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Abstract

Lapses of attention can have negative consequences, including accidents and lost productivity. 

Here we used closed-loop neurofeedback to improve sustained attention abilities and reduce the 

frequency of lapses. During a sustained attention task, the focus of attention was monitored in real 

time with multivariate pattern analysis of whole-brain neuroimaging data. When indicators of an 

attentional lapse were detected in the brain, we gave human participants feedback by making the 

task more difficult. Behavioral performance improved after one training session, relative to control 

participants who received feedback from other participants’ brains. This improvement was largest 

when feedback carried information from a frontoparietal attention network. A neural consequence 

of training was that the basal ganglia and ventral temporal cortex came to represent attentional 

states more distinctively. These findings suggest that attentional failures do not reflect an upper 

limit on cognitive potential and that attention can be trained with appropriate feedback about 

neural signals.

Our ability to sustain attention over long periods of time is limited, both in the laboratory1,2 

and in the real world3,4. This has been demonstrated using vigilance tasks in which 

participants monitor for and detect infrequent stimuli5–7. Behavior in these tasks is 

predictive of attention disorders8 and is reliable over time9. Within the normal population, 

there is considerable variability in attentional abilities as measured by these tasks, and this 

variability is related to other perceptual and mnemonic processes10. We hypothesized that 

lapses in these tasks—and in life—occur because humans do not adequately monitor how 

well they are attending from moment to moment. Lapses emerge gradually and may be 

detected too late, after the chain of events that produces behavioral errors has been initiated. 

Accordingly, one way to train sustained attention might be to provide a more sensitive 

feedback signal, such that participants can learn to sense upcoming lapses earlier and 

prevent them from manifesting in behavior.
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To pursue this approach, we created a continuous feedback signal customized to each 

participant, reflecting moment-to-moment variations in their sustained attention. Participants 

were presented with a series of composite stimuli containing a mixture of information 

relevant and irrelevant to the task. Online analysis was used to track their attentional state, 

operationalized as the amount of task-relevant information active in their brains minus the 

amount of task-irrelevant information. Finally, this measure was provided to participants as 

feedback by altering the appearance of the next stimulus. When participants were attending 

well (that is, more task-relevant information was detected in their brains), we increased the 

proportion of task-relevant information in the stimulus. Conversely, when they were 

attending poorly (that is, more task-irrelevant information was detected), we reduced the 

proportion of task-relevant information in the stimulus. In this way, we amplified the 

consequences of their attentional state, rewarding them with a stronger stimulus and an 

easier task for staying focused and punishing them with a degraded stimulus and a more 

difficult task for lapsing. We hypothesized that this would make attentional lapses more 

salient and that participants would be able to exploit this feedback to learn to improve their 

sustained attention.

For online analysis, we combined real-time functional magnetic resonance imaging 

(rtfMRI)11–13 with multivariate pattern analysis (MVPA)14. The rtfMRI component of the 

system involved immediately acquiring measurements of the blood oxygen level-dependent 

(BOLD) response over the whole brain. This technique has been used previously to display 

univariate activity for pain regulation15, to display multivariate activity for inducing 

perceptual learning16 and to trigger stimulus presentation based on univariate activity in 

brain regions associated with memory encoding17 and vigilance18. Our approach was related 

to these latter triggering designs, in the sense that brain states were used to control stimuli 

rather than controlling a separate feedback scale or gauge, but differed in that the stimulus 

triggered by a brain state at one moment in time influenced the brain state at the next 

moment, which in turn influenced the next stimulus, and so on. In other words, after a 

stimulus was triggered, the trial did not end and there was no delay imposed before the next 

stimulus could be triggered17,18. This approach of continually updating task stimuli as they 

perturb brain states has been referred to as “closed-loop”12. The MVPA component of the 

system decoded differences in whole-brain BOLD activity patterns reflecting attention to the 

task-relevant versus task-irrelevant stimuli. The combination of MVPA and rtfMRI is well 

suited for rapidly decoding distributed cognitive processes such as attention.

There are other, simpler ways of delivering real-time feedback: for example, based on 

electroencephalography (EEG), eye tracking or manual responses. We used rtfMRI for two 

reasons. First, in combination with advanced analytical techniques, fMRI may provide more 

direct access to internal brain states. For instance, we sought to identify which specific kind 

of information a participant was attending to over time rather than whether they were 

attentive in general (often called alertness, arousal or mindfulness), as is reflected in pupil 

size19 and response time variability20. Second, by using fMRI, we not only gain a sensitive 

neural measure for feedback but also the ability to characterize the neural mechanisms that 

support attention training. We take advantage of this opportunity by considering both how 

training alters the brain and which brain regions provide useful feedback signals for training. 

We do not claim that this is the only or best approach for training attention, but simply that it 
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may prove valuable because of its sensitivity, its ability to generate neuroscientific data that 

can help constrain our interpretation, and its potential to lay the foundation for further 

advances in the use of other methods.

This study involved three sessions on different days: behavioral pre-training, rtfMRI training 

and behavioral post-training (Supplementary Fig. 1). Participants performed the same 

sustained attention task in all sessions, viewing blocks of face/scene composite stimuli. 

Before each block, they were cued to attend to one task-relevant category (for example, 

scenes) and were instructed to ignore the other, task-irrelevant category (in this case, faces). 

