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Abstract: Viral infections have resulted in millions of victims in human history. Although great
efforts have been made to find effective medication, there are still no drugs that truly cure viral
infections. There are currently approximately 90 drugs approved for the treatment of human viral
infections. As resistance toward available antiviral drugs has become a global threat to health, there is
an intrinsic need to identify new scaffolds that are useful in discovering innovative, less toxic and
highly active antiviral agents. 1,3,4-Thiadiazole derivatives have been extensively studied due to their
pharmacological profile, physicochemical and pharmacokinetic properties. This review provides an
overview of the various synthetic compounds containing the 2-amino-1,3,4-thiadiazole moiety that
has been evaluated for antiviral activity against several viral strains and could be considered possible
prototypes for the development of new antiviral drugs.

Keywords: 2-amino-1,3,4-thiadiazole; viral infections; antiviral agents; drug resistance; inhibitory
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1. Human Viral Infections

Viruses are the smallest among all self-replicating organisms and yet they are the etiological agents
of many difficult to treat diseases in human populations [1]. There are broad types of human infections
caused by viruses, such as respiratory infections (common cold, Influenza), digestive infections (viral
gastroenteritis), central nervous system infections (viral meningitis, viral encephalitis), skin or mucosal
infections (herpes, measles, mumps, smallpox and rubella), hepatic infections (hepatitis A, B, C, E),
blood infections (acquired immunodeficiency syndrome) and hemorrhagic fever (yellow fever, Ebola
hemorrhagic fever). Viruses are the most abundant and diverse biological entities on Earth and this is
the reason for the high incidence of viral infections [2]. In addition, some viruses are etiological agents
in the development of human tumors, particularly cervical cancer and hepatic cancer [3].

The main method and most cost-effective strategy for preventing viral infections is through
vaccination, which is meant to prevent outbreaks by increasing immunity [4]. Vaccines for the
prevention of several common acute viral infections, such as polio, rubella, measles, mumps, Influenza,
yellow fever, encephalitis, rabies, smallpox and hepatitis B were developed during the 20th century
and are available on a large scale [1,4]. Efforts to develop safe and effective vaccines against viruses
that cause chronic infections, such as human immunodeficiency virus or hepatitis C virus did not give
the expected results [1,4,5].

For many viral infections, only symptomatic treatment is indicated, while it is expected the
immune system to fight off the virus. However, there are high-virulence viruses that cause serious viral
infections where antiviral treatment is essential for patient survival. Although great efforts have been
made to find effective medication, there are still no drugs that truly cure viral infections. Moreover,
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due to the ability of viruses to undergo rapid mutations, the mechanisms involved in developing
resistance to antiviral drugs are activated in most cases [1,3]. As resistance toward antiviral drugs is
becoming a global health threat, there is an intrinsic need to identify new scaffolds that are useful in
discovering innovative, less toxic and highly active antiviral agents [3,6,7].

2. Nitrogen-Containing Heterocycles and Thiadiazole Ring in Biology and Medicinal Chemistry

Nitrogen-containing heterocycles are widely distributed in nature and are essential in vegetal
and animal metabolism. They are found in nucleic acids, vitamins, antibiotics, alkaloids, etc. [8–14].
In addition, nitrogen-containing heterocycles are important targets for medicinal chemistry, as they are
found in more than half of the commercially available drugs and can also act as versatile intermediates
in the synthesis of complex products that exhibit outstanding biological activities [15]. Most of
the nitrogen-containing heterocyclic compounds exhibit better biological activity than non-nitrogen
compounds [12,16,17]. Currently, there are approximately 90 drugs approved for use in the treatment of
nine human viral infections caused by human immunodeficiency virus (HIV), hepatitis B virus (HBV),
hepatitis C virus (HCV), herpes simplex virus (HSV), Influenza virus, human cytomegalovirus (HCMV),
varicella-zoster virus (VZV), respiratory syncytial virus (RSV) and human papillomavirus [18]. Most of
these drugs (e.g., acyclovir, cidofovir, idoxuridine, nevirapine, pleconaril, ribavirin, etc.) are nitrogen
heterocycle molecules [3,19].

