) as per [9]. Herd effects were considered random
in all models that accounted for these effects, with Z being the design matrix indicating
the herd to which the phenotypic observations y belonged to. Models FARM and GRM
+ FARM assumed the herd effects as independent with distribution ηFARM ∼ N

(
0, IFσ2

η

)
,

where IF is an identity matrix of order F, the number of herds. Models GPS and GRM +
GPS assumed the herd effects as correlated with distribution ηGPS ∼ N

(
0, Eσ2

η

)
, in which

E is the herd covariance matrix, obtained with standardized distances between the farms
on which each individual was located derived from their GPS coordinates. The following
steps were used to obtain the E matrix: First, a matrix D was calculated with the raw
pairwise distances between farms. This was performed using the function distm from the
R [30] package geosphere [31], setting the argument fun = distGeo. The second step was
to rescale the distances and ensure that all values were between zero and one by dividing
them by the largest distance observed, D∗ = D/max

{
Dij : i, j = 1, . . . , F

}
. Finally, each

element of E was defined as Eij = 1− D∗ij, with values 0 < Eij < 1, for every i, j = 1, . . . , F.
The closer the farms, the closer to one Eij will be. Likewise, the farther the farms, the closer
to zero Eij will be. Random residuals (ε) were assumed to be distributed ε ∼ N

(
0, Inσ2

ε

)
,

where In is an identity matrix of order n, the number of individuals. In addition, σ2
g , σ2

η ,
and σ2

ε denoted the total genomic, herd and residual variances, respectively.
In our study, we did not aim to infer herd effects to herds that were not in the reference

population. Therefore, kernels commonly used in spatial analysis and geostatistics to infer
unobserved data were not the target kernels to correlate herd effects in our study. That
is because we accounted all herds as observed in the reference population, and therefore
the herd effects estimated using, for example, the Matérn covariance are mathematically
equivalent to the herd effects estimated using the herd covariance matrix based on the
standardized distances between the farms (Supplementary Material A). Nonetheless, we
ran a set of analyses considering the Matérn covariance as the kernel to correlate herd
effects, to confirm empirically the theoretical equivalence of the kernels, and to verify
that results would match those obtained using the herd covariance matrix based on the
standardized distances between the farms (Supplementary Material B; results presented in
Figures S1–S4).
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2.3. Methods for Variance Components Estimation and Model Assessment

Variance components (σ2
g , σ2

η , and σ2
ε ) were estimated on a training group using

the restricted maximum likelihood (REML) [32], and genomic prediction was performed
using GBLUP [9]. All analyses were conducted using the R [30] programming language,
with functions implemented by the authors in the GenEval package, available online at
https://github.com/bcuyabano/GenEval.

The (narrow sense) heritability was defined as h2 = σ2
g /σ2

y , where σ2
y represents the

phenotypic variance (σ2
y = σ2

g + σ2
ε for model GRM, σ2

y = σ2
η + σ2

ε for models FARM and
GPS, and σ2

y = σ2
g + σ2

η + σ2
ε for models GRM + FARM and GRM + GPS). The proportion

of phenotypic variance due to the herd was defined as e2 = σ2
η /σ2

y . We will from now on
refer to e2 as environmentability.

The performance of the different models for genomic prediction was assessed con-
sidering the reliability of the predicted genomic breeding values (PGBV) (g̃test) and of
the predicted herd effects (η̃test) on a test group (here, η̃test refers to either η̃FARM,test or
η̃GPS,test, depending on whether the herd model matrix IF or E was used). The reliabilities
were calculated as R2

PGBV = r2
PGBV/h2 and R2

η = r2
η/e2, a proxy for the average individ-

ual reliabilities of each breeding value, such that rPGBV = cor
(

g̃test, ytest − Xtest b̂
)

and

rη = cor
(

Zη̃test, ytest − Xtest b̂
)