Within the task-relevant category, they responded (‘go’ trial) if the image was from a 

specified target subcategory that appeared with high frequency throughout the study (for 

example, indoor scenes; 90% of trials). They withheld their response (‘no-go’ trial) for the 

other, infrequent lure subcategory (in this case, outdoor scenes; 10%)9,20. Sustained 

attention was assessed behaviorally using signal detection measures. The average false 

alarm rate from the behavioral pre-training session was 0.31 (s.e.m. = 0.03). In other words, 

college-aged adults made 30% errors in an ostensibly trivial task, which demonstrates that 

sustained attention abilities were limited at the start of the study, as expected.

During the rtfMRI training session, each of several training runs contained eight blocks of 

the sustained attention task in a counterbalanced design. The first four, ‘stable’ blocks were 

used for MVPA training and the last four, ‘feedback’ blocks were used for neurofeedback. 

During the stable blocks, composite stimuli were presented with a mixture of 50% face and 

50% scene. A whole-brain classifier was trained over a moving window of recent stable 

blocks to discriminate attention to faces versus scenes. This attentional manipulation is 

known to elicit distinct patterns of neural activity21,22. During feedback blocks, the trained 

classifier was used to decode in real time which category was being attended. The output 

was then used to update the mixture of the composite stimulus for the next trial (Fig. 1).

Results

Real-time neurofeedback

The classifier’s output would be useful for training attention only if it provided an accurate 

measurement of attentional state (that is, attention to face versus scene). To assess the 

validity of this measure, we performed n-fold cross-validation on the stable blocks. Note that 

bottom-up stimulation in these blocks was identical at the category level regardless of 

whether participants were instructed to attend to faces or to scenes. The average decoding 

accuracy was 0.78 (s.e.m. = 0.02), which was highly reliable relative to chance (0.50) across 

participants (P < 0.00001, bootstrap resampling). This robust decoding validated our 

measure of top-down attentional state.

As a further preliminary step, we sought to verify that the classifier’s output was 

meaningfully related to participants’ behavior (Fig. 2). Across participants, there was a 

strong positive correlation between decoding accuracy in the stable blocks and performance 

in the earlier behavioral pre-training session (r = 0.70, P = 0.000008, Spearman rank 

correlation). This relationship was also evident within participants23,24: behavioral accuracy 

on no-go trials—that is, whether participants correctly withheld their response or responded 
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incorrectly—could be predicted using the classifier evidence for the task-relevant category 

from the brain volumes immediately preceding trial onset (correct rejection: mean evidence 

= 0.78, s.e.m. = 0.02; false alarm: mean evidence = 0.74, s.e.m. = 0.02; P < 0.00001). This 

effect remained robust after controlling for response time (RT) differences (Supplementary 

Figs. 2 and 3). This further confirmed that the classifier provided a predictive and 

behaviorally relevant measure of attention.

The feedback blocks used real-time classifier output to modulate the proportion of task-

relevant versus task-irrelevant information in the composite stimuli. As outlined above, the 

proportion of the task-relevant stimulus on the next trial was increased when there was 

greater neural evidence of the task-relevant category in the preceding trial, whereas it was 

decreased when there was greater neural evidence of the task-irrelevant category 

(Supplementary Video 1). The motivation for weakening the task-relevant image when 

measures of attention waned was to amplify and externalize the consequences of the 

participant’s attentional state, providing them with an error signal, with the goal of 

increasing their self-monitoring ability. The opposite—strengthening the task-relevant image 

when attention lapsed—might have stabilized performance at that moment, but it may also 

have incentivized such lapses by making the task easier, thus undermining learning. The 

precise mapping between classifier output and mixture proportion was controlled by a 

sigmoidal transfer function (Supplementary Fig. 4).

Training effects in behavior

The rtfMRI neurofeedback produced a significant training effect: behavioral sensitivity 

improved from the pre-training session to the post-training session (P = 0.01; Fig. 3). This 

improvement was quantitatively related to what happened during the training session, as it 

could be predicted by the extent to which a participant’s neurofeedback became more 

positive over time (r = 0.78, P = 0.002). To further verify that improved sensitivity was the 

result of accurate neurofeedback, we collected data from 16 control participants who were 

each uniquely matched in age, gender and handedness to one of the 16 feedback 

participants. During the pre-training session, there was no difference between the groups in 

false alarm rate (P = 0.72) or sensitivity (P = 0.90). Control participants were given identical 

instructions and underwent the same procedure, except that, during the feedback blocks, 

their feedback was yoked to their matched participant in the experimental group, rather than 

to measures of their own attentional state. This yoking ensured that control participants were 

exposed to the same overall stimulus statistics and variations in task difficulty. Their 

sensitivity did not reliably increase from pre- to post-training (P = 0.26), and the change was 

weaker than in the feedback group (P = 0.04). This interaction reflected a reliable difference 

in the change in false alarm rate between groups (P = 0.007).

Rather than a benefit of accurate neurofeedback, the difference between groups could reflect 

a generic practice effect in the feedback group that was stymied by inaccurate 

neurofeedback in the control group. If so, then an improvement in sensitivity should be 

found even without feedback. We therefore ran a behavioral experiment with a new group of 

16 participants who completed the same procedure but received only stable blocks. Unlike 

the feedback group, their sensitivity did not increase from pre- to post-training (P = 0.67), 
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inconsistent with this alternative account. In addition, accurate neurofeedback may have 

been effective simply because it resonated with a participant’s attentional state and increased 

task engagement and motivation. If so, then feedback about any reliable measure of attention 

should be useful for training. We therefore ran a second behavioral experiment that was 

closely matched to the fMRI study, in which a new group of 16 participants received 

feedback based on RT (which was robustly related to attention; see Online Methods and 

Supplementary Fig. 2), along with a new group of 16 control participants who received 

yoked RT feedback. Unlike in the fMRI study, the change in sensitivity from pre- to post-

training was not stronger in the feedback group than in the control group (P = 0.29), 

suggesting that not all correlates of attention are sufficient for training.