Five-membered aromatic systems with three heteroatoms at symmetrical positions, such as
the 1,3,4-thiadiazole ring, have been extensively studied due to their pharmacological profile
and physicochemical and pharmacokinetic properties. 1,3,4-Thiadiazole derivatives are known
as compounds having significant and diverse biological activities such as antibacterial, antifungal,
antitubercular [20], analgesic and anti-inflammatory [21,22], antidepressant and anxiolytic [23], kinesin
inhibitors [24], etc. The 1,3,4-thiadiazole ring is also found in several medicines such as acetazolamide,
methazolamide, cefazolin, cefazedone, sulfamethizole or megazol [20,25–27]. The 1,3,4-thiadiazole
nucleus provides the compounds with high lipophilicity and the ability to form mesoionic systems
associated with discrete regions of positive and negative charges. These distinct features allow
mesoionic compounds to efficiently cross cellular membranes, leading to good oral absorption,
bioavailability and strong unique interactions with biological molecules (e.g., DNA, proteins, etc.)
thus increasing the potential of 1,3,4-thiadiazole derivatives to exhibit biological activities [20,27–29].
The thiadiazole ring is a bioisostere of the pyrimidine and pyridazine rings. The pyrimidine nucleus is
commonly found in naturally occurring compounds of biochemical importance, as well as in drugs
(e.g., pyrimidine nucleosides and nucleotides, nucleic acids, antiviral drugs), while the pyridazine
nucleus is a component of some pharmacologically active compounds [20,30–32]. The thiadiazole ring
also acts as a bioisostere of the thiazole ring, and therefore thiadiazole derivatives can act in the same
way as third- and fourth-generation antibacterial cephalosporins. This is an additional feature that
highlights the high potential of this ring system in medicinal chemistry [20,28]. Many researchers
suppose there is a connection between the biological potential of 1,3,4-thiadiazoles and the strongly
aromatic character of the 1,3,4-thiadiazole ring, as well as the presence of the toxophoric =N-C-S-
linkage group. Furthermore, the high in vivo stability and low toxicity for higher organisms are also
attributed to the 1,3,4-thiadiazole ring [20,33,34]. In addition, the amine derivatives of 1,3,4-thiadiazole
are also studied. 2-Amino-1,3,4-thiadiazole moiety and its derivatives are known for their antitumor,
antitrypanosomal and uricogenic properties [20,25,27,35–38]. 2-Amino-1,3,4-thiadiazole derivatives
are currently being synthesized in many laboratories, and in previous papers, we described
several 2-amino-1,3,4-thiadiazoles that exhibit antibacterial, antifungal, antitubercular [20,39–44],
and antiparasitic activities [27,38]. The purpose of this paper is to present some small molecules
possessing the 2-amino-1,3,4-thiadiazole moiety that have shown antiviral activity.
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3. The Activity of 2-Amino-1,3,4-Thiadiazole Derivatives Against Human Viral Pathogens

3.1. Human Immunodeficiency Virus (HIV)

About 37 million people infected with human immunodeficiency virus (HIV) (Retroviridae family)
were reported in 2016 [45], with the highest incidence of infection in sub-Saharan Africa. In the Third
World, HIV infection coupled with tropical diseases, malaria and tuberculosis causes a high level of
mortality. Due to sexual transmission, acquired immunodeficiency syndrome (AIDS) affects many
young workers and therefore the disease has not only a social impact, but also a significant economic
impact in these regions [3].

In the past two and half decades, different organic compounds have been developed as
drug candidates for the treatment of AIDS targeting one or more stages of the virus life cycle
such as absorption, fusion, entry, un-coating, reverse transcription, integration, transcription and
maturation [46]. HIV-1 reverse transcriptase (RT) is an essential enzyme that converts single-stranded
RNA from the viral genome into double-stranded DNA before its integration into host DNA [47].
Since RT is a key enzyme in the life cycle of HIV-1, some HIV-1 RT inhibitors with nucleoside
or non-nucleoside structures are currently used in AIDS treatment [48]. Nucleoside reverse
transcriptase inhibitors (NRTIs) such as zidovudine, didanosine, zalcitabine, stavudine, lamivudine,
abacavir, tenofovir or emtricitabine interact competitively with the catalytic site of the RT, while
the non-nucleoside reverse transcriptase inhibitors (NNRTIs)—nevirapine, delavirdine, efavirenz,
etc.—follow an allosteric interaction with a site adjacent to the NRTI binding site, the non-nucleoside
inhibitor binding site (NNBS) [47]. Due to their high selectivity and low cytotoxicity, NNRTIs
have gained an increasingly important role in HIV infection therapy [49]. Five drugs in the class
of NNRTIs have been approved for the treatment of HIV infection: nevirapine, delavirdine and
efavirenz as the first generation drugs and etravirine (Intelence tablets, Janssen Therapeutics Company,
2008) and rilpivirine (Edurant tablets, Janssen Therapeutics Company, 2011) as the next-generation
NNRTIs [46,50–52]. Doravirine (MK-1439A) is a new NNRTI developed by Merck Company that
completed two 48-week studies in 2017 [53]. Doravirine demonstrated antiretroviral activity and
immunological effects similar to efavirenz with significantly fewer central nervous system adverse
events [54]. In January 2018, US Food and Drug Administration (FDA) accepted for review two new
drug applications (NDAs) for doravirine, as a once-daily tablet in combination with other antiretroviral
agents and as a once-daily fixed-dose combination single tablet of doravirine with lamivudine and
tenofovir disoproxil fumarate [55]. On 30 August 2018, FDA approved both applications of doravirine
for AIDS treatment as Pifeltro tablets (doravirine 100 mg) and Delstrigo tablets (doravirine 100 mg,
lamivudine 300 mg and tenofovir disoproxil fumarate 300 mg) [56,57]. Several NNRTIs (e.g., fosdevirine,
lersivirine) underwent clinical development programs but were discontinued due to unfavorable
pharmacokinetic, efficacy and/or safety factors [58–60].

