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Dear Editor,

Avian influenza is a highly contagious viral infection affecting the
respiratory system. MicroRNAs (miRNAs) are small, regulatory, endog-
enous, non-coding RNAs of ~22 nt that regulate the gene expression of
the target mRNAs by cleavage or translational repression. miRNAs are
connected with the host response during avian influenza virus (AIV)
infection (Wang et al., 2009, 2012). In this study, we used miRNomics
approach to understand the complex host-pathogen interaction during
the HPAIV H5NT1 infection in chicken.

Briefly, six specific pathogen free (SPF) chickens, aged four weeks,
were divided into two groups. One group was intranasally inoculated
with 1 x 10° EIDsq of H5N1 virus (A/chicken/Navapur/7972/2006) and
the other group was mock-infected with phosphate-buffered saline. Lung
samples were collected post 18 h of the challenge and subjected to
sequencing on ABI SOLiD platform. The detailed methodology is
described in Supplementary file. On sequencing, the small RNA libraries
on SOLiD generated 57,210,641 and 52,848,558 raw reads for mock-
infected and AIV infected samples, respectively. The experiment identi-
fied 297 and 201 mature miRNAs in the mock-infected and the AIV-
infected samples, respectively. This included 200 mature miRNAs to be
common in both groups. In addition to this, 97 miRNAs were observed in
mock-infected group and one miRNA (gga-miR-1670) was observed in
the AlV-infected group (Supplementary Table S1). Out of 126 differen-
tially expressed miRNAs observed between the AIV infected and mock
groups, 36 miRNAs were found to be upregulated (UR) with a positive log
fold change and 90 were downregulated (DR) with negative log fold
change in the AIV infected group (Supplementary Table S2). The distri-
bution of differentially expressed mature miRNAs were mapped onto
individual chromosomes (Supplementary Fig. S1).
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The top ten upregulated (gga-miR-1793, gga-miR-1728-3p, gga-miR-
1689*, gga-miR-7b, gga-miR-1614*, gga-miR-1664, gga-miR-1718, gga-
miR-1629, gga-miR-1618 and gga-miR-1397*) and downregulated (gga-
let-7b, gga-let-7c, gga-miR-181b, gga-miR-133c, gga-miR-30a-3p, gga-
miR-1788-5p, gga-miR-455-3p, gga-miR-449b*, gga-miR-24 and gga-
miR-449c*) miRNAs were validated by quantitative real time PCR
(gqPCR) using universal reverse primer and miRNA specific forward
primer (Supplementary Table S3) using NCode™ miRNA First-Strand
cDNA Synthesis and qRT-PCR Kits (Invitrogen, Carlsbad, USA). On
qPCR validation, all log fold changes of the upregulated miRNAs were
found to be positive and those of the downregulated were observed to be
negative thereby, validating the findings of the next generation
sequencing data (Fig. 1A). Though the trend of the fold change was found
to be the same, the magnitude of fold change, as identified by NGS and by
gPCR, were different.

The small RNA reads which were present five or more times in the
data were considered for novel miRNA prediction. Three novel mature
miRNAs (candidate 1, 2 and 3) were identified by miRanalyzer pipeline
(Hackenberg et al., 2011) (Fig. 1B) followed by validation by the
MIReNA algorithm. Minimum Folding Energy Index (MFEI) was
calculated as MFEI = AMFE/(G + C)%; Adjusted Minimum Folding
Energy (AMFE) = (MFE/length of a pre-miRNA sequence) x 100.
Structures having an MFEI value greater than or equal to 0.85 were
predicted as novel miRNA.

The bioinformatics prediction of target genes of differentially
expressed miRNAs using miRDB (http://mirdb.org/) identified 7,317
and 10,089 unique targets for UR and DR miRNAs, respectively. The
predicted target genes were used for gene ontology (GO) analysis using
DAVID bioinformatics resources 6.7 (https://david.nciferf.gov/) with the
default parameters. The GO analysis using DAVID 6.7 showed many
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NGS vs qPCR fold changes of downregulated miRNA
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Mature | 5 A GATTATTGCAGAAAGCACGGT -3' Mature | 5 6GGCAATGCTAAGGGACTCCACA - 3 Mature | 5 AAAGTCCAGCAGCTTAGCT - 3'
miRNA miRNA miRNA
cDNA 5-GTTGGCTCTGGTGCAGGGTCCGAGGTA cDNA 5' - GTTGGCTCTGGTGCAGGGTCCGAGGT cDNA 5' - GTTGGCTCTGGTGCAGGGTCCGAGGT
primer TTCGCACCAGAGCCAAC ACCGTG - 3' primer ATTCGCACCAGAGCCAAC TGTGGA - 3' primer ATTCGCACCAGAGCCAAC AGCTAA - 3'
Forward | 5'-GTTGGGACATTATTGCAGAAAG - 3' Forward | 5'- GTTGGGCAATGCTAAGGGA- 3' Forward | 5'-GTTTGCAAAGTCCAGCAGC - 3'
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Fig. 1. A The comparative fold change for the top ten upregulated and downregulated miRNAs. The trend of the fold changes was found to be similar direction but
with a difference in magnitude. B The candidate novel miRNAs identified in this study. The three novel candidate miRNAs (candidate 1, candidate 2 and candidate 3)