Training effects in the brain

One advantage of using whole-brain fMRI to provide feedback is that we could also gain 

insight into the neural changes induced by training. In particular, we hypothesized that 

learning via neurofeedback might strengthen and differentiate the two attentional states, 

such that they would become more discriminable in the brain from pre- to post-training. This 

might occur both in areas that represent attended stimulus features 21,22 and in areas that 

represent task goals and control attention25,26. Although MVPA over the whole brain can be 

hard to interpret27, this differentiation analysis tested for a very specific effect that would be 

hard to explain parsimoniously on the basis of generic confounds: namely, regions that 

showed an improvement in classification as a result of training that was greater for the 

feedback relative to control groups.

We trained and tested classifiers on the first and last run of the rtfMRI training session 

(stable blocks) to distinguish attention to faces versus scenes and measured the change in 

cross-validation accuracy. Whole-brain classification (the basis for neurofeedback) showed 

a greater increase in accuracy from pre- to post-training in the feedback group than in the 

control group (P = 0.01). This interaction was present when the same analysis was 

performed separately in an anatomical mask of the frontal lobe (P = 0.02) and occipital lobe 

(P = 0.04), and it was trending in the temporal and parietal lobes (P = 0.09 and 0.08, 

respectively). Searchlight analyses further identified specific areas where activity patterns 

showed this interaction (Fig. 4). The largest clusters were found in fusiform and 

parahippocampal gyri of ventral temporal cortex and in subcortical structures including the 

basal ganglia (striatum, globus pallidus) and amygdala (all P < 0.05, randomization test with 

threshold-free cluster correction).

Contribution of specific brain systems

Beyond investigating the consequences of training in the brain, the fMRI data can also be 

used to infer which brain regions were involved in the training process itself. Specifically, 

we examined which regions contributed to the whole-brain feedback and how these 

contributions affected behavioral training. This analysis consisted of three steps. First, we 

identified neural signals that could have been used to provide more targeted feedback from 

particular brain regions. Second, for each participant, we correlated these signals with 

whole-brain classifier output to quantify the extent to which the actual feedback that the 

participant received reflected information that was present within these regions. Third, we 
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related these correlations to individual differences in the behavioral training effect to assess 

which regions were most useful for training. In sum, if we had based the feedback on 

specific brain regions rather than the whole brain, how similar, and how useful, would this 

feedback have been?

Perhaps the simplest neural measure of when attention is allocated to faces versus scenes is 

the relative univariate activity of visual areas with selectivity for these categories, the 

fusiform face area (FFA) and the parahippocampal place area (PPA)21, respectively. This is 

analogous to the approach used in several previous rtfMRI studies, in which the average 

activity from one or more regions of interest (ROIs) was returned as feedback11,15,17. The 

difference in univariate activity for task-relevant versus task-irrelevant ROIs (for example, 

PPA minus FFA for scene attention) was weakly but reliably correlated with the difference 

in whole-brain multivariate evidence for these categories over time (mean r = 0.25, s.e.m. = 

0.02; P < 0.00001). That is, on average, ~6% of variance in the whole-brain signal used for 

real-time feedback was explained by the relative activity levels of FFA and PPA. Individual 

differences in the size of the behavioral training effect were unrelated to this reliance on 

information in FFA versus PPA for feedback (r = −0.04, P = 0.89).

Information about visual categories is also represented outside peak category-selective areas, 

in patterns of activity distributed over regions of occipitotemporal cortex28. Likewise, under 

attentionally demanding conditions, distributed activity patterns over frontoparietal regions 

linked to cognitive control contain stimulus-specific information29. Therefore, classifiers 

applied to these ‘perceptual’ and ‘attentional’ networks of regions in occipitotemporal and 

frontoparietal cortices, respectively (constrained functionally, see Online Methods), provide 

additional neural measures of when attention was allocated to faces versus scenes (Fig. 5). 

The difference in multivariate evidence for task-relevant versus task-irrelevant categories in 

the whole brain was reliably correlated with the difference in multivariate evidence for these 

categories in the perceptual network (mean r = 0.77, s.e.m. = 0.02; P < 0.00001) and 

attentional network (mean r = 0.83, s.e.m. = 0.01; P < 0.00001), although the correlation 

with the attentional network was significantly stronger (P = 0.04).

To assess whether the information contained in each network served as useful feedback for 

training, we related individual differences in these whole-brain/network correlations to the 

size of the training effect across participants. Behavioral improvement was unrelated to 

reliance on the perceptual network (r = 0.29, P = 0.27) but positively related to reliance on 

the attentional network (r = 0.60, P = 0.02).

Discussion

We found that moment-to-moment feedback about attentional state could enhance sustained 

attention abilities. We used closed-loop neurofeedback from MVPA as a type of cognitive 

prosthetic, facilitating participants’ ability to detect neural signals that indicated an 

impending attentional lapse by displaying them visually in a form that was directly relevant 

to the task. In other words, we provided a neural error signal so that participants could learn 

to better monitor and evaluate the state of their attention.
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MVPA has become widespread because of its ability to read out the informational contents 

of the brain14,30. However, classifiers exploit any predictive variance that distinguishes 

between classes, and they are thus susceptible to confounding factors27. Our design allowed 

us to assess whether whole-brain classifier output truly reflected attentional state—the 

cognitive variable of interest—using behavior as the yardstick: when provided as feedback, 

classifier output was useful for improving attention-dependent performance.