are the accuracies of prediction of the genomic breeding

values and herd effects, respectively. The values of R2
PGBV and R2

η are constrained to the
(0,1) interval, and desired to be as high as possible. We also compared the accuracy of the
predicted phenotypes, calculated as ry = cor(ỹtest, ytest). The predicted phenotypes were
ỹtest = Xtest b̂ + g̃test for the GRM model, ỹtest = Xtest b̂ + Zη̃test for the FARM and the GPS
models, and ỹtest = Xtest b̂ + g̃test + Zη̃test for the GRM + FARM and GRM + GPS models.
Each model was replicated 100 times, with each replicate consisting of reassigning 80% of
the individuals to the training group and the other 20% of the individuals to the test group.
Tukey’s multiple comparison test [33] was used to compare the results obtained with the
different models within each trait, at a significance level of 0.05. To perform the contrast be-
tween models within each trait, the prediction accuracies and reliabilities (after taking their
square root) were normalized using Fisher’s z-transformation [34]. Since the heritabilities
were obtained using REML, they are therefore assumed to be normally distributed, thus no
transformation was done to their values. To compare the PGBVs obtained with models
GRM + FARM and GRM + GPS to the PGBVs obtained with model GRM, Pearson and
Spearman correlations were calculated, as well as the mean squared differences between
the PGBVs, defined as MSDmodel 1,model 2 = 1/ntest ∑ntest

i=1 (g̃i,model 1 − g̃i,model 2)
2.

To rule out any potential confounding effects between G and WηFARM = ZZ′, and
between G and WηGPS = ZEZ′, we compared their variance structures using the kappa
statistics (κη:GRM) plotted against the eigen-values (λη) of WηFARM and WηGPS , as proposed
by [5]. If κη:GRM and λη are very aligned, there is confounding between the matrices. If
κη:GRM ≈ 1, there is no confounding between the matrices [35]. Each element of κη:GRM

was computed as κη:GRM,i = ∑n
j=1

(
U′η,iUGRM,j

)2
λGRM,j for every i = 1, . . . , n (n being the

number of observations), where Uη,i and UGRM,j are the ith and jth eigen-vectors of Wη

(FARM or GPS) and G, respectively, and λGRM,j is the jth eigen-value of G.

3. Results

Figure 2 presents the principal components plot of the genomic relationship matrix G,
and this plot shows a grouping of individuals into two main genomic groups; however,
these groups are not associated with any particular herd.

https://github.com/bcuyabano/GenEval
https://github.com/bcuyabano/GenEval
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Figure 2. Principal components analysis of the population based on the genomic relationship matrix
(G). The different colors indicate the 124 farms on which each individual was located.

Table 4 presents the values obtained for heritability, environmentability, prediction
accuracies, and reliabilities for each of the traits and different models. The statistical
differences between models within a trait were tested using Tukey’s multiple comparison
test, at a significance level of 0.05. Results will be presented, compared, and discussed
based on the groups obtained with the multiple comparison test. Therefore, when we state
that values are equal, lower, or higher, we mean statistically equal, lower, or higher at a
significance level of 0.05.

Heritability estimates obtained for EMA, CWT, and MS obtained with the GRM +
GPS model were lower than those obtained with the GRM and GRM + FARM models.
Heritability estimates obtained for BFT were equal in all three models that included
breeding values. The environmentability estimates obtained with the GPS and GRM + GPS
models were higher than those obtained with the FARM and GRM + FARM models for all
traits. Environmentability estimates obtained with the FARM and GRM + FARM models
were equal for BFT and EMA, while environmentabilities estimated with the FARM model
were higher than those estimated with the GRM + FARM model for CWT and MS. Except
for CWT, which had a higher environmentability estimate with the GPS model than with
the GRM + GPS model, environmentabilities estimated with the GPS and GRM + GPS
models were equal.

Prediction accuracies of the PGBV obtained with all the models were equal for all traits.
Table 5 presents the Pearson and Spearman correlations and the mean squared differences
used to compare the PGBVs obtained with models GRM + FARM and GRM + GPS to
the PGBVs obtained with model GRM. Although both the Pearson and the Spearman
correlations were consistently higher for model GRM + GPS, their values were between
0.97 and 1 for both the GRM + FARM and GRM + GPS models, indicating that including the
herd effects to the genomic prediction did not produce significant changes in the ranking
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of the PGBVs, when compared to the GRM model that did not account for the herd effects.
Comparing the PGBVs by the mean squared differences, we observed that the GRM + GPS
model obtained PGBVs more similar to those obtained with the GRM model than did the
GRM + FARM model. This indicates that in our data, the inclusion of correlated herd
effects interfered less with the PGBVs than did the inclusion of independent herd effects.

