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Abstract

Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide 

future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. 

Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much 

slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in 

the nucleus accumbens across multiple time scales, using complementary microdialysis and 

voltammetric methods during adaptive decision-making. We first show that minute-by-minute 

dopamine levels covary with reward rate and motivational vigor. We then show that second-by-

second dopamine release encodes an estimate of temporally-discounted future reward (a value 

function). We demonstrate that changing dopamine immediately alters willingness to work, and 

reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our 

results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available 

reward for investment of effort, that is employed for both learning and motivational functions.
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Introduction

Altered dopamine signaling is critically involved in many human disorders from Parkinson’s 

Disease to drug addiction. Yet the normal functions of dopamine have long been the subject 

of debate. There is extensive evidence that dopamine affects learning, especially the 

reinforcement of actions that produce desirable results
1
. Specifically, electrophysiological 

studies suggest that bursts and pauses of dopamine cell firing encode the reward prediction 

errors (RPEs) of reinforcement learning theory (RL)
2
. In this framework RPE signals are 

used to update estimated values of states and actions, and these updated values affect 

subsequent decisions when similar situations are re-encountered. Further support for a link 

between phasic dopamine and RPE comes from measurements of dopamine release using 

fast-scan cyclic voltammetry (FSCV)
3,4 and optogenetic manipulations

5,6.

There is also extensive evidence that dopamine modulates arousal and motivation
7,8. Drugs 

that produce prolonged increases in dopamine release (e.g. amphetamines) can profoundly 

enhance psychomotor activation, while drugs or toxins that interfere with dopamine 

transmission have the opposite effect. Over slow timescales (tens of minutes) microdialysis 

studies have demonstrated that dopamine release ([DA]) is strongly correlated with 

behavioral activity, especially in the nucleus accumbens
9
 (i.e. mesolimbic [DA]). It is widely 

thought that slow (tonic) [DA] changes are involved in motivation
10-12

. However, faster 

[DA] changes also appear to have a motivational function
13

. Subsecond increases in 

mesolimbic [DA] accompany motivated approach behaviors
14,15

, and dopamine ramps 

lasting several seconds have been reported as rats approach anticipated rewards
16

, without 

any obvious connection to RPE. Overall, the role of dopamine in motivation is still 

considered "mysterious"
12

.

The purpose of this study was to better understand just how dopamine contributes to 

motivation, and to learning, simultaneously. We demonstrate that mesolimbic [DA] conveys 

a motivational signal in the form of state values, which are moment-by-moment estimates of 

available future reward. These values are used for making decisions about whether to work, 

i.e. to invest time and effort in activities that are not immediately rewarded, in order to 

obtain future rewards. When there is an unexpected change in value, the corresponding 

change in [DA] not only influences motivation to work, but also serves as an RPE learning 

signal, reinforcing specific choices. Rather than separate functions of “phasic” and “tonic” 

[DA], our data support a unified view in which the same dynamically-fluctuating [DA] 

signal influences both current and future motivated behavior.

Results

Motivation to work adapts to recent reward history

We made use of an adaptive decision-making task (Fig.1a and Methods) that is closely 

related to the reinforcement learning framework (a “two-armed bandit”). On each trial a 

randomly-chosen nose poke port lit up (Light-On) indicating that the rat might profitably 

approach and place its nose in that port (Center-In). The rat had to wait in this position for a 

variable delay (0.75-1.25s), until an auditory white noise burst (Go cue) prompted the rat to 

make a brief leftward or rightward movement to an adjacent side port. Unlike previous 
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behavioral tasks using the same apparatus, the Go cue did not specify which way to move; 

instead the rat had to learn through trial-and-error which option was currently more likely to 

be rewarded. Left and right choices had separate reward probabilities (each either 10%, 50%, 

or 90%), and these probabilities changed periodically without any explicit signal. On 

rewarded trials only, entry into the side port (Side-In) immediately triggered an audible click 

(the reward cue) as a food hopper delivered a sugar pellet to a separate food port at the 

opposite side of the chamber.

Trained rats readily adapted their behavior in at least two respects (Fig.1b,c). Firstly, actions 

followed by rewards were more likely to be subsequently selected (i.e. they were 

reinforced), producing left/right choice probabilities that scaled with actual reward 

probabilities
17

 (Fig.1d).

Secondly, rats were more motivated to perform the task while it was producing a higher rate 

of reward
18,19

. This was apparent from “latency” (the time taken from Light-On until the 

Center-In nose poke), which scaled inversely with reward rate (Fig.1e-g). When reward rate 

was higher rats were more likely to be already waiting near the center ports at Light-On 

(“engaged” trials; Supplementary Fig.1), producing very short latencies. Higher reward rates 

also produced shorter latencies even when rats were not already engaged at Light-On 

(Supplementary Fig.1), due to an elevated moment-by-moment probability (hazard rate) of 

choosing to begin work (Fig.1h,i).

These latency observations are consistent with optimal foraging theories
20

, which argue that 

reward rate is a key decision variable (“currency”). As animals perform actions and 

experience rewards they construct estimates of reward rate, and can use these estimates to 

help decide whether engaging in an activity is worthwhile. In a stable environment, the best 

estimate of reward rate is simply the total magnitude of past rewards received over a long 

time period, divided by the duration of that period. It has been proposed that such a “long-

term-average reward rate” is encoded by slow (tonic) changes in [DA]
10

. However, under 

shifting conditions such as our trial-and-error task, the reward rate at a given time is better 

estimated by more local measures. Reinforcement learning algorithms use past reward 

experiences to update estimates of future reward from each state: a set of these estimates is 

called a value function
21

.

Minute-by-minute dopamine correlates with reward rate

To test whether changes in [DA] accompany reward rate during adaptive decision-making, 

we first employed microdialysis in the nucleus accumbens combined with liquid 

chromatography - mass spectrometry. This method allows us to simultaneously assay a wide 

range of neurochemicals, including all of the well-known low-molecular weight striatal 

neurotransmitters, neuromodulators and their metabolites (Fig.2a), each with 1-minute time 

resolution. We performed regression analyses to assess relationships between these 

neurochemicals and a range of behavioral factors: 1) reward rate; 2) the number of trials 

attempted (as an index of a more general form of activation/arousal); 3) the degree of 

exploitation versus exploration (an important decision parameter that has been suggested to 

involve [DA]; see Methods), and 4) the cumulative reward obtained (as an index of 

progressively increasing factors such as satiety).
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We found a clear overall relationship between [DA] and ongoing reward rate (R2 = 0.15, p < 

10−16). Among the 19 tested analytes, [DA] had by far the strongest relationship to reward 

rate (Fig.2b), and this relationship was significant in 6 of 7 individual sessions, from 6 

different rats (Supplementary Fig.2). Modest significant relationships were also found for 

the dopamine metabolites DOPAC and 3-MT. We found a weaker relationship between [DA] 

and the number of trials attempted, but this was entirely accounted for by reward rate - i.e. if 

the regression model already included reward rate, adding number of attempts did not 

improve model fit. We did not find support for alternative proposals that tonic [DA] is 

related to exploration or exploitation, since higher [DA] was not associated with an altered 

probability of choosing the better left/right option (Fig.2b, Supplementary Fig.2). [DA] also 

showed no relationship to the cumulative total rewards earned (though there was a strong 

relationship between cumulative reward and the dopamine metabolite HVA, among other 

neurochemicals; Fig.2b). Additional information about the relationships between 

neurochemicals and behavioral variables, and one another, is given in Supplementary Fig.3.