with MFEI of 0.96, 0.95, and 0.98 were identified in the mock-infected chicken sample. miRanalyzer pipeline was used for predicting secondary structure followed by
validation by MIReNA algorithm.

significant GO terms to be enriched. Of the total GO terms, 281 GO terms
were common to both groups, 67 and 171 GO terms were found to be
exclusively in TUR and TDR miRNAs. The GO terms, which were com-
mon to both the groups, included immune and apoptosis (Supplementary
Fig. S2), signaling (Supplementary Fig. S3), and gene expression (Sup-
plementary Fig. S4). The GO terms observed for the targets of upregu-
lated (TUR) miRNAs included negative regulation of transcription from
RNA polymerase II promoter, B cell differentiation, histone acetylation,
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positive regulation of myeloid cell differentiation, lipopolysaccharide-
mediated signaling pathway, positive regulation of protein ubiquitina-
tion, etc (Fig. 2A). The important GO terms obtained for targets of
downregulated (TDR) miRNAs were grouped into immune-related
(Fig. 2B), apoptosis (Fig. 2C) and signaling (Fig. 2D).

Six KEGG pathways were affected exclusively by TUR and included
adipocytokine signaling pathway, notch signaling pathway, SNARE in-
teractions in vesicular transport, vascular smooth muscle contraction, etc.
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Fig. 2. The GO terms observed for the targets of downregulated miRNAs. A The exclusive GO terms observed for targets of upregulated miRNAs. The GO terms
including positive regulation of myeloid cell differentiation, histone acetylation, B cell differentiation, transmembrane receptor protein serine/threonine kinase
signaling pathway, and negative regulation of RNA polymerase II promoter were found to be enriched. B The exclusive immune related GO terms observed for targets
of downregulated miRNAs. GO terms like regulation of myeloid leukocyte differentiation, B cell activation, leukocyte activation, lymphocyte activation, T cell
activation regulation of immune system process are found to be enriched. C The exclusive apoptosis related GO terms observed for targets of downregulated miRNAs.
The GO terms including regulation of neuron apoptosis, regulation of apoptosis, cell death were enriched. D The exclusive signaling related GO terms observed for
targets of downregulated miRNAs. These include GO terms like steroid hormone receptor signaling pathway, positive regulation of MAP kinase activity, Ras protein

signal transduction, regulation of MAPKKK cascade and cell-cell signaling.

Additionally, eleven pathways were found common for both the groups
including calcium signaling pathway, MAPK signaling pathway, TGF-beta
signaling pathway, insulin signaling pathway, regulation of actin cyto-
skeleton, endocytosis, Wnt signaling pathway, adherens junction,
ubiquitin-mediated proteolysis, ErbB signaling pathway, etc. Moreover,
seven pathways were found to be altered by TDR miRNAs (Supplementary
Fig. S5). The functional protein association network of most upregulated
and downregulated miRNA (gga-miR-1793 and gga-let-7b) was analyzed
using STRING v.11 (https://string-db.org/) and is depicted in Fig. 3.
Analysis of targets of gga-miR-1793 identified INTERPRO protein domain
death-like domain superfamily (IPR011029), death domain (IPR0O00488)
and SMART protein domain death domain, found in proteins involved in
cell death (SM00005) with genes nuclear factor kappa b subunit 1
(NFKB1), NFKB inhibitor alpha (NFKBIA), inhibitor of nuclear factor
kappa B kinase subunit beta (IKBKB), interleukin 1 beta (IL1B), compo-
nent of inhibitor of nuclear factor kappa B kinase complex (CHUK) and
REL proto-oncogene, NF-KB subunit (REL) to be involved (Fig. 3A). The
analysis of targets of gga-let-7b showed mTOR signaling pathway
(KEGG:gga04150) and p53 signaling pathway (KEGG:gga04115) with
genes insulin like growth factor (IGF1), insulin like growth factor binding
protein 1 (IGFBP1), insulin like growth factor binding protein 3 (IGFBP3),
insulin like growth factor binding protein 4 (IGFBP4), insulin like growth
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factor binding protein 5 (IGFBP5), and insulin like growth factor 1 re-
ceptor (IGF1R) to be involved (Fig. 3B).