Table 4. Heritability and environmentability estimates (ĥ2 = σ2
g /σ2

y and ê2 = σ2
η /σ2

y ), prediction accuracy of genomic
breeding values and herd effects (rPGBV = cor(g̃test, ytest) and rη = cor(η̃test, ytest)), reliability of predicted genomic breeding
values and herd effects (R2

PGBV = r2
PGBV/ĥ2 and R2

η = r2
η/ê2), for all four traits and all the five models evaluated. Values in

this table represent the mean over 100 cross-validation replicates of each model.

Trait Model ^
h

2 ^
e

2
rPGBV rη R2

PGBV R2
η

Backfat Thickness

GRM 0.35 a,† - 0.34 a - 0.34 a -
FARM - 0.03 a,† - 0.10 a - 0.32 a

GPS - 0.14 b,† - 0.14 b - 0.13 b

GRM + FARM 0.35 a,† 0.03 a,† 0.34 a 0.10 a 0.34 a 0.32 a

GRM + GPS 0.30 a,† 0.15 b,† 0.34 a 0.15 b 0.39 b 0.15 b

Eye Muscle Area

GRM 0.35 a,† - 0.34 a - 0.33 a -
FARM - 0.09 a,† - 0.24 a - 0.66 a

GPS - 0.53 b,† - 0.31 b - 0.18 b

GRM + FARM 0.34 a,† 0.09 a,† 0.34 a 0.28 c 0.34 a 0.87 c

GRM + GPS 0.17 b,† 0.53 b,† 0.34 a 0.30 b 0.66 b 0.17 d

Carcass Weight

GRM 0.41 a,† - 0.38 a - 0.35 a -
FARM - 0.06 a,† - 0.17 a - 0.47 a

GPS - 0.40 b,† - 0.20 b - 0.10 b

GRM + FARM 0.39 a,† 0.05 c,† 0.38 a 0.17 a 0.36 a 0.67 c

GRM + GPS 0.29 b,† 0.30 d,† 0.38 a 0.18 a,b 0.50 b 0.11 b

Marbling Score

GRM 0.40 a,† - 0.37 a - 0.35 a -
FARM - 0.12 a,† - 0.09 a - 0.07 a

GPS - 0.47 b,† - 0.40 b - 0.34 b

GRM + FARM 0.36 a,† 0.10 c,† 0.37 a 0.13 c 0.38 b 0.16 c

GRM + GPS 0.22 b,† 0.44 b,† 0.37 a 0.39 b 0.63 c 0.35 b

a, b, c, d: Different letters indicate statistically different values using Tukey’s multiple comparison test at a significance level of 0.05,
comparing the results in each column within each trait. † Variance component statistically different from zero.

Table 5. Comparisons of the predicted genomic breeding values (PGBV) between the model that modelled the PGBV
alone (GRM) and the models that accounted for the herd effects, either as independent (GRM + FARM), or as correlated
(GRM + GPS), for all four traits and all the five models evaluated. The comparisons were performed based on the Pearson
(corP) and Spearman (corS) correlations between the PGBVs, and on the mean squared differences between the PGBVs

(MSDmodel 1,model 2 = 1/ntest
ntest

∑
i=1

(
g̃i,model 1 − g̃i,model 2

)2). Values in this table are the mean and standard deviations (in

parenthesis) of the comparisons over 100 cross-validation replicates of each model.

Trait
Models Compared

corp corS MSD
Model 1 Model 2

Backfat Thickness
GRM GRM + FARM 0.98 (0.002) 0.98 (0.002) 0.17 (0.018)
GRM GRM + GPS 0.99 (0.001) 0.99 (0.001) 0.07 (0.007)

Eye Muscle Area GRM GRM + FARM 0.97 (0.003) 0.97 (0.003) 1.54 (0.167)
GRM GRM + GPS 0.99 (0.001) 0.99 (0.001) 0.54 (0.065)

Carcass Weight GRM GRM + FARM 0.99 (0.001) 0.98 (0.002) 14.06 (1.438)
GRM GRM + GPS 1.00 (0.000) 1.00 (0.001) 3.70 (0.479)

Marbling Score GRM GRM + FARM 0.98 (0.002) 0.98 (0.003) 0.02 (0.002)
GRM GRM + GPS 0.99 (0.001) 0.99 (0.001) 0.01 (0.001)
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Prediction accuracies of the herd effects obtained with the GPS model were higher
than those obtained with the FARM model for all traits. Except for CWT that had equal
herd effect prediction accuracy with the GRM + GPS and GRM + FARM models, prediction
accuracies of the herd effects obtained with the GRM + GPS model were higher than those
obtained with the GRM + FARM model. Prediction accuracies of the herd effects obtained
with the FARM and GRM + FARM models were equal for BFT and CWT, while prediction
accuracies of herd effects obtained with the FARM model were lower than those obtained
with the GRM + FARM model for EMA and MS. Prediction accuracies of the herd effects
obtained with the GPS and GRM + GPS models were equal for all traits.