Approximately 17 million patients have access to antiretroviral therapy capable of controlling
viremia and reducing mortality [61]. However, long-term treatment with antiretroviral agents can
lead to drug resistance due to rapid mutations in the viral genome resulting in RT mutations and
HIV chemotherapy failure [62]. These concerns have attracted a particular focus on research into new
antiretroviral drugs that address the limitations of currently available agents for the treatment of HIV
infection [46,59].

As a bioisostere of pyrimidine, a nucleoside component of nucleic acids, the thiadiazole ring
can impart antiviral activity [28]. Studies concerning the antiviral activity of 1,3,4-thiadiazole
derivatives often gave compounds with moderate or lower in vitro anti-HIV-1 and anti-HIV-2
activity than the reference drugs [63,64]. A relevant example is the chiral 2-substituted
5-(4-chlorophenylamino)-1,3,4-thiadiazoles 1–5 synthesized by Akhtar et al. by acidic cyclodehydration
of the corresponding thiosemicarbazides [65].
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μg/mL). The best results were obtained for derivatives 1 and 5 (Figure 1) with moderate EC50 values. 
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concentration that reduces the viability of mock-infected MT-4 cells by 50%), namely the CC50 value 
of 14.0 ± 1.2 μg/mL for compound 1 and 13.3 ± 0.8 μg/mL for compound 5, respectively, resulted in 
low selectivity index SI ≤ 1 (SI = CC50/EC50). Other derivatives showed lower activity with EC50 within 
the range of 47.4–125 μg/mL. However, chemical modifications on this scaffold might lead to 
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Figure 1. Influence of substituents of 1,3,4-thiadiazole derivatives 1–5 on anti-HIV activity. 

Some 1,3,4-thiadiazole derivatives obtained by Hamad et al. [66] from amino acid analogs were 
screened for anti-HIV-1 (strain IIIB) and anti-HIV-2 (strain ROD) activity by the inhibition of the 
virus-induced cytopathic effect in human MT-4 cells based on 3-(4,5-dimethylthiazol-2-yl) 
-2,5-diphenyl tetrazolium bromide (MTT) assay. 2-(Naphthalen-2-yloxy)-N-((5-(phenylamino) 
-1,3,4-thiadiazol-2-yl)methyl)acetamide 6 showed in vitro inhibitory activity with EC50 values of 0.96 
μg/mL (HIV-1 strain IIIB) and 2.92 μg/mL (HIV-2 strain ROD), respectively, but low selectivity (SI < 
1). Structure–activity relationship (SAR) studies have suggested that the substitution of the 
acetamide moiety with a thiadiazole ring may lead to more active derivatives compared to other 
compounds bearing different heterocyclic rings. Even though anti-HIV activity and selectivity of 
derivative 6 are limited compared to efavirenz (EC50 value of 0.003 μg/mL and SI ≈ 13333), it may 
serve as the basis for future modification in the search for new potent non-nucleoside antiviral 
agents [66]. 
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In vitro HIV inhibitory activity using human T-lymphocyte (MT-4) cells gave moderate or
low half-maximal effective concentration (EC50) values in comparison to efavirenz (EC50 value of
0.003 µg/mL). The best results were obtained for derivatives 1 and 5 (Figure 1) with moderate EC50

values. Thus, compound 1 showed EC50 > 14 µg/mL against HIV-1 (strain IIIB) and EC50 > 12.4 µg/mL
against HIV-2 (strain ROD), while the compound 5 showed EC50 > 12.6 µg/mL against HIV-1
and EC50 > 12.5 µg/mL against HIV-2. Low values for cytotoxicity concentration 50% (compound
concentration that reduces the viability of mock-infected MT-4 cells by 50%), namely the CC50 value of
14.0 ± 1.2 µg/mL for compound 1 and 13.3 ± 0.8 µg/mL for compound 5, respectively, resulted in low
selectivity index SI ≤ 1 (SI = CC50/EC50). Other derivatives showed lower activity with EC50 within the
range of 47.4–125 µg/mL. However, chemical modifications on this scaffold might lead to compounds
with enhanced activity as NNRTIs [65].
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Figure 1. Influence of substituents of 1,3,4-thiadiazole derivatives 1–5 on anti-HIV activity.