By using fMRI for cognitive training, we gained important insights about the underlying 

neural mechanisms. We first identified brain regions that were affected by training, 

including frontal cortex, ventral temporal cortex and basal ganglia (striatum and globus 

pallidus), which came to represent the attentional states more distinctively as a result of 

feedback. We interpret the increased neural separation in these regions as reflective of the 

two component processes in our sustained attention task. First, participants needed to select 

the image from the task-relevant category when confronted with a composite stimulus. 

Increased neural separation of face and scene attention in frontal cortex may reflect learning 

of better task or control representations for each category, which in turn enabled stronger 

top-down modulation of category-selective visual representations in ventral temporal cortex, 

biasing processing toward the task-relevant image and thereby facilitating its 

selection22,25,26,31,32. Second, participants needed to inhibit their prepotent response when 

the selected image came from the infrequent lure subcategory. Increased neural separation of 

face and scene attention in basal ganglia may reflect enhanced learning of different 

stimulus–response rules within each category, with the striatum directly gating responses to 

targets and indirectly blocking responses to lures via inhibitory projections to the globus 

pallidus25,33–35.

We next identified brain regions supporting the training process itself, simulating how 

feedback from these regions related to the real-time feedback. Univariate activity in the FFA 

and PPA was weakly correlated with whole-brain multivariate evidence, whereas 

multivariate evidence from a perceptual network in occipitotemporal cortex and multivariate 

evidence from an attentional network in frontoparietal cortex were strongly correlated. 

These results suggest that distributed activity patterns contributed more to the training effect 

than punctate responses in category-selective visual areas. We tested this more directly by 

exploiting variance in the training effect across participants. Training was predicted by the 

extent to which feedback relied on information in the attentional network, but not by 

reliance on information in the perceptual network or the relative activity levels of FFA and 

PPA. The importance of frontoparietal feedback can be interpreted as evidence that our 

attention training involved the reinforcement of task representations25,26, rewarding good 

states by reducing difficulty and punishing bad states by increasing difficulty. This 

interpretation is consistent with the observed multivariate changes in frontal cortex and basal 

ganglia, as these regions and their interaction are critical for feedback-based task 

learning36,37. It remains an open question whether feedback restricted to occipitotemporal 

cortex or to FFA and PPA (that is, without access to frontoparietal information) could lead 

to training.

The goal of our study was to derive basic science insights into the neural basis of top-down 

attention and the plasticity of attention-related behavior. In the future, the kind of approach 
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we pursued may find potential applications for training sustained attention in occupational 

settings (for example, baggage screeners and truck drivers)38 and clinical disorders (for 

example, attention deficit hyperactivity disorder and negative attentional biases in 

depression)39,40.

Online Methods

Participants

Eighty adults (45 female, 75 right-handed, mean age = 20.3 years) participated in the study 

for monetary compensation. This included 16 participants in each of the following: the fMRI 

experimental group, the fMRI control group, the no-feedback behavioral group, the RT-

feedback behavioral group, and the RT-control behavioral group. Each participant in the 

fMRI control and behavioral groups was matched as closely as possible to the demographics 

(age, gender and handedness) of a participant in the fMRI experimental group. Power 

analyses were not performed because of the use of a new paradigm and unknown behavioral 

and neural effect sizes. The sample size was chosen because it is fairly common for an fMRI 

study, especially one with multiple groups and sessions. Three additional fMRI participants 

were excluded because of technical problems with real-time data acquisition, one additional 

fMRI participant was excluded for falling asleep during several runs and one additional 

behavioral participant was excluded for low overall performance (3.2 s.d. below the mean in 

pre-training). For the fMRI participants, the experimenter was not blind to group assignment 

because of the complexity of data acquisition and analysis, especially the need to ensure that 

the real-time classification and feedback system was functioning. However, every fMRI 

participant received the same scripted instructions. All participants had normal or corrected-

to-normal visual acuity and provided informed consent to a protocol approved by the 

Princeton University Institutional Review Board.

Stimuli

Images consisted of grayscale photographs of male and female faces and indoor and outdoor 

scenes. These images were combined into composite stimuli by averaging pixel intensities 

using various weightings (for example, 60% face, 40% scene). The stimuli were displayed 

on a projection screen at the back of the scanner bore (subtending 10 × 10° of visual angle) 

and viewed with a mirror attached to the head coil.

A fixation dot was superimposed on the images and presented during the inter-block 

intervals of each run, except when text instructions were displayed. Participants were 

instructed to fixate on this dot, they received practice doing so during their first session, and 

they were reminded about the importance of fixation before scanning. We did not use an 

eyetracker to ensure fixation because of the technical complexity of the real-time apparatus 

and analysis. Aside from this, eyetracking is rarely used in attention studies with 

overlapping face/scene stimuli22,41,42, and when it has been used, no differences in eye 

movements or position across categories were observed43. In fact, only one participant 

reported using an eye-movement strategy to perform the task, and this participant showed 

the smallest training effect of anybody in the feedback group.
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Procedure

Participants completed three sessions on different days. The first day was a behavioral pre-

training session with two runs of the sustained attention task. The second day was an fMRI 

session with several runs of the modified real-time neurofeedback version of the sustained 

attention task. The number of runs varied across participants, depending on how many they 

could complete within 2 h (range 6–9 runs). The third day was a behavioral post-training 

session, otherwise identical to the first session. We attempted to conduct the sessions on 

three consecutive days, but this was not always possible because of scanner availability and 

participants’ schedules. All participants completed the study within 5 d. The average number 

of days (and s.e.m.) between the first and second sessions was 1.19 (0.09) and between the 

second and third sessions was 1.25 (0.09).