We conclude that higher reward rate is associated specifically with higher average [DA], 

rather than other striatal neuromodulators, and with increased motivation to work. This 

finding supports the proposal that [DA] helps to mediate the effects of reward rate on 

motivation
10

. However, rather than signaling an especially “long-term” rate of reward, [DA] 

tracked minute-by-minute fluctuations in reward rate. We therefore needed to assess whether 

this result truly reflects an aspect of [DA] signaling that is inherently slow (tonic), or could 

instead be explained by rapidly-changing [DA] levels, that signal a rapidly-changing 

decision variable.

Dopamine signals time-discounted available future reward

To help distinguish these possibilities we used FSCV to assess task-related [DA] changes on 

fast time scales (from tenths of seconds to tens of seconds; Fig.3). Within each trial, [DA] 

rapidly increased as rats poked their nose in the start hole (Fig.3c,d, Center-In panel) and for 

all rats this increase was more closely related to this approach behavior than to the onset of 

the light cue (for data from each of the single sessions from all 6 rats, see Supplementary 

Fig.4). A second abrupt increase in [DA] occurred following presentation of the Go cue (Fig.

3c,d, middle panel). If received, the reward cue prompted a third abrupt increase (Fig.3c,d, 

Side-In panel). [DA] rose still further as rat approached the food port (Fig.3c,d, right), then 

declined once the reward was obtained. The same overall pattern of task-related [DA] 

change was observed in all rats, albeit with some variation (Supplementary Fig.4). [DA] 

increases did not simply accompany movements, since on the infrequent trials in which the 

rat approached the food port without hearing the reward cue we observed no corresponding 

increase in [DA] (Fig.3c,d, right).

The overall ramping up of [DA] as rats drew progressively closer to reward suggested some 

form of reward expectation
16

. Specifically, we hypothesized that [DA] continuously signals 

a value function: the temporally-discounted reward predicted from the current moment. To 

make this more clear, consider a hypothetical agent moving through a sequence of distinct, 

unrewarded states leading up to an expected reward (Fig.4a, top; perhaps a rat running at 
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constant speed along a familiar maze arm). Since the reward is more discounted when more 

distant, the value function will progressively rise until the reward is obtained.

This value function describes the time-varying level of motivation. If a reward is distant (so 

strongly discounted), animals are less likely to choose to work for it. Once engaged however, 

animals are increasingly motivated, and so less likely to quit, as they detect progress towards 

the reward (the value function produces a “goal-gradient”, in the terminology of Hull
22

). If 

the reward is smaller or less reliable, the value function will be lower, indicating less 

incentive to begin work. Moving closer to our real situation, suppose that reward is equally 

likely to be obtained, or not, on any given trial, but a cue indicates this outcome halfway 

through the trial (Fig.4a, bottom). The increasing value function should initially reflect the 

overall 0.5 reward probability, but if the reward cue occurs estimated value should promptly 

jump to that of the (discounted) full reward.

Such unpredicted sudden transitions to states with a different value produce “temporal-

difference” RPEs (Fig.4b). In particular, if the value function is low (e.g. the trajectory 

indicating 0.25 expectation of reward), the reward cue produces a large RPE, as value jumps 

up to the discounted value of the now-certain reward. If instead reward expectation was 

higher (e.g. 0.75 trajectory), the RPE produced by the reward cue is smaller. Since temporal 

difference RPEs are rapid shifts in value, under some conditions they can be challenging to 

dissociate from value itself. However, RPE and value signals are not identical. In particular, 

as reward gets closer, the state value progressively increases but RPE remains zero unless 

events occur with unpredicted value or timing.

Our task includes additional features, such as variable timing between events and many 

trials. We therefore considered what the “true” value function should look like - on average - 

based on actual times to future rewards (Fig.4c). At the beginning of a trial, reward is at least 

several seconds away, and may not occur at all until a later trial. During correct trial 

performance each subsequent, variably-timed event indicates to the rat that rewards are 

getting closer and more likely, and thus causes a jump in state value. For example, hearing 

the Go cue indicates both that reward is closer, and that the rat will not lose out by moving 

too soon (an impulsive procedural error). Hearing the reward cue indicates that reward is 

now certain, and only a couple of seconds away.

To assess how the intertwined decision variables - state value and RPE - are encoded by 

phasic [DA], we compared our FSCV measurements to the dynamically varying state value 

and RPE of a reinforcement learning model (see Methods). This simplified model consisted 

of a set of discrete states (Supplementary Fig.5), whose values were updated using temporal-

difference RPEs. When given as input the actual sequence of behavioral events experienced 

by the rat, the model’s value function consisted of a series of increases within each trial (Fig. 

4d,e), resembling the observed time course of [DA] (Fig.3c).

Consistent with the idea that state value represents motivation to work, model state value 

early in each trial significantly correlated with behavioral latencies for all rats (across a wide 

range of model parameter settings; Supplementary Fig.5). We identified model parameters 

(learning rate = 0.4, discount factor = 0.95) that maximized this behavioral correlation 
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across all rats combined, and examined the corresponding within-trial correlation between 

[DA] and model variables. For all of the 6 FSCV rats we found a clear and highly significant 

positive correlation between phasic [DA] and state value V (Fig. 4f). [DA] and RPE were 

also positively correlated, as expected since V and RPE partially covary. However, in every 

case [DA] had a significantly stronger relationship to V than to RPE (Fig.4f, Supplementary 

Fig.5). We emphasize that this result was not dependent on specific model parameters; in 

fact, even if parameters were chosen to maximize the [DA] : RPE correlation, the [DA] : V 

correlation was stronger (Supplementary Fig.5).

Correlations were maximal when V was compared to the [DA] signal measured ~0.4-0.5s 

later (Fig.4g). This small delay is consistent with the known brief lag associated with the 

FSCV method using acute electrodes
23

, and prior observations that peak [DA] response 

occurs ~0.5s after cue onset with acute FSCV recordings
3
. As an alternative method of 

incorporating temporal distortion that might be produced by FSCV and/or the finite speeds 

of DA release and update, we convolved model variables with a kernel consisting of an 

exponential rise and fall, and explored the effect of varying kernel time constants. Once 

again [DA] always correlated much better with V than with RPE, across a wide range of 

parameter values (Supplementary Fig.6). We conclude that state value provides a more 

accurate description of the time course of [DA] fluctuations than RPE alone, even though 

RPEs can be simultaneously signaled as changes in state value.

Abrupt dopamine changes encode reward prediction errors

FSCV electrode signals tend to drift over a timescale of minutes, so standard practice is to 

assess [DA] fluctuations relative to a pre-trial “baseline” of unknown concentration (as in 

Fig.3). Presented this way, reward cues appeared to evoke a higher absolute [DA] level when 

rewards were less common (Fig.5a,b), consistent with a conventional RPE-based account of 

phasic [DA]. However, our model implies a different interpretation of this data (Fig. 4b, 5c). 

Rather than a jump from a fixed to a variable [DA] level (that encodes RPE), we predicted 

that the reward cue actually causes a [DA] jump from a variable [DA] level (reflecting 

variable estimates of upcoming reward) to a fixed [DA] level (that encodes the time-

discounted value of the now certain reward).

To test these competing accounts, we compared [DA] levels between consecutive pairs of 

rewarded trials with Side-In events < 30s apart (i.e. well within the accepted stable range of 

FSCV measurements
24

; for included pairs of trials the average time between Side-In events 

was 11.5s). If the [DA] level evoked by the reward cue reflects RPE, then this level should 

tend to decline as rats experience consecutive rewards (Fig.5d,e). However, if [DA] 

represents state value then “baseline” [DA] should asymptotically increase with repeated 

rewards while reward cue-evoked [DA] remains more stable (Fig.5f,g). The latter proved 

correct (Fig.5h,i). These results provide clear further evidence that [DA] reflects reward 

expectation (the value function), not just RPE.