Reliabilities of PGBV and environmental effects are shown in Figure 3. All PGBV
reliabilities from the GRM + GPS model were higher than those from the GRM and GRM +
FARM models, and the difference is particularly large for EMA, CWT, and MS. The PGBV
reliabilities between the GRM and the GRM + FARM models are equal except for MS.
Reliabilities of the predicted herd effects were higher in the FARM and GRM + FARM
models than in the GPS and GRM + GPS models, except for MS that was the opposite.
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Figure 3. Reliability of predicted genomic breeding values (R2
PGBV = r2

PGBV/h2), and reliability of predicted herd effects
(R2

η = r2
η/e2), for all four traits and all the five models considered. The heights of the barplots in this figure represent the

mean over 100 replicates of each model, with their confidence intervals indicated. Letters a, b, c, d indicate the groups
obtained with Tukey’s multiple comparison test at a significance level of 0.05, comparing the values of R2

PGBV (blue letters)
and of R2

η (red letters) obtained with the different models, within each trait.
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Figure 4 shows the accuracy of phenotypic prediction. The inclusion of a herd effect
component in the genomic model provided a significant phenotypic prediction gain for
BFT, EMA, and MS. For BFT, this gain was observed only with the GRM + GPS model.
Additionally, BFT was the only trait in which we observed a significant phenotypic predic-
tion gain by using the GRM + GPS model instead of the GRM or GRM + FARM models;
however, it was a small gain: the mean observed ry with the GRM, GRM + FARM, and
GRM + GPS models were respectively 0.372, 0.363, and 0.383. From the boxplots of the
accuracy of phenotypic prediction we could observe that, for BFT and EMA, the prediction
accuracies obtained over the 100 replicates with the model GRM + GPS varied less than the
prediction accuracies obtained with the model GRM + FARM.
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Figure 4. Accuracy of phenotypic prediction (ry = cor(ỹtest, ytest)), for all four traits and all the five models considered.
Boxplots based on 100 cross validation replicates of each model. The predicted phenotypes were ỹtest = Xtest b̂ + g̃test for
the GRM model, ỹtest = Xtest b̂ + η̃test for the FARM and the GPS models, and ỹtest = Xtest b̂ + g̃test + η̃test for the GRM +
FARM and GRM + GPS models. Letters A, B, C, D indicate the groups obtained with Tukey’s multiple comparison test at a
significance level of 0.05, comparing the values of ry obtained with the different models, within each trait.

Figure 5 presents the comparison of the variance structures between G and WηFARM = ZZ′,
and between G and WηGPS = ZEZ′, using the kappa statistics [35]. We observed that κη:GRM
and λη are not aligned at all, and that κη:GRM ≈ 1, indicating that there is no confounding
between the two relationship matrices.
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Figure 5. Scatterplots of eigen-values of the herd covariance matrix (λη) by the kappa statistics (κη:GRM),
in order to compare the variance structures of G and WηFARM = ZZ′, and of G and WηGPS = ZEZ′.

4. Discussion

This work evaluated how modelling the herd effects as correlated impacts the vari-
ance components and the genomic prediction, in comparison to assuming the herds as
completely independent units. To estimate and predict the correlated herd effects, we
presented a method that used the physical distances (based on GPS coordinates) to create
a herd covariance matrix, which was used as a proxy to model the unknown underlying
correlation matrix of these effects. Conceptually, this herd covariance matrix should enable
the model to partially account for similarities or differences between herds due to climate
and other geographical factors that were not explicitly measured and included in the
model. We tested this assumption on four production traits in a commercial population of
Hanwoo beef cattle sampled from across South Korea by modelling herd effects using GPS
coordinates. The main result was an increase of the reliabilities of PGBV for all traits in
comparison to the reliabilities obtained with a model that assumed the herd effects to be
independent or with a model that did not account for the herd effects at all.
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The source of this increase in the reliabilities of PGBV is of particular interest. It is
basically because the GRM + GPS model reallocated to the herd effect a proportion of the
phenotypic variance that the other models assigned to the breeding values. In all four
traits, the heritability estimates of the GRM + GPS model were significantly lower than the
estimates of the GRM and GRM + FARM models. The decrease in the heritability estimates
led to an increase in the PGBV reliabilities since R2

PGBV = r2
PGBV/h2.