Each task run contained eight blocks. Each block began with a text cue for 1 s that instructed 

participants which subcategory was the target to which they should respond and, by 

extension, which category was to be attended. Four of the blocks involved attending to faces 

and the other four involved attending to scenes. The target subcategories were held constant 

within each participant (for example, “male” and “indoor”) but were counterbalanced across 

participants. The cue was followed by 1 s of fixation and then a series of 50 trials. Each trial 

contained a composite face/scene image presented for 1 s with no inter-stimulus interval. 

Responses were recorded during the first 850 ms of stimulus presentation to allow 

computation time at the end of the trial. The trial structure followed a response inhibition 

task design9,20: 90% of images contained the target subcategory (for example, an indoor 

scene after an “indoor” cue) and required a response; the other 10% contained the non-target 

subcategory (in this case, an outdoor scene) to which responses needed to be withheld. The 

distribution of the subcategories was the same for the unattended category (for example, 

90% male and 10% female after an “indoor” cue), although these images were irrelevant for 

determining whether to respond or not. After the last trial, there was a 4–6 s of fixation 

before the next block.

The first run of the rtfMRI session was identical to the runs of the behavioral sessions, with 

all composite stimuli being an equal mixture of face (50%) and scene (50%) images. 

Starting with the second run, the first four, ‘stable’ blocks kept the same equal mixture, but 

the final four, ‘feedback’ blocks had variable mixture proportions that depended on the 

participant’s attentional state. Text instructions appeared before the first feedback block to 

alert participants that neurofeedback was starting. Each of these blocks started with an equal 

mixture for the first three trials. The mixture proportions for the remaining trials were 

determined based on real-time MVPA of the fMRI data. They ranged from 17% to 98% of 

the task-relevant category (83% to 2% of the task-irrelevant category). For half of the 

participants, the last run of the rtfMRI session was identical to the first run, with all eight 

blocks using an equal mixture.

Data acquisition

Experiments were run using the Psychophysics Toolbox for Matlab (http://

psychtoolbox.org/). Neuroimaging data were acquired with a 3T MRI scanner (Siemens 

Skyra) using a 16-channel head coil. We first collected a scout anatomical scan to align axial 
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functional slices to the anterior commissure–posterior commissure line. Functional images 

were acquired using a gradient-echo, echo-planar imaging sequence (2 s repetition time, 28 

ms echo time, 3 mm isotropic voxel size, 64 × 64 matrix, 192 mm field of view, 36 slices) 

that covered most of the brain. At the end of the fMRI session, a high-resolution 

magnetization-prepared rapid acquisition gradient-echo (MPRAGE) anatomical scan was 

acquired for offline spatial registration. To improve registration, an additional coplanar T1 

fast low angle shot anatomical scan was also acquired.

Statistics

Because some of the data violated the assumption of normality needed for parametric tests, 

we used nonparametric tests throughout to determine statistical significance. Subject-level 

bootstrap resampling44 was used to assess random-effects reliability for comparisons of a 

small number of variables to chance or each other; one-sided tests were used for directional 

hypotheses and two-sided tests for non-directional hypotheses. Correlations between two 

variables were estimated with Spearman’s rank correlation after applying robust methods to 

eliminate the disproportionate influence of outliers in small samples45. Significance testing 

on voxel-wise brain maps was conducted with a permutation test in FSL’s “randomise” 

function46 and corrected for multiple comparisons using threshold-free cluster 

enhancement47. Each control participant was matched to one experimental participant in all 

respects except for the key manipulation (that is, on demographics, stimuli and number of 

runs), and so comparisons across groups were performed with a matched-pairs sample 

design.

Real-time analyses

Preprocessing—During the fMRI session, data were reconstructed on the scanner. 

Prospective acquisition correction and retrospective motion correction were applied. Each 

motion-corrected volume was transferred to a separate analysis computer in real time. A 

brain mask was applied to eliminate non-brain voxels. The volume was spatially smoothed 

in Matlab using a Gaussian kernel with full-width half-maximum (FWHM) = 5 mm. After 

each grouping of four stable blocks, the BOLD activity of every voxel was z-scored over 

time. The same normalization was applied during feedback blocks in real time, using the 

mean and standard deviation from the most recent four stable blocks.

Multivariate pattern analysis—During the fMRI session, we conducted MVPA using 

penalized logistic regression with L2-norm regularization (penalty = 1). The classifier was 

trained to distinguish top-down attention to faces and scenes from whole-brain activity 

patterns. The training examples for the classifier were obtained from a trailing window of 

stable blocks. For half of the participants, this trailing window included the twelve previous 

stable blocks and the classifier was trained during a 70-s fixation period between blocks 4 

and 5 of the current run. For the other half, the trailing window did not include the stable 

blocks from the current run and the classifier was trained between runs; the fixation period 

between blocks 4 and 5 was reduced to 6 s. There were no reliable differences between these 

groups, and so they were analyzed together. For training the model, all regressors were 

shifted 4 s forward in time to adjust for the hemodynamic lag.
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The trained model was tested in real time on brain volumes obtained during the feedback 

blocks. For each volume, the classifier estimated the extent to which the brain activity 

pattern matched the pattern for the two attentional states on which it was trained (from 0 to 

1). The neurofeedback was based on the difference of classifier outputs for the task-relevant 

category minus task-irrelevant category. These outputs are perfectly anticorrelated in a two-

class classifier, such that the difference ranged from −1 to 1. As a result of the 

anticorrelation, it is difficult to disentangle less attention to the task-relevant category from 

more attention to the task-irrelevant category (and vice versa). Differences of −1 and 1 

should thus be interpreted in relative terms as more attention to the task-irrelevant and task-

relevant categories, respectively. Note that if participants were not in either attentional state, 

the brain activity patterns would contain no signal that the classifier could identify and the 

classification would be driven by noise; the difference would then be 0 on average. We 

therefore interpret positive and negative values away from 0 as evidence of selective 

attention to one category of the composite stimulus.