Considering the microdialysis and FSCV results together, a parsimonious interpretation is 

that, across multiple measurement time scales, [DA] simply signals estimated availability of 

reward. The higher minute-by-minute [DA] levels observed with greater reward rate reflect 

both the higher values of states distal to rewards (including “baseline” periods between 

Hamid et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2016 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



active trial performance) and the greater proportion of time spent in high-value states 

proximal to rewards.

By conveying an estimate of available reward, mesolimbic [DA] could be used as a 

motivational signal, helping to decide whether it is worthwhile to engage in effortful activity. 

At the same time, abrupt relative changes in [DA] could be detected and used as an RPE 

signal for learning. But is the brain actually using [DA] to signal motivation, or learning, or 

both, within this task?

Dopamine both enhances motivation and reinforces choices

To address this question we turned to precisely-timed, bidirectional, optogenetic 

manipulations of dopamine. Following an approach validated in previous studies
6
, we 

expressed channelrhodopsin-2 (ChR2) selectively in dopamine neurons by combining TH-
Cre+ rats with DIO-ChR2 virus injections and bilateral optic fibers in the ventral tegmental 

area (Supplementary Fig.7). We chose optical stimulation parameters (10ms pulses of blue 

light at 30Hz, 0.5s total duration; Fig.6a,b) that produced phasic [DA] increases of similar 

duration and magnitude to those naturally observed with unexpected reward delivery. We 

provided this stimulation at one of two distinct moments during task performance. We 

hypothesized that enhancing [DA] coincident with Light-On would increase the estimated 

motivational value of task performance; this would make the rat more likely to initiate an 

approach, leading to shorter latencies on the same trial. We further hypothesized that 

enhancing [DA] at the time of the major RPE (Side-In) would affect learning, as reflected in 

altered behavior on subsequent trials. In each session stimulation was given at only one of 

these two times, and on only 30% of trials (randomly selected) to allow within-session 

comparisons between stimulated and unstimulated trials.

Providing phasic [DA] at Side-In reinforced choice behavior: it increased the chance that the 

same left or right action was repeated on the next trial, whether or not the food reward was 

actually received (Fig.6c, left; n=6 rats; two-way ANOVA yielded significant main effects 

for LASER, F(1,5)=224.0, p=2.4×10−5 and for REWARD, F(1,5)=41.0, p=0.0014, without a 

significant LASER * REWARD interaction; see also Supplementary Fig.8c). No reinforcing 

effect was seen if the same optogenetic stimulation was given in littermate controls (Fig.6c 

middle; n=6 TH-Cre− rats; LASER main effect F(1,5)=2.51, p=0.174). For a further group 

of TH-Cre+ animals (n=5) we instead used the inhibitory opsin Halorhodopsin (eNpHR3.0). 

Inhibition of dopamine cells at Side-In reduced the probability that the same left/right choice 

was repeated on the next trial (LASER main effect F(1,4)=18.7, p=0.012, without a 

significant LASER * REWARD interaction). A direct comparison between these three rat 

groups also demonstrated a group-specific effect of Side-In laser stimulation on choice 

reinforcement (two-way ANOVA, LASER * GROUP interaction F(2,14)=69.4, 

p=5.4×10−8). These observations support the hypothesis that abrupt [DA] fluctuations serve 

as an RPE learning signal, consistent with prior optogenetic manipulations
7
. However, extra 

[DA] at Side-In did not affect subsequent trial latency (Supplementary Fig.8a,b), indicating 

that our artificial [DA] manipulations reproduced some, but not all, types of behavioral 

change normally evoked by rewarded trials.
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Optogenetic effects on reinforcement were temporally-specific: providing extra [DA] at 

Light-On (instead of Side-In) on trial n did not affect the probability that rats made the same 

choice on trial n+1 (LASER main effect F(1,5) = 0.031, p = 0.867; see also Supplementary 

Fig.8c) nor did it affect the probability that choice on trial n was the same as trial n-1 
(LASER main effect F(1,5) = 0.233, p=0.649).

By contrast, extra [DA] at Light-On dramatically affected latency for that very same trial 

(Fig. 6d, S8). The effect on latencies depended on what the rat was doing at the time of 

Light-On (two-way ANOVA yielded a significant LASER * ENGAGED interaction, F(1,3) 

= 28.1, p=0.013). If the rat was already engaged in task performance, the very short latencies 

became slightly longer on average (median control latency = 0.45s, median stimulated 

latency=0.61s; simple main effect of LASER, F(1,3) = 10.4, p = 0.048). This effect 

apparently resulted from additional laser-evoked orienting movements on a subset of trials 

(see Supplementary Fig.9 for more detailed analysis). By contrast, for non-engaged trials 

extra [DA] significantly reduced latencies (Fig. 6d; median control latency=2.64s, median 

stimulated latency=2.16s; simple main effect of LASER, F(1,3) = 32.5, p=0.011). These 

optogenetic results are consistent with the idea that mesolimbic [DA] is less important for 

the initiation of simple, cue-evoked responses when a task is already underway
25

, but is 

critical for motivating “flexible approach” behaviors
26

.

The shorter latencies produced by extra [DA] was not the result of rats approaching the 

Center-In port at faster speeds, since the average approach trajectory was unaffected 

(Supplementary Fig.9). Instead, extra [DA] transiently increased the probability that rats 

initiated the approach behavior. As the approach itself lasted ~1-2s (Supplementary Fig.9), 

the result was an increased rate of Center-In events ~1-2s after the laser pulse train (Fig. 6e; 

see Supplementary Fig.10 for hazard rate time courses in individual rats). This effect of 

Light-On laser stimulation on hazard rates was dependent on rat group (two-way ANOVA, 

LASER * GROUP interaction F(2,14) = 26.28, p = 0.000018). Post-hoc pairwise 

comparison of simple laser effects showed a significant increase in hazard rate for TH-Cre+ / 

ChR2 rats (F(1,14) = 62.06, p = 1.63×10−6) and a significant reduction in hazard rate for 

TH-Cre+ / eNpHR3.0 rats (F(1,14) = 6.31, p = 0.025), with no significant change in TH-
Cre- / ChR2 rats (F(1,14) = 2.81, p = 0.116). Overall we conclude that, beyond just 

correlating with estimates of reward availability, mesolimbic [DA] helps translate those 

estimates into decisions to work for reward.

Discussion

A dopamine value signal used for both motivation and learning

Our results help confirm a range of disparate prior ideas, while placing them within a newly 

integrated theoretical context. First, phasic [DA] has been previously related to motivated 

approach
14,15

 reward expectation
16

 and effort-based decision-making
27

, but our 

demonstration that [DA] specifically conveys the temporally-discounted value of future 

rewards grounds this motivational aspect of dopamine fluctuations within the quantitative 

frameworks of machine learning and optimal foraging theory. This idea is also consistent 

with findings using other techniques - for example, fMRI signals in ventral striatum (often 
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argued to reflect dopamine signaling) encode reward expectation in the form of temporally-

discounted subjective value
28

.