At this point, our results suggest that the heritabilities of the traits estimated with
the GRM + GPS model are more accurate than the higher values estimated by both the
GRM and GRM + FARM models. If the GRM + GPS model was underestimating the
heritabilities in comparison to GRM and GRM + FARM models, we would expect changes
in the PGBV variances or a reduction in the prediction accuracies. However, across all four
traits, the PGBV variances and the prediction accuracies were statistically equal for the
GRM, GRM + FARM, and GRM + GPS models. The reduction in heritability estimates with
the GRM + GPS model did not affect the PGBV accuracies, which suggests that the GRM
and GRM + FARM models probably overestimated the variance of the breeding values. If
the PGBV reliabilities are in fact higher than what traditional approaches indicate, there
are relevant real-world implications for breeding programs, since accurate estimates are of
practical importance and are broadly used to design breeding programs, predict response
to selection, and determine selection strategies [36–38].

The covariance matrix built from GPS coordinates to model herd effects was expected
to account for some of the similarities or differences between herds due to climate and
other environmental factors. This was confirmed by the much higher environmentability
estimates from the GPS and GRM + GPS models compared to the environmentabilities
estimated with the FARM and GRM + FARM models. Even though the GRM + GPS
reallocated genetic variance into environmental variance, the total variance explained
was much higher than with the other models (Table 4), which would intuitively suggest
a better predictive value as well; however, as predictors, the GPS information was not
sufficiently informative to improve phenotypic prediction; little to no significant gain
in phenotypic prediction was achieved with the GRM + GPS model. In part, this could
be due to the data used in this study being relatively small and to South Korea being
also a small country with a relatively uniform climate and production environment. It is
possible that prediction accuracies would increase with a larger dataset from a country
with more diverse conditions. It is, however, more likely that to substantially improve
phenotypic prediction, direct and detailed environmental/management data modelling
will be necessary.

Although the results from our study suggest that herd effects should be modelled as
correlated, we understand that the herd covariance matrix based on GPS coordinates is just
an approximation that tries to simplistically capture a very wide range of environmental
and farm conditions. While modelling herds as correlated effects clearly accounted for
significant amounts of phenotypic variation, and it did not negatively impact genomic
prediction accuracies, it was still not descriptive enough to increase prediction accuracies in
this study. Different methods to correlate herd effects based on GPS coordinates should be
further explored in follow-up studies. Moreover, recent studies using different approaches
for phenotypic prediction have incorporated climate information measured in more diverse
environments than what we observed in South Korea, and have reported positive gains
in prediction accuracy in livestock [39] and in crops [40,41]. We believe that the inclusion
of environmental parameters to quantify their influence on phenotypic variance and
prediction accuracies and to understand how they correlate with the GPS herd covariance
matrix can further improve models for genomic and phenotypic prediction.

Finally, although the models with a herd effect that we explored in this study provided
little improvement in phenotypic prediction, the environmentability estimates and the
reliabilities of the PGBV achieved with the models that used the GPS coordinates are
relevant for genetic evaluations. Modelling herd effects as correlated instead of independent
indicated that results from traditional models might overinflate the heritability estimates.
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These overestimates can lead to wrong reliabilities of the PGBV and, consequently, to
misleading values of expected genetic gains. In this study, we modelled the correlations
between herds through their physical distances using GPS coordinates, but other methods
and direct environmental factors such as differences in altitude, temperature, precipitation,
or even management or nutrition could be considered instead.

5. Conclusions

Environmental effects have a large influence on phenotypic expression and must be
accounted for in genetic evaluations. This is usually achieved through the inclusion of
a herd effect term in the model. Accurately modelling these herd effects is fundamental
to adequately assign phenotypic variance to breeding values and random herd effects, in
order to maximize prediction accuracy and reliability of the PGBV. Our results showed that
modelling herd effects by considering the herds as being correlated with each other was
more successful in capturing environmental variance (environmentability) and the reliabil-
ity of the PGBV was greater than when herds were considered as completely independent
units. The increased reliabilities of the PGBV are particularly relevant for decision making
in breeding programs.
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