Neurofeedback—The output of the classifier was used to determine the proportion of the 

images from the task-relevant and task-irrelevant categories in the composite stimulus on the 

next trial. The preprocessing and decoding of volume i were performed during volume i + 1 

and the classifier output was used to update the stimulus mixture for the two trials in volume 

i + 2. This resulted in a minimum lag of 2 s (two trials) between data acquisition and 

feedback. Moreover, classifier output was averaged over a moving window of the preceding 

three volumes (i − 2, i − 1 and i for feedback in volume i + 2), meaning that feedback was 

based on brain states 2–8 s in the past. Because sustained attention fluctuates slowly20, we 

reasoned that this smoothing would provide a better estimate of attentional state by reducing 

high-frequency noise.

The average classifier output was mapped to a proportion of the task-relevant category using 

a sigmoidal transfer function (Supplementary Figs. 4 and 5). The maximum output value 

(0.98) meant that the task-irrelevant image could be almost completely absent from the 

composite stimulus. The minimum output value (0.17) meant that the task-relevant image 

was always present to some degree, even when participants had lapsed completely (giving 

them a foothold to recover). The inflection point of the logistic function was centered at an 

input greater than chance (0.60), based on the mean decoding accuracy of a group of pilot 

participants. This placed the sensitive range of the feedback closer to the typical real-time 

classifier output values. For follow-up analyses that assessed how the feedback changed 

over training, we computed the average proportion of the image from the task-relevant 

category in each training run and calculated the linear slope across runs for each participant.

Participants were aware of the feedback manipulation. Before the fMRI session, they were 

told that the images in the second half of most runs would change depending upon their 

attention, as measured from their brain. Specifically, the task would get easier if they were 

paying attention and it would get harder if they became inattentive. They were shown 

examples of how a composite stimulus could change on the basis of whether they were 

doing a good or bad job of paying attention. Critically, control participants received the 

exact same instructions. After the study, participants completed a debriefing questionnaire, 

which included the question: “Did you feel that you could control the image with your 
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brain?” Overall, 11 of 16 participants in the feedback group reported feeling some degree of 

brain control, compared to 4 of 16 participants in the control group. Interestingly, the 

feedback that the control participants received was positively correlated on average with 

what they would have received on the basis of their own brain activity patterns (mean r = 

0.29, s.e.m. = 0.04, P < 0.00001). This correlation suggests that their attentional state was 

affected by the sham feedback, which in turn determined what feedback they should have 

received next. Unlike the feedback participants, however, the control participants were only 

reacting to the feedback and not driving it.

Offline analyses

General procedures—Using FSL (http://fsl.fmrib.ox.ac.uk/), the data were temporally 

high-pass filtered (200 s period cut-off), motion corrected again, and spatially smoothed 

with a Gaussian kernel (5 mm FWHM). They were then transformed into standard Montreal 

Neurological Institute (MNI) space by linearly registering to the MPRAGE images and to 

the MNI152 standard brain. We conducted offline MVPA using the Princeton Multi-Voxel 

Pattern Analysis Toolbox (http://www.pni.princeton.edu/mvpa/), with z-scoring over time 

within each run and the same type of classifier as in the real-time analyses (penalized 

logistic regression using L2-norm regularization, penalty = 1).

Decoding accuracy—We assessed our ability to decode attentional state within 

individual participants by classifying the stable blocks, which were uncontaminated by 

stimulus-based feedback. (In fact, these data served as the training set for real-time 

classification, but were never subdivided into training and test sets so that classifier accuracy 

could be estimated with cross-validation.) We trained a classifier using the stable blocks 

from n − 1 runs and tested it on the left-out run, and then repeated n times. By averaging 

over these folds, we obtained a measure of how well we could decode the attentional state of 

each participant and assessed reliability in the group relative to chance (0.5). We interpreted 

this decoding accuracy as reflecting the neural separability of attentional states rather than 

the precision with which the classifier algorithm captured these states per se. That is, low 

decoding accuracy for a participant does not necessarily mean that his or her classifier itself 

was inaccurate, but rather that it was accurately tracking poor neural separation between 

attentional states. Such separation may be related to individual differences in attentional 

abilities, with poor separation reflecting weaker selection of task-relevant information and/or 

increased distraction by task-irrelevant information. To verify this interpretation, we 

correlated decoding accuracy across participants with behavioral sensitivity from the pre-

training session. We used A′ to index sensitivity because of its robustness to the high hit 

rates that we expected to obtain because of the greater frequency of targets than lures48.