Some 1,3,4-thiadiazole derivatives obtained by Hamad et al. [66] from amino acid analogs
were screened for anti-HIV-1 (strain IIIB) and anti-HIV-2 (strain ROD) activity by the inhibition
of the virus-induced cytopathic effect in human MT-4 cells based on 3-(4,5-dimethylthiazol-2-yl)
-2,5-diphenyl tetrazolium bromide (MTT) assay. 2-(Naphthalen-2-yloxy)-N-((5-(phenylamino)
-1,3,4-thiadiazol-2-yl)methyl)acetamide 6 showed in vitro inhibitory activity with EC50 values of
0.96 µg/mL (HIV-1 strain IIIB) and 2.92 µg/mL (HIV-2 strain ROD), respectively, but low selectivity
(SI < 1). Structure–activity relationship (SAR) studies have suggested that the substitution of the
acetamide moiety with a thiadiazole ring may lead to more active derivatives compared to other
compounds bearing different heterocyclic rings. Even though anti-HIV activity and selectivity of
derivative 6 are limited compared to efavirenz (EC50 value of 0.003 µg/mL and SI ≈ 13333), it may serve
as the basis for future modification in the search for new potent non-nucleoside antiviral agents [66].
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A new class of HIV-1 NNRTIs, N-aryl-2-arylthioacetamides, has been identified in the last
years [67–70]. Studies on the crystalline structure of the RT-NNRTI complex suggested that NNRTIs
have a common mode of action and interact with a hydrophobic pocket. N-aryl-2-arylthioacetamides
adopted a butterfly-like conformation in which the arylthio moiety and the phenyl ring mimic the
butterfly wings. SAR studies showed that the arylthio moiety strongly influenced the antiviral activity,
leading to different results depending on the steric/electronic properties of the groups [47]. Based on
these findings, Xiaohe et al. synthesized 2-(5-amino-1,3,4-thiadiazol-2-ylthio)-N-(aryl) acetamide
derivatives 7–10 as new NNRTIs [47].
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Although they exhibited less anti-HIV-1 activity compared to standard drug zidovudine
(half-maximal inhibitory concentration IC50 = 0.016 µM), these compounds showed significant
anti-HIV-1 activity at micromolar concentrations (IC50 within the range of 7.50–20.83 µM) (Table 1).
It has been observed that the 2-amino-1,3,4-thiadiazole moiety may be a good group for anti-HIV-1
activity by providing promising antiviral agents. Moreover, the electronic properties of the N-aryl
group influenced antiviral potency. The introduction of electron-withdrawing groups, such as fluorine
or trifluoromethyl on phenyl ring (derivatives 8 and 9), enhanced antiviral activity compared to the
unsubstituted phenyl derivative 7. SAR studies suggested that the steric/electronic properties of the
N-phenyl substituents influenced the antiretroviral activity more than their positions. In addition,
the nature of the N-aryl ring influenced the antiviral potency as can be observed for derivative 10 with
a pyrimidyl ring which was the most active compound (Figure 2) [47].

Table 1. Structural details and IC50 values of compounds 7–10 (adapted from [47]).

X R IC50 (µM)

7 CH H 20.83 ± 1.17
8 CH 2,5-F2 16.10 ± 0.24
9 CH 3,5-(CF3)2 14.93 ± 0.84
10 N 4,6-(OCH3)2 7.50 ± 1.06
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Molecular modeling studies for the pyrimidyl derivative 10 showed the formation of two potential
intermolecular hydrogen bonds involving a nitrogen atom and the amino group of the thiadiazole ring
and aminoacids from NNBS of RT. In addition, the electron-deficient pyrimidine ring of the ligand
establishes π–π interactions with the electron-rich benzene rings of RT. Despite the docking simulation
results, the inhibitory activity of compound 10 against HIV-1 (strain IIIB) replication in MT-4 cell
culture was lower than that of zidovudine. However, given the butterfly-like orientation as a necessary
structural condition for antiretroviral activity, these results reveal the promising inhibitory potential of
this scaffold [47].