Second, using the complementary method of microdialysis to assess slower changes we 

partly confirmed proposals that reward rate is reflected specifically in increased [DA], which 

in turn enhances motivational vigor
10

. However, our critical, novel argument is that this 

motivational message of reward availability can dynamically change from moment to 

moment, rather than being an inherently slow (tonic) signal. Using optogenetics we 

confirmed that phasic changes in [DA] levels immediately affect willingness to engage in 

work, supporting the idea that sub-second [DA] fluctuations promptly influence motivational 

decision-making
13,29

. This dynamic [DA] motivation signal can help account for detailed 

patterns of time allocation
30

. For example, animals take time to reengage in task 

performance after getting a reward (the “post-reinforcement pause”), and this pause is longer 

when the next reward is smaller or more distant. This behavioral phenomenon has been a 

long-standing puzzle
31

 but fits well with our argument that the time-discounted value of 

future rewards, conveyed by [DA], influences the moment-by-moment probability (hazard 

rate) of engaging in work.

Third, we confirmed the vital role of fast [DA] fluctuations, including transient dips, in 

signaling RPEs to affect learning
4-6. However, a striking result from our analyses is that 

RPEs are conveyed by fast relative changes in the [DA] value signal, rather than deviations 

from a steady (tonic) baseline. This interpretation explains for the first time how [DA] can 

simultaneously provide both learning and motivational signals, an important gap in prior 

theorizing. Our results also highlight the importance of not assuming a consistent “baseline” 

[DA] level across trials in voltammetry studies.

One interesting implication is that among the many postsynaptic mechanisms that are 

affected by dopamine, some are concerned more with absolute levels and others with fast 

relative changes. This possibility needs to be investigated further, together with the natural 

working hypothesis that [DA] effects on neuronal excitability are closely involved in 

motivational functions
32

 while [DA] effects on spike-timing-dependent-plasticity are 

responsible for reinforcement-driven learning
1
. It is also intriguing that a pulse of increased 

[DA] sufficient to immediately affect latency, or to alter left/right choice on subsequent 

trials, does not appear sufficient to alter latency on subsequent trials. This suggests that state 

values and left/right action values
17

 may be updated via distinct mechanisms, or at different 

times within the trial.

Though dopamine is often labeled a “reward” transmitter, [DA] levels dropped during 

reward consumption, consistent with findings that dopamine is relatively less important for 

consuming - and apparently enjoying - rewards
7,33

. Mesolimbic [DA] has also been shown 

not to be required for performance of simple actions that are immediately followed by 

reward, such as pressing a lever once to obtain food
34

. Rather, loss of mesolimbic [DA] 

reduces motivation to work, in the sense of investing time and effort in activities that are not 

inherently rewarding or interesting, but may eventually lead to rewards
12

. Conversely, 

increasing [DA] with drugs such as amphetamines increases motivation to engage in 
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prolonged work, in both normal subjects and those with attention-deficit hyperactivity 

disorder
35,36

.

Dopamine and decision dynamics

Our interpretation of mesolimbic [DA] as signaling the value of work is based upon rat 

decisions to perform our task rather than alternative “default” behaviors, such as grooming 

or local exploration. In this view mesolimbic [DA] helps determine whether to work, but not 

which activity is most worthwhile (i.e. it is “activational” more than “directional”
12

). It may 

be best considered to signal the overall motivational excitement associated with reward 

expectation, or equivalently, the perceived opportunity cost of sloth
10,30

.

Based on prior results
27

 we expect that [DA] signals reward availability without factoring in 

the costs of effortful work, but we did not parametrically vary such costs here. Other notable 

limitations of this study are that we only examined [DA] in the nucleus accumbens, and we 

did not selectively manipulate [DA] within various striatal subregions (and other dopamine 

targets). Our functional account of [DA] effects on behavioral performance is undoubtedly 

incomplete, and it will be important to explore alternative descriptions, especially more 

generalizable accounts that apply throughout the striatum. In particular, our observation that 

mesolimbic [DA] affects the hazard rate of decisions to work seems compatible with a 

broader influence of striatal [DA] over decision-making - for example, by setting 

“thresholds” for decision process completion
27,37,38

. Within sensorimotor striatum 

dopamine influences the vigor (and learning) of more elemental actions
38,39

, and it has been 

shown that even saccade speed in humans is best predicted by a discounting model that 

optimizes the rate of reward
40

. In this way the activational / invigorating role of [DA] on 

both simple movements and motivation may reflect the same fundamental, computational-

level mechanism applied to decision-making processes throughout striatum, affecting 

behaviors across a range of timescales.

Activational signals are useful, but not sufficient for adaptive decision-making in general. 

Choosing between alternative, simultaneously available courses of action requires net value 

representations for the specific competing options
27,41

. Although different subpopulations of 

dopamine neurons may carry somewhat distinct signals
42

, the aggregate [DA] message 

received by target regions is unlikely to have sufficient spatial resolution to represent 

multiple competing values simultaneously
43

 or sufficient temporal resolution to present 

them for rapid serial consideration
44

. By contrast, distinct ensembles of GABAergic neurons 

within the basal ganglia can dynamically encode the value of specific options, including 

through ramps-to-reward
45,46

 that may reflect escalating bids for behavioral control. Such 

neurons are modulated by dopamine, and in turn provide key feedback inputs to dopamine 

cells that may contribute to the escalating [DA] patterns observed here.

Relationship between dopamine cell firing and release

Firing rates of presumed dopamine cells have been previously reported to escalate within 

trials under some conditions
47

, but this has not been typically reported with reward 

anticipation. Several factors may contribute to this apparent discrepancy with our [DA] 

measures. The first is the nature of the behavioral task. Many important prior studies of 
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dopamine
2,3 (though not all

41
) used Pavlovian situations, in which outcomes are not 

determined by the animal’s actions. When effortful work is not required to obtain rewards, 

the learned value of work may be low and corresponding decision variables may be less 

apparent.

Secondly, a moving rat receives constantly-changing sensory input, and may thus more 

easily define and discriminate a set of discrete states leading up to reward, compared to 

situations in which elapsed time is the sole cue of progress. When such a sequence of states 

can be more readily recognized, it may be easier to assign a corresponding set of escalating 

values as reward gets nearer in time. Determining subjects’ internal state representations, 

and their development during training, is an important challenge for future work. It has been 

argued that ramps in [DA] might actually reflect RPE if space is non-linearly represented
48

, 

or if learned values rapidly decay in time
49

. However, these suggestions do not address the 

critical relationship between [DA] and motivation that we aim to account for here.

Finally, release from dopamine terminals is strongly influenced by local microcircuit 

mechanisms within striatum
50

 producing a dissociation between dopamine cell firing and 

[DA] in target regions. This dissociation is not complete - the ability of unexpected sensory 

events to drive a rapid, synchronized burst of dopamine cell firing is still likely to be of 

particular importance for abrupt RPE signaling at state transitions. More detailed models of 

dopamine release, incorporating dopamine cell firing, local terminal control, and uptake 

dynamics will certainly be needed to understand to how [DA] comes to convey a value 

signal.

Online Methods

Animals and Behavioral Task

All animal procedures were approved by the University of Michigan Committee on Use and 

Care of Animals. Male rats (300-500g, either wild-type Long-Evans or TH-Cre+ with a 

Long-Evans background
51

 were maintained on a reverse 12:12 light:dark cycle and tested 

during the dark phase. Rats were mildly food deprived, receiving 15g of standard laboratory 

rat chow daily in addition to food rewards earned during task performance. Training and 

testing was performed in computer-controlled Med Associates operant chambers (25cm × 

30cm at widest point) each with a 5-hole nose-poke wall, as previously described
52-54

. 