Predicting behavioral accuracy—For classifier output to provide useful feedback for 

training purposes, (1) it should be related to behavior on a trial-by-trial basis within 

participant and (2) this relationship should hold without artificially shifting trials back in 

time to correct for the hemodynamic lag (which cannot be done in real time). To judge 

whether these criteria were satisfied, we examined whether the classifier output before a lure 

trial (averaged over the three preceding volumes, as used to calculate feedback) predicted 

whether participants correctly withheld their response or incorrectly responded. This 
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relationship was tested with a logistic regression (correct rejection = 1, false alarm = 0), 

whose slope was reliably positive at the group level (mean slope = 0.67, s.e.m. = 0.11, P < 

0.00001). That is, more classifier evidence from volumes 2–8 s in the past — most 

influenced by neural events 6–12 s in the past, assuming a hemodynamic peak at 4 s — 

predicted behavioral accuracy on the current trial.

The average RT from the six trials during these volumes also predicted behavioral accuracy 

in a logistic regression (mean slope = 0.01, s.e.m. = 0.0009, P < 0.00001; Supplementary 

Fig. 2). To remove this confound, we averaged the two RTs from each volume, regressed 

this average out of the raw classifier output and behavioral accuracy across volumes, and 

then repeated the analysis above in the residuals (using partial correlation rather than logistic 

regression because behavioral accuracy was no longer binary). The positive relationship 

between classifier output and behavioral accuracy remained reliable (mean r = 0.06, s.e.m. = 

0.01, P < 0.00001; Supplementary Fig. 3).

Changes in neural discriminability—We performed several analyses to examine 

whether attention training increased the separation between neural representations of the 

face and scene attentional states. We operationalized neural separation with decoding 

accuracy, comparing the first and last runs of the rtfMRI training session to assess training-

induced changes. For each of these runs, we trained a classifier to decode attentional state 

from the stable blocks using a split-half cross-validation procedure. To ensure that 

classification was not confounded by RT, we averaged the two RTs in every volume of the 

stable blocks and regressed out the resulting RT time course from the brain data prior to 

analysis27. We calculated the difference in decoding accuracy as the last minus first run for 

each participant and assessed the reliability of this change at the group level, comparing 

feedback and control groups. This analysis was performed over the whole brain, within each 

of the 4 lobes (defined using the MNI atlas in FSL), and over spherical searchlights (1 voxel 

radius, 7 voxel maximum volume) centered on every voxel in the brain.

Simulated feedback—For the univariate analysis of FFA and PPA, we localized these 

areas within each participant by contrasting face and scene attention blocks in the first fMRI 

run (which had no feedback). FFA and PPA ROIs were defined as 5-mm spheres around the 

peak face- and scene-selective voxels in right and left lateral fusiform gyri and collateral 

sulci/parahippocampal gyri, respectively. We then collapsed over hemispheres and averaged 

the time series of the voxels in each bilateral ROI for all feedback blocks (starting in the 

second fMRI run). For each block, we calculated the difference over time between the task-

relevant ROI (FFA and PPA for face and scene attention, respectively) and the task-

irrelevant ROI (PPA and FFA for face and scene attention, respectively) and then 

concatenated these differences across blocks within run. To estimate how FFA and PPA 

activity related to the real-time feedback in each run, we correlated this ROI-derived time 

series with the difference in whole-brain classifier output for the task-relevant minus task-

irrelevant categories (face minus scene evidence for face attention and scene minus face 

evidence for scene attention) from the same blocks and then averaged across runs. These 

FFA/PPA to whole-brain correlations were in turn correlated across feedback participants 

with the improvement in A′ from pre- to post-training.
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For the multivariate analysis of perceptual and attentional networks, we first defined each 

network using functional and anatomical criteria. The functional criterion was based on 

forward-inference meta-analyses from http://neurosynth.org/ using the search terms “faces” 

OR “scenes” for the perceptual network and “attention” for the attentional network. The 

results were downloaded as voxel-wise masks and thresholded at z = 2.3. The anatomical 

criterion was based on the MNI atlas in FSL, which was used to generate binary masks of 

the occipital and temporal lobes for the perceptual network and the frontal and parietal lobes 

for the attentional network. Voxels that survived the intersection of the functional and 

anatomical masks were used to train a separate classifier for each network. Other than being 

performed offline rather than in real time, the rest of the classification procedure was 

identical to that of the whole-brain classifier, with training for each run based on a moving 

window of stable blocks and testing occurring volume by volume in the feedback blocks. 

The classifier output for each network was correlated with the whole-brain classifier output 

to estimate how much information in that network contributed to the real-time feedback in 

every run, and these correlations were averaged across runs within each participant. These 

network/whole-brain correlations were then correlated with the improvement in A′ from pre- 

to post-training across feedback participants to assess the usefulness of relying on 

information in the perceptual and attentional networks for training.

Behavioral control experiments

We recruited three behavioral control participants for each fMRI participant from the 

feedback group of the main study (total n = 48). They were all demographically matched to 

the fMRI participant in handedness, gender and age (±1 year). In addition, they received the 

same experimental design, in terms of stimulus order, block order, number of training runs, 

number of sessions and number of days between sessions. The training session was 

conducted in a behavioral testing room rather than the scanner. To emulate the contextual 

change experienced by the fMRI participants in switching environments between pre-/post-

training and training, the pre- and post-training sessions were run in a different room in a 

different part of our building. Across the three groups of participants, we manipulated the 

nature of the feedback that they received during training. The assignment of control 

participants to each of these feedback conditions was randomized.

The no-feedback experiment (n = 16) was identical to the fMRI study, other than being 

conducted outside the scanner and replacing all feedback blocks with stable blocks. That is, 

the stimulus mixture proportion remained constant at 50% for both categories during all 

blocks. As a result of removing the feedback, participants also did not receive instructions 

about how to interpret the varying stimulus proportions and there was no separate, yoked 

control group.