The miRNAs viz., gga-miR-155, gga-miR-455-5p, gga-miR-214, gga-
miR-140, gga-let-7c, gga-let-7j were also reported in some other AIV
infection (Wang et al., 2009; Peng et al., 2015). miR-155, let-7b,
miR-27b, miR-9 and miR-223 were reported to be associated with an
acute respiratory viral infection and targeting innate immunity related
pathways and genes, while miR-30a, let-7c, miR-221, miR-9, miR-98 and
miR-214 were regulating apoptosis pathways (Leon-Icaza et al., 2019).
Likewise, miR-let-7c is in the list of top most DR miRNAs and reported to
repress the hepatitis-C virus multiplication by activating antiviral inter-
feron and blocking of hepatitis-C virus protease activity (Chen et al.,
2019).

The immune GO terms included leukocyte homeostasis, myeloid cell
differentiation, hemopoiesis, and immune system development were
found to be enriched for both the groups. The first cells in the respiratory
tract to respond to influenza A virus infection are the immune cells. The
viral entry has altered leukocyte homeostasis and leukocytes are critical
in helping the host to eliminate the virus (Lamichhane and Samarasingh
2019). B cells and influenza-specific T lymphocytes are critical in
clearing the virus and the activities of these T lymphocytes along with
antibodies determine the capacity of the host to eliminate AIV (Hufford
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Fig. 3. The functional protein association network analysis using STRING v.11
for gga-miR-1793 and gga-let-7b. A The protein-protein interaction analysis for
targets of gga-miR-1793. INTERPRO protein domain death like domain super-
family (IPR011029), death domain (IPRO00488) and SMART protein domain
death domain, found in proteins involved in cell death (SM00005) with genes
NFKB1, NFKBIA, IKBKB, IL1B, CHUK and REL were observed to be involved. B
The protein-protein interaction analysis for targets pf gga-let-7b showed mTOR
signaling pathway (KEGG: gga04150) and p53 signaling pathway (KEGG:
gga04115) with genes IGF1, IGFBP1, IGFBP3, IGFBP4, IGFBP5, and IGF1R to
be involved.

et al., 2015). Myeloid cells, representing a wide range of innate leuko-
cytes, are critical for the host control over the virus. They identify
pathogen-associated molecular patterns initiating a signaling cascade
that marks the production of cytokines (Stegelmeier et al., 2019).
Functional analysis also revealed GO terms related to gene expression
and one of the interesting GO terms to be observed was the regulation of
transcription from RNA polymerase II promoter indicating that the virus
gained control over the host as Influenza virus RNA-dependent RNA
polymerase associated with cellular RNA Polymerase II via cap snatching
to generate primers for viral transcription which ultimately, resulted in
host shut-off (Walker and Fodor, 2019).

Mitogen activated protein kinase (MAPK) signaling was found to be
enriched in both groups as well as observed common for KEGG pathway
analysis. This activation of MAPK pathways might have sent some
signal to the nucleus for the production of favourable proteins. The p38
MAPK was listed as critical in mediating viral sensor signaling cascade
and involved in the expression of antiviral chemokines and cytokines.
Targeting the kinases was proposed to have a vital role in the treatment
of influenza infections (Meineke et al., 2019). Another interesting
pathway was the mTOR pathway which was found to be enriched for
the TDR miRNAs. This pathway was also found to be significant during
the protein-association network analysis of gga-let-7b using STRING
v.11. The viruses have evolved a variety of mechanisms to opt with the
mTOR pathway to make the host cell work their way. The analysis of
gga-let-7b also pointed towards the p53 signaling pathway and p53
activity involved in influenza virus-induced cell death (Turpin et al.,
2005). Further, some previous studies summarized the key role of nu-
clear factor kappa B (NF-kB) and insulin like growth factor (IGF) in AIV
infection. Interaction analysis of gga-miR-1793 also revealed the
complex role of NF-kB in H5N1 infection. NF-xB has been reported to be
linked with host innate immune defense but influenza viruses have
attained the capacity to turn this to their benefit (Ludwig and Planz,
2008). In another interaction analysis of miR-let-7b miRNA, IGF was
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found to be a key regulator of complex host-pathogen interaction. This
plays a critical role in the vaccine-triggered immune response (Yoon
et al., 2017) and is proposed to be a therapeutic target for humans in
response to an influenza outbreak (Li et al., 2019).

This study identified the miRNAs which were differentially expressed
during the H5N1 infection in chicken and by employing bioinformatics
approaches the molecular pathways were predicted to gain insight into
the host response after the viral entry. However, studies should be un-
dertaken to find out the expressed miRNAs at different time intervals post
viral entry and validation of the miRNA targeted genes would be more
helpful to gain in-depth knowledge about the molecular pathogenesis in
chicken during H5N1 infection.
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