Training to perform the trial-and-error task typically took ~2 months, and included several 

pretraining stages (2 days-2 weeks each, advancing when ~85% of trials were performed 

without procedural errors). First, any one of the 5 nosepoke holes was illuminated (at 

random), and poking this hole caused delivery of a 45 mg fruit punch flavored sucrose pellet 

into the Food Port (FR1 schedule). Activation of the food hopper to deliver the pellet caused 

a audible click (the reward cue). In the next stage, the hole illuminated at trial start was 

always one of the three more-central holes (randomly-selected), and rats learned to poke and 

maintain hold for a variable interval (750-1250ms) until Go cue onset (250ms duration white 

noise, together with dimming of the start port). Next, Go cue onset was also paired with 

illumination of both adjacent side ports. A leftward or rightward poke to one of these ports 

was required to receive a reward (each at 50% probability), and initiated the inter-trial 

interval (5-10s randomly selected from a uniform distribution). If the rat poked an unlit 
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center port (wrong start) or pulled out before the end of the hold period (false start), the 

house light turned on for the duration of an inter-trial-interval. During this stage (only), to 

discourage development of a side bias, a maximum of three consecutive pokes to the same 

side were rewarded. Finally, in the complete trial-and-error task left and right choices had 

independent reward probabilities, each maintained for blocks of 40-60 trials (randomly 

selected block length and sequence for each session). All combinations of 10%, 50% and 

90% reward probability were used except 10:10 and 90:90. There was no event that 

indicated to the rat that a trial would be unrewarded other than the omission of the Reward 

cue and the absence of the pellet.

For a subset of ChR2 optogenetic sessions, overhead video was captured at 15 frames/s. The 

frames immediately preceding the Light-On events were extracted, and the positions of the 

nose tip and neck were marked (by scorers blind to whether that trial included laser 

stimulation). These positions were used to determine rat distance and orientation to the 

center port (the one that will be illuminated on that trial). Each trial was classified as 

“engaged” or “unengaged”, using cutoff values of distance (10.6cm) and orientation (84°) 

that minimized the overlap between aggregate pink and green distributions. To assess how 

path length was affected by optogenetic stimulation, rat head positions were scored for each 

video frame between Light-On and Center-Nose-In. Engaged trials were further classified by 

whether the rat was immediately adjacent to one of the three possible center ports, and if that 

port was the one that became illuminated at Light-On or not (i.e. lucky, unlucky guesses).

Smoothing of latency (and other) time series for graphical display (Fig.1B,C) was performed 

using the MATLAB filtfilt function with a 7-trial window. To quantify the impact of prior 

trial rewards on current trial latency, we used a multiple regression model:

where r = 1 if the corresponding trial was rewarded. All latency analyses excluded trials of 

zero latency (i.e. those for which the rat’s nose was already inside the randomly-chosen 

center port at Light-On). For analysis of prior trial outcomes on left/right choice behavior we 

used another multiple regression model, just as previously described
55

.

Latency survivor curves were calculated simply as the proportion of trials for which the 

Center-In event had not yet occurred, at each 250ms interval after Light-On (i.e. a inverted 

cumulative latency distribution), smoothed with a 3-point moving average (xt’ = 0.25xt-1 

+ 0.5xt + 0.25xt+1). These survivor curves were then used to calculate hazard rates, as the 

fraction of the remaining latencies that occurred in each 250ms bin (i.e. the number of 

Center-In events that happened, divided by the number that could have happened).

We defined reward rate as the exponentially-weighted moving average of individual rewards 

(i.e., a leaky integrator
56-58

). For each session the integrator time constant was chosen to 

maximize the (negative) correlation between reward rate and behavioral latency. If instead 

we defined reward rate as simply the number of rewards during each minute (i.e. ignoring 

the contributions of trials in previous minutes to current reward rate), the relationship 
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between microdialysis-measured [DA] in that minute and reward rate was lower, though still 

significant (R2=0.084, p=5.5×10−10).

An important parameter in reinforcement learning is the degree to which agents choose the 

option that is currently estimated to be the best (exploitation) versus trying alternatives to 

assess whether they are actually better (exploration), and dopamine has been proposed to 

mediate this trade-off
59,60

. To assess this we examined left/right choices in the second half 

of each block, by which time choices have typically stabilized (Fig. 1D; this behavioral 

pattern was also seen for the microdialysis sessions). We defined an Exploitation Index as 

the proportion of trials for which rats choose the better option in these second block halves 

(so values close to 1 would be fully exploitative, and values close to 0.5 would be random/

exploratory). As an alternative metric of exploration/exploitation, we examined the number 

of times that the rat switched between left and right choices in each minute; this metric also 

showed no significant relationship to any neurochemical assayed in our microdialysis 

experiments.

Microdialysis

After 3-6 months of behavioral training rats were implanted with guide cannulae bilaterally 

above the nucleus accumbens core (NAcc; +1.3-1.9mm AP, 1.5mm ML from bregma) and 

allowed to recover for at least one week before retraining. On test days (3-5 weeks after 

cannula implantation) a single custom made microdialysis probe (300µm diameter) with 

polyacrylonitrile membrane (Hospal, Bologna, Italy; 20kD molecular weight cutoff) was 

inserted into NAcc, extending 1mm below the guide cannula. Artificial CSF (composition in 

mM: CaCl2 1.2; KCl 2.7, NaCl 148, MgCl2 0.85, 0.25 ascorbate) was perfused continuously 

at 2µl/min. Rats were placed in the operant chamber with the house light on for an initial 

90min period of probe equilibration, after which samples were collected once every minute. 

Following five baseline samples the house light was extinguished to indicate task 

availability.

For chemical analyses, we employed a modified version of our benzoyl chloride 

derivatization and HPLC-MS analysis method
61

. Immediately after each 2µl sample 

collection, we added 1.5µl of buffer (sodium carbonate monohydrate 100 mM), 1.5µl of 2% 

benzoyl chloride in acetonitrile, and 1.5µl of a 13C-labeled internal standard mixture (total 

mixture volume 6.5µl). The mixture was vortexed for 2s between each reagent addition. 

Since ACh is a quaternary amine and thus not derivatized by benzoyl chloride, it was 

directly detected in its native form (transition 146->87). Deuterated ACh (d4-ACh) was also 

added to the internal standard mixture for improved ACh quantification
62

. Five µl of the 

sample mixture was automatically injected by a Thermo Accela HPLC system (Thermo 

Fisher Scientific, Waltham, MA) onto a reverse-phase Kinetex biphenyl HPLC column 

(2.1mm × 100 mm; 1.7 particle size; Phenomenex, Torrance CA). The HPLC system was 

interfaced to a HESI II ESI probe and Thermo TSQ Quantum Ultra (Thermo Scientific) 

triple quadrupole mass spectrometer operating in positive mode. Sample run times for all 

analytes were 3 min. To quantify neurochemicals in dialysate samples, we constructed 6-

point external calibration curves encompassing known physiological concentrations. Thermo 

Xcalibur 2.1 software (Thermo Fisher Scientific) automatically detected chromatographic 
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peaks and quantified concentrations. To reduce noise each resulting minute-by-minute time 

series was smoothed with a 3-point moving average (as above), then converted to Z-scores to 

facilitate comparison between subjects.

Regression analysis of microdialysis data was performed stepwise. We first constructed 

models with only one behavioral variable as predictor and one outcome (analyte). If two 

behavioral variables showed a significant relationship to a given analyte, we constructed a 

model with both behavioral variables and an interaction term, and examined the capacity of 

each variable to explain analyte variance without substantial multicollinearity.