The RT-feedback experiment was identical to the fMRI study, other than being conducted 

outside the scanner and having the feedback controlled by RT rather than whole-brain 

classifier output. This experiment contained two between-subject conditions, the RT-

feedback group (n = 16) and the RT-control group (n = 16). Participants were assigned in 

matched pairs, with the RT-control participant in each pair receiving feedback yoked to that 

generated by the matched RT-feedback participant. Thus, by definition, the RT-feedback 
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participant was run before their match. However, the RT-feedback and RT-control 

participants from different pairs were interleaved and run in the same cohort. Participants in 

both groups received the same instructions, which were slightly modified from the fMRI 

study to remove scanner-related references. Not only were participants blind to their 

condition, but the experimenter was also blind (other than the first and last participants, who 

were necessarily RT-feedback and RT-control participants, respectively). A different 

researcher conducted participant recruitment and scheduling, resulting in a double-blind 

procedure. (Note that because of the lack of feedback in the no-feedback experiment, the 

experimenter was aware of whether a participant ended up in that particular group.)

The feedback regime for the RT-feedback condition was very similar to the fMRI 

experiment, using RT (instead of fMRI category evidence) as a measure of attentional state. 

During feedback blocks, the proportion of the task-relevant category increased when 

participants responded slowly and decreased when they responded quickly. We chose this 

mapping because RT was faster on trials preceding false alarms than correct rejections 

(Supplementary Fig. 2), consistent with habitual responding and worse sustained attention9. 

More specifically, the feedback was based on the participant’s deviation from their average 

RT, calculated over a trailing window of stable blocks (the same set as used for training data 

in the fMRI classifier). The stimulus mixture proportion was adjusted using the average of 

the RTs from the previous six trials, which was equivalent to the three brain volumes that 

were used for feedback in the fMRI version. A sigmoidal transfer function transformed this 

value into a stimulus mixture proportion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Real-time pipeline
(a) During feedback blocks, each brain volume (green) was acquired, preprocessed with 

masking, smoothing and z-scoring, and analyzed during the next volume with a multivariate 

classifier trained on volumes from recent stable blocks in which faces (blue) or scenes (pink) 

were attended. The result was averaged with the results for the two preceding volumes and 

used to update the stimulus shown to the participant on trials in the subsequent volume. (b) 

The classifier output indicated how attentive the participant was to the task-relevant versus 

task-irrelevant categories. This output was converted to a mixture proportion using a 

sigmoidal transfer function: less attention to the task-relevant category resulted in a decrease 

in the proportion of that category’s image in the composite stimulus on the next trial. These 

values were updated throughout the block as attention fluctuated over time.
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Figure 2. Brain-behavior relationship
To verify that the classifier could provide useful feedback, we examined how predictive it 

was of behavior. (a) Across participants, average decoding accuracy from the stable blocks 

of the rtfMRI session (determined by offline MVPA with n-fold cross-validation) was 

highly correlated with behavioral performance in the pre-training session. (b) Within 

participants, there was greater classifier output for the task-relevant category than for the 

task-irrelevant category before correctly rejecting than before false alarming to a lure trial. 

Error bars represent ±1 s.e.m.
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Figure 3. Change in behavior
Behavioral performance in the sustained attention task, as indexed by a non-parametric 

measure of sensitivity (A′), is plotted for the pre-training and post-training sessions. 

Participants who received accurate neurofeedback about their attentional state improved as a 

result of training, even though the feedback was no longer present in the post-training 

session. Control participants who received neurofeedback from other participants’ brains did 

not improve. A reliable group difference in improvement shows that accurate feedback 

boosted performance above and beyond practice effects and stimulus exposure. Error bars 

represent ±1 within-subject s.e.m.
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Figure 4. Searchlight analyses
(a) Voxel-wise analyses were conducted to identify brain regions whose surrounding activity 

patterns for the two attentional states became more separable after neurofeedback training. 

We computed cross-validation accuracy for classifiers trained to decode face and scene 

attention from RT-residualized BOLD data using a sphere with a 1-voxel radius centered on 

each voxel. Increased separability was quantified as the difference in accuracy between the 

end (run n) and start (run 1) of the fMRI session. (b) A greater increase in classifier accuracy 

for the feedback group relative to the control group (P < 0.05, randomization test with 

threshold-free cluster correction; Montreal Neurological Institute (MNI) x, y, z coordinates 

in mm) was observed in left ventral temporal cortex (−34, −24, −25) and left basal ganglia 

(−18, −4, −5). Small clusters (not shown) were obtained in left lateral temporal cortex (−50, 

−45, −25; −51, −36, −20; −48, −42, −28) and left anterior temporal lobe (−26, 22, −32).
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Figure 5. Potential sources of feedback
(a) Real-time whole-brain classifier output from the feedback blocks of a representative run 

for a single participant: evidence for each category (top) and evidence for the task-relevant 

minus task-irrelevant categories (bottom). (b) Offline classifier output for the same blocks 

from a perceptual network in occipitotemporal cortex (left) and an attentional network in 

frontoparietal cortex (right). The output from the whole-brain classifier was correlated with 

the outputs of the perceptual network classifier (rwp) and attentional network classifier (rwa) 

over time during the feedback blocks of each run. These correlations were averaged across 

runs within each participant to produce a measure of the extent to which the participant’s 

real-time feedback relied on information in each network. (c) This measure of reliance on 

each network was in turn correlated with the change in behavioral A′ from pre- to post-

training to assess whether feedback from each network was useful for training.
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