To determine cross-correlogram statistical thresholds we first shuffled the time series for all 

sessions 200,000 times, and calculated the average Pearson correlation coefficients (i.e. the 

zero-lag cross-correlation) for each shuffled pair of time series. Thresholds were based on 

the tails of the resulting distribution: i.e. for uncorrected two-tailed alpha=0.05 we would 

find the levels for which 2.5% of the shuffled values lay outside these thresholds. As we 

wished to correct for multiple comparisons we divided alpha by the number of tests (276; 

number of cross-correlograms = 23 timeseries * 22 timeseries divided by two, since the 

crosscorrelograms are just mirror-reversed when the order is changed, plus 23 

autocorrelograms).

Voltammetry

FSCV electrode construction, data acquisition and analysis were performed as described
63

. 

Rats were implanted with a guide cannula above the right NAcc (+1.3-2.0 mm AP, 1.5 mm 

ML from bregma), a Ag/AgCl reference electrode (in the contralateral hemisphere) and a 

bipolar stimulation electrode aimed at the VTA (−5.2 mm AP, 0.8 mm ML, 7.5 mm DV). 

Carbon fiber electrodes were lowered acutely into the NAcc. Dopaminergic current was 

quantified offline using principal component regression (PCR)
24

 using training data for 

dopamine and pH from electrical stimulations. Recording time points that exceeded the PCR 

residual analysis threshold (Qα) were omitted from further processing or analysis. Current to 

[DA] conversion was based on in vitro calibrations of electrodes constructed in the same 

manner with the same exposed fiber length. On many days data was not recorded due to 

electrode breakage or obvious movement-related electrical noise. FSCV recordings were 

made from 41 sessions (14 rats total). We excluded those sessions for which the rat failed to 

complete at least three blocks of trials, and those in which electrical artifacts caused >10% 

of trials to violate the assumptions of PCR residual analysis. The remaining 10 sessions 

came from 6 different rats. To avoid aggregate results being overly skewed by a single 

animal, we only included one session from each of the six rats (the session with the largest 

reward-evoked [DA] increase). Upon completion of FSCV testing, animals were deeply 

anesthetized and electrolytic lesions were created (40 μA for 15 seconds at the same depth as 

recording site) using stainless steel electrodes with 500 μm of exposed tip (AM Systems, 

USA). Lesion locations were later reconstructed in Nissl stained sections.

For between-session comparisons we normalized [DA] to the average [DA] difference 

between the pre-trial baseline and Food-Port-In aligned peak levels. To visualize the reward-

history-dependence of [DA] change between consecutive trials (Fig.5H), we first extracted 

time series of normalized [DA] from consecutive pairs of rewarded trials (Side-In event to 
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subsequent Side-In event separated by less than 30s). For each session we divided these 

traces into “low-reward-rate” and “high-reward-rate” groups, using the (# of rewarded trials 

in the last 10) that best approximated a median-split (i.e. so low- and high- reward-rate 

groups had similar trial numbers). We then averaged all low-reward-rate traces, and 

separately all high-reward-rate traces.

Reinforcement Learning model

To estimate the time-varying state value and RPE within each trial we used a Semi-Markov 

Decision Process
64

 with temporal difference learning, implemented in MATLAB. The 

model consisted of a set of states, with rat behavioral events determining the times of 

transitions between states (Supplementary Fig.5). Each state was associated with a stored 

(‘cached’) value of entering that state, V(s). At each state transition a reward prediction error 

δ was calculated using:

where n is the number of timesteps since the last state transition (a timestep of 50ms was 

used throughout), r is defined as one at reward receipt and zero otherwise, and γ specifies the 

rate at which future rewards are discounted at each timestep (γ < 1). The V terms in the 

equation compare the cached value of the new state to the value predicted, given the prior 

state value and the elapsed time since the last transition (as illustrated in Fig.4C). Each state 

also had e(s), an eligibility trace that decayed with the same time parameter γ (following the 

terminology of ref. 21, this is a TD(1) model with replacing traces). RPEs updated the values 

of the states encountered up to that point, using

where γ is the learning rate. V and γ were defined only at state transitions, and V was 

constrained to be non-negative. The model was “episodic” as all eligibilities were reset to 

zero at trial outcome (reward receipt, or omission). V is therefore a estimate of the time-

discounted value of the next reward, rather than total aggregate future reward; with 

exponential discounting and best-fit parameters subsequent time-discounted rewards are 

negligible (but this would not necessarily be the case if hyperbolic discounting was used).

We also examined the effect of calculating prediction errors slightly differently:

This version compares a discounted version of the new state value to the previous state 

value. As expected, the results were the same. Specifically, overall [DA] correlation to V 

remained ~0.4, overall δ correlation was ~0.2, and each individual session [DA] was 

significantly better correlated to V than to δ, across the full parameter space.

We present results using γ in the 0.9 to 1 range, because 0.9 is already a very fast 

exponential discount rate when using 50ms timesteps. However we also tested smaller γ 
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(0.05-0.9) and confirmed that the [DA]: δ correlation only diminished in this lower range 

(not shown).

To compare within-trial [DA] changes to model variables, we identified all epochs of time 

(3s before to 3s after Center-In) with at least 6 state transitions (this encompasses both 

rewarded and unrewarded trials). Since the model can change state value instantaneously, but 

our FSCV signal cannot
65

, we included an offset lag (so we actually compared V and δ to 

[DA] a few measurements later). The size of the lag affected the magnitude of the observed 

correlations (Fig.4f) but not the basic result. Results were also unchanged if (instead of a 

lag) we convolved model variables with a kernel consisting of an exponential rise and fall 

(Supplementary Fig.6), demonstrating that our results are not a simple artifact of time delays 

associated with the FSCV method or sluggish reuptake. Finally, we also tried using the 

SMDP model with hyperbolic (instead of exponential) discounting
66-69

, and again found a 

consistently stronger correlation between [DA] and V than between [DA] and δ (not shown).

Code availability

custom MATLAB code for the SMDP model is available upon request.

Optogenetics—We used three groups of rats to assess the behavioral effects of VTA DA 

cell manipulations (first TH-Cre+ with AAV-EF1α-DIO-ChR2-EYFP virus, then littermate 

TH-Cre− with the same virus, then TH-Cre+ with AAV-EF1α-DIO-eNpHR3.0-EYFP). All 

virus was produced at the University of North Carolina vector core. In each case rats 

received bilateral viral injections (0.5 or 1µl per hemisphere at 50 nL/min) into the VTA 

(same coordinates as above). After 3 weeks, we placed bilateral optic fibers (200 μm 

diameter) under ketamine/xylazine anesthesia with FSCV guidance, at an angle of 6° from 

the sagittal plane, stopping at a location that yielded the most laser-evoked [DA] release in 

NAc. Once cemented in place, we used FSCV to test multiple sets of stimulation parameters 

from a 445nm blue laser diode (Casio) with Arroyo Instruments driver under LabView 

control. The parameters chosen for behavioral experiments (0.5s train of 10ms pulses at 

30Hz, 20mW power at tip) typically produced [DA] increases in TH-Cre+ / ChR2 rats 

comparable to those seen with unexpected reward delivery. All rats were allowed to recover 

from surgery and retrained to pre-surgery performance. Combined behavioral / optogenetic 

experiments began 5 weeks after virus injection. On alternate days, sessions either included 

bilateral laser stimulation (on a randomly selected 30% of trials, regardless of block or 

outcome), or not. In this manner, each rat received 3 sessions of Light-On stimulations and 3 

sessions of Side-In stimulation, interleaved with control (no laser) sessions, over a two-week 

period. Halorhodopsin rats were tested with 1s of constant 20mW illumination from a 

589nm (yellow/orange) laser (OEM Systems), starting either at Light-On or Side-In as 

above. One TH-Cre+ /ChR2 rat was excluded from analyses due to misplaced virus (no viral 

expression directly below the optic fiber tips).

For statistical analysis of optogenetic effects on behavior we used repeated measure ANOVA 

models, in SPSS. For each rat we first averaged data across the 3 sessions with the same 

optogenetic conditions. Then, to assess reinforcing effects we examined the two factors of 

LASER (off vs on) and REWARD (rewarded vs omission), with the dependent measure the 
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probability that the same action was repeated on the next trial. For assessing effects on 

median latency we examined the two factors of LASER (off vs on) and ENGAGED (yes vs 

no). For assessing group-dependent effects on hazard rate we examined the factors of 

LASER (off vs on) and GROUP (TH-Cre+ /ChR2; TH-Cre− /ChR2; TH-Cre+ /eNpHR3.0), 

with the dependent measure the average hazard rate during the epoch 1-2.5s after Light-On. 

This epoch was chosen since it is 1-2s after the laser stimulation period (0-0.5s) and 

approach behaviors have a consistent duration of ~1-2s (Supplementary Fig.9). Post-hoc 

tests were Bonferroni-corrected for multiple comparisons.

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Adaptive choice and motivation in the trial-and-error task
(a) Sequence of behavioral events (in rewarded trials). (b) Choice behavior in a 

representative session. Numbers at top denote nominal block-by-block reward probabilities 

for left (purple) and right (green) choices. Tick marks indicate actual choices and outcomes 

on each trial (tall ticks indicate rewarded trials, short ticks unrewarded). The same choice 

data is shown below in smoothed form (thick lines; 7-trial smoothing). (c) Relationship 

between reward rate and latency for the same session. Here tick marks are used to indicate 

only whether trials were rewarded or not, regardless of choice. Solid black line shows 

reward rate, and cyan line shows latency (on inverted log scale), both smoothed in the same 

way as B. (d) Choices progressively adapt towards the block reward probabilities (data set 

for panels d-i: n = 14 rats, 125 sessions, 2738 +/− 284 trials per rat). (e) Reward rate 

breakdown by block reward probabilities. (f) Latencies by block reward probabilities. 

Latencies become rapidly shorter when reward rate is higher. (g) Latencies by proportion of 

recent trials rewarded. Error bars represent s.e.m. (h) Latency distributions presented as 

survivor curves (i.e. the average fraction of trials for which the Center-In event has not yet 

happened, by time elapsed from Light-On) broken down by proportion of recent trials 

rewarded. (i) Same latency distributions as panel h, but presented as hazard rates (i.e. the 

instantaneous probability that the Center-In event will happen, if it has not happened yet). 
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The initial bump in the first second after Light-On reflects engaged trials (see 

Supplementary Fig.1), after that hazard rates are relatively stable and continue to scale with 

reward history.
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Figure 2. Minute-by-minute dopamine levels track reward rate
(a) Total ion chromatogram of a single representative microdialysis sample, illustrating the 

set of detected analytes in this experiment. X-axis indicates HPLC retention times, y-axis 

indicates intensity of ion detection for each analyte (normalized to peak values). (Inset) 

locations of each microdialysis probe within the nucleus accumbens (all data shown in the 

same Paxinos atlas section; six were on the left side and one on the right). Abbreviations: 

DA, dopamine; 3-MT, 3-methoxytyramine; NE, norepinephrine; NM, normetanephrine; 5-

HT, serotonin; DOPAC, 3,4-dihydroxyphenylacetate acid; HVA, homovanillic acid; 5HIAA, 

5-hydroxyindole-3-acetic acid, GABA, γ-aminobutyric acid; ACh, acetylcholine. (b) 

Regression analysis results indicating strength of linear relationships between each analyte 

and each of four behavioral measures (reward rate; number of attempts; exploitation index; 

and cumulative rewards). Data are from 6 rats (7 sessions, total of 444 one-minute samples). 

Color scale shows p-values, Bonferroni-corrected for multiple comparisons (4 behavioral 

measures * 19 analytes), with red bars indicating a positive relationship and blue bars a 

negative relationship. Since both reward rate and attempts showed significant correlations 

with [DA], we constructed a regression model that included these predictors and an 

interaction term. In this model R2 remained at 0.15 and only reward rate showed a 

significant partial effect (p < 2.38×10−12). (c) An alternative assessment of the relationship 

between minute-long [DA] samples and behavioral variables. Within each of the seven 

sessions [DA] levels were divided into three equal-sized bins (LOW, MEDIUM, HIGH); 

different colors indicate different sessions. For each behavioral variable, means were 

compared across [DA] levels using one-way ANOVA. There was a significant main effect of 

reward rate (F(2,18)=10.02, p=0.0012), but no effect of attempts (F(2,18)=1.21, p=0.32), 

exploitation index (F(2,18)=0.081, p=0.92), or cumulative rewards (F(2,18)=0.181, p=0.84). 

Post-hoc comparisons using the Tukey test revealed that the mean reward rates of LOW and 

HIGH [DA] differed significantly (p=0.00082). See also Supplementary Figs. 2,3.

Hamid et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2016 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. A succession of within-trial dopamine increases
(a) Examples of FSCV data from a single session. Color plots display consecutive 

voltammograms (every 0.1s) as a vertical colored strip; examples of individual 

voltammograms are shown at top (taken from marked time points). Dashed vertical lines 

indicate Side-In events for rewarded (red) and unrewarded (blue) trials. Black traces below 

indicate raw current values, at the applied voltage corresponding to the dopamine peak. (b) 

[DA] fluctuations for each of the 312 completed trials of the same session, aligned to key 

behavioral events. For Light-On and Center-In alignments, trials are sorted by latency (pink 

dots mark Light-On times; white dots mark Center-In times). For the other alignments 

rewarded (top) and unrewarded (bottom) trials are shown separately, but otherwise in the 

order in which they occurred. [DA] changes aligned to Light-On were assessed relative to a 

2s baseline period, ending 1s before Light-On. For the other alignments, [DA] is shown 

relative to a 2s baseline ending 1s before Center-In. (c) Average [DA] changes during a 

single session (same data as b; shaded area represents s.e.m.). (d) Average event-aligned 

[DA] change across all six animals, for rewarded and unrewarded trials (see Supplementary 

Fig.4 for each individual session). Data are normalized by the peak average rewarded [DA] 

in each session, and are shown relative to the same baseline epochs as in b. Black arrows 

indicate increasing levels of event-related [DA] during the progression through rewarded 

trials. Colored bars at top indicate time periods with statistically significant differences (red, 

rewarded trials greater than baseline, one-tailed t-tests for each 100ms time point 
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individually; blue, same for unrewarded trials; black, rewarded trials different to unrewarded 

trials, 2-tailed t-tests; all statistical thresholds set to p=0.05, uncorrected).
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Figure 4. Within-trial dopamine fluctuations reflect state value dynamics
(a) Top, Temporal discounting: the motivational value of rewards is lower when they are 

distant in time. With the exponential discounting commonly used in RL models, value is 

lower by a constant factor γ for each time step of separation from reward. People and other 

animals may actually use hyperbolic discounting which can optimize reward rate (since 

rewards/time is inherently hyperbolic). Time parameters are here chosen simply to illustrate 

the distinct curve shapes. Bottom. Effect of reward cue, or omission, on state value. At trial 

start the discounted value of a future reward will be less if that reward is less likely. Lower 

value provides less motivational drive to start work - producing e.g. longer latencies. If a cue 

signals that upcoming reward is certain, the value function jumps up to the (discounted) 

value of that reward. For simplicity, the value of subsequent rewards is not included. (b) The 

reward prediction error δ reflects abrupt changes in state value. If the discounted value of 

work reflects an unlikely reward (e.g. probability = 0.25) a reward cue prompts a larger δ 

than if the reward was likely (e.g. probability = 0.75). Note that in this idealized example, δ 

would be zero at all other times. (c) Top, Task events signal updated times-to-reward. Data is 

from the same example session as Fig.3c. Bright red indicates times to the very next reward, 

dark red indicates subsequent rewards. Green arrowheads indicate average times to next 

reward (harmonic mean, only including rewards in the next 60s). As the trial progresses, 

average times-to-reward get shorter. If the reward cue is received, rewards are reliably 

obtained ~2s later. Task events are considered to prompt transitions between different 

internal states (Supplementary Fig.5) whose learned values reflect these different 

experienced times-to-reward. (d) Average state value of the RL model for rewarded (red) and 
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unrewarded (blue) trials, aligned on the Side-In event. The exponentially-discounting model 

received the same sequence of events as in Fig.3c, and model parameters (γ=0.68, γ=0.98) 

were chosen for the strongest correlation to behavior (comparing state values at Center-In to 

latencies in this session, Spearman r=-0.34). Model values were binned at 100ms, and only 

bins with at least 3 events (state transitions) were plotted. (e) Example of the [DA] signal 

during a subset of trials from the same session, compared to model variables. Black arrows 

indicate Center-In events, red arrows Side-In with Reward Cue, blue arrows Side-In alone 

(Omission). Scale bars are: [DA], 20nM; V, 0.2; δ, 0.2. Dashed grey lines mark the passage 

of time in 10s intervals. (f) Within-trial [DA] fluctuations are more strongly correlated with 

model state value (V) than with RPE (δ). For every rat the [DA] : V correlation was 

significant (number of trials for each rat: 312, 229, 345, 252, 200, 204; p<10−14 in each 

case; Wilcoxon signed-rank test of null hypothesis that median correlation within trials is 

zero) and significantly greater than the [DA] : δ correlation (p<10−24 in each case, Wilcoxon 

signed-rank test). Groupwise, both [DA] : V and [DA] : δ correlations were significantly 

non-zero, and the difference between them was also significant (n=6 sessions, all 

comparisons p=0.031, Wilcoxon signed-rank test). Model parameters (γ=0.4, γ =0.95) were 

chosen to maximize the average behavioral correlation across all 6 rats (Spearman r = 

−0.28), but the stronger [DA] correlation to V than to δ was seen for all parameter 

combinations (Supplementary Fig.5). (g) Model variables were maximally correlated with 

[DA] signals ~0.5s later, consistent with a slight delay caused by the time taken by the brain 

to process cues, and by the FSCV technique.
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Figure 5. Between-trial dopamine shifts reflect updated state values
(a) Less-expected outcomes provoke larger changes in [DA]. [DA] data from all FSCV 

sessions together (as in Fig.3d), broken down by recent reward history and shown relative to 

pre-trial “baseline" (−3 to −1s relative to Center-In). Note that the [DA] changes after reward 

omission last at least several seconds (shift in level), rather than showing a highly transient 

dip followed by return to baseline as might be expected for encoding RPEs alone. (b) 

Quantification of [DA] changes, between baseline and reward feedback (0.5-1.0s after Side-

In for rewarded trials, 1s-3s after Side-In for unrewarded trials). Error bars show SEM. (c) 

Same data as (a), but plotted relative to [DA] levels after reward feedback. These [DA] 

observations are consistent with a variable “baseline” whose level depends on recent reward 

history (as in Fig.4b model). (d) Alternative accounts of [DA] make different predictions for 

between-trial [DA] changes. When reward expectation is low, rewarded trials provoke large 

RPEs, but across repeated consecutive rewards RPEs should decline. Therefore if absolute 

[DA] levels encode RPE, the peak [DA] evoked by the reward-cue should decline between 

consecutive rewarded trials (and baseline levels should not change). For simplicity this 

cartoon omits detailed within-trial dynamics. (e) Predicted pattern of [DA] change under this 

account, which also does not predict any baseline shift after reward omissions (right). (f) If 
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instead [DA] encodes state values, then peak [DA] should not decline from one reward to the 

next, but the baseline level should increase (and decrease following unrewarded trials). (g) 

Predicted pattern of [DA] change for this alternative account. (h) Unexpected rewards cause 

a shift in baseline, not in peak [DA]. Average FSCV data from consecutive pairs of rewarded 

trials (all FSCV sessions combined, as in a), shown relative to the pre-trial baseline of the 

first trial in each pair. Data were grouped into lower reward expectation (left pair of plots, 

165 total trials; average time between Side-In events = 11.35s +/− 0.22s SEM) and higher 

reward expectation (right pair of plots, 152 total trials; time between Side-In events = 11.65s 

+/− 0.23s) by a median split of each individual session (using # rewards in last 10 trials). 

Dashed lines indicate that reward cues evoked a similar absolute level of [DA] in the second 

rewarded trial, compared to the first. Black arrow indicates the elevated pre-trial [DA] level 

for the second trial in the pair (mean change in baseline [DA] = 0.108, p=0.013, one-tailed 

Wilcoxon signed rank test). No comparable change was observed if the first reward was 

more expected (right pair of plots; mean change in baseline [DA] = 0.0013, p=0.108, one-

tailed Wilcoxon signed rank test). (i) [DA] changes between consecutive trials follow the 

pattern expected for value coding, rather than RPE coding alone.
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Figure 6. Phasic dopamine manipulations affect both learning and motivation
(a) FSCV measurement of optogenetically-evoked [DA] increases. Optic fibers were placed 

above VTA, and [DA] change examined in nucleus accumbens core. Example shows 

dopamine release evoked by a 0.5s stimulation train (average of 6 stimulation events, shaded 

area indicates +/−SEM). (b) Effect of varying the number of laser pulses on evoked 

dopamine release, for the same 30Hz stimulation frequency. (c) Dopaminergic stimulation at 

Side-In reinforces the chosen left or right action. Left, in TH-Cre+ rats stimulation of ChR2 

increased the probability that the same action would be repeated on the next trial. Circles 

indicate average data for each of 6 rats (3 sessions each, 384 trials/session ± 9.5 SEM). 

Middle, this effect did not occur in TH-Cre− littermate controls (6 rats, 3 sessions each, 

342±7 trials/session). Right, in TH-Cre+ rats expressing Halorhodopsin, orange laser 

stimulation at Side-In reduced the chance that the chosen action was repeated on the next 

trial (5 rats, 3 sessions each, 336±10 trials/session). See Supplementary Fig.8 for additional 

analyses. (d) Laser stimulation at Light-On causes a shift towards sooner engagement, if the 

rats were not already engaged. Latency distribution (on log scale, 10 bins per log unit) for 

non-engaged, completed trials in TH-Cre+ rats with ChR2 (n=4 rats with video analysis; see 

Supplementary Fig.9 for additional analyses). (e) Same latency data as d, but presented as 

hazard rates. Laser stimulation (blue ticks at top left) increases the chance that rats will 

decide to initiate an approach, resulting in more Center-In events 1-2s later (for these n=4 

rats, one-way ANOVA on hazard rate F(1,3) = 18.1, p=0.024). See Supplementary Fig.10 for 

hazard rate time courses from the individual rats.
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