The series of 5-(pyridin-2-ylmethyl)-1,3,4-thiadiazol-2-amine derivatives 11–16 were synthesized
by intramolecular cyclization of the corresponding hydrazinecarbothioamides under acidic conditions
and the activity against HIV-1 was tested on MT-4 cells by MTT assay using efavirenz as a standard
drug [64].
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metabolic processes than any other amino acid. Glutamine is produced from glutamate and 
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catalyzed by the mitochondrial enzyme, glutaminase [72,75]. The glutamine/glutamate cycle in the 
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Except for derivative 11 which showed low activity (EC50 values of 47 µM), the activity of the
other compounds was even lower (EC50 values > 70 µM) proving that substitution with halogens or
halogenoalkyl groups at C3 and/or C4 of phenyl ring led to a decrease or loss of activity (Figure 3).
Although pyridine derivatives did not exhibit selective anti-HIV-1 activity, the fact that compound 11
showed some antiviral activity may encourage further research on this structure. Subsequent chemical
modifications by substitutions on aromatic rings with different groups may lead to compounds with
improved activity [64].
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The invasion of the central nervous system (CNS) by the HIV-1 virus frequently causes brain
inflammation and progressive neurological diseases, which are commonly referred to as HIV associated
neurocognitive disorders (HAND) [71]. HAND affects 7%–15% of AIDS patients and is characterized
by neuronal dysfunction including synaptic damage, neuronal degeneration and cell dropout [72].
Cells involved in HAND pathogenesis are macrophages and microglia, which are the main targets
of HIV-1 infection in the brain. When infected with HIV-1, macrophages and microglia increase the
production and release of several soluble neurotoxic factors, such as glutamate, inducing neuronal
damage [71].

Glutamine is the most abundant amino acid in the human body and is involved in more metabolic
processes than any other amino acid. Glutamine is produced from glutamate and ammonia by the
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enzyme glutamine synthetase [73,74]. The conversion of glutamine to glutamate is catalyzed by
the mitochondrial enzyme, glutaminase [72,75]. The glutamine/glutamate cycle in the human body
plays several important metabolic functions. Thus, glutamine and glutamate are precursors to the
biosynthesis of proteins, neurotransmitters, nucleotides, nucleic acids and other important biological
molecules. The glutamine/glutamate cycle is the substrate for the synthesis of urea in the liver, genesis
of ammonia in the kidneys and for hepatic and renal gluconeogenesis. The glutamine/glutamate
exchange regulates the acid-base balance in kidneys, acts as an oxidative fuel for the intestines and cells
of the immune system and provides the transport of nitrogen between organs [74–76]. The existence
of a glutamine/glutamate cycle in CNS was confirmed in the last years [76,77]. Phosphate-activated
mitochondrial glutaminase is the predominant enzyme that uses glutamine in the brain. Glutamine is
present in the extracellular fluid of the brain at high concentrations and provides an abundant substrate
for glutaminase [72,75]. Therefore, it has been hypothesized that mitochondrial glutaminase activation
is responsible for the high levels of glutamate in the brains of HIV-1 infected patients [72]. While
glutamate mediates different physiologic processes, elevated extracellular concentrations of glutamate
can induce neuronal damage (e.g., dementia, brain atrophy) [71,72].

Some glutaminase inhibitors (e.g., 6-diazo-5-oxo-L-norleucine, etc.) were studied in vitro for
their ability to prevent the generation of glutamate by HIV-1 infected macrophages. The results
support the hypothesis that glutaminase mediates glutamate generation in HIV-infected human
macrophages. When glutaminase was inhibited by various inhibitors, HIV-induced glutamate
production decreased and the neuronal damage was diminished [71,72,78]. Furthermore, for some
glutaminase inhibitors, a non-competitive mechanism of inhibition has been described [78]. These
findings support glutaminase as a potential component of the HAND process and can provide a new
therapeutic target for the treatment of neurocognitive disorders associated with HIV infection [71,72,78].
In connection with these results, a large number of glutaminase inhibitors having a bis-thiadiazole (17)
and a pyridazine-thiadiazole (18) skeleton (Figure 4), respectively, were synthesized as a method of
treating or preventing multiple viral infections, including infections with retroviruses [75].
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Multiple experiments were performed in order to study the biological profile of the compounds.
Some of the synthesized derivatives are prodrugs, which under physiologic conditions (in vivo), are
converted into the therapeutically active parent compound. Studies have also been conducted to obtain
pharmaceutical preparations suitable for use in human patients comprising any of the synthesized
derivatives and one or more pharmaceutically acceptable excipients. In addition, the authors assume
that the derivatives may be used alone or in combination with known antiviral drugs. Studies on
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kidney-type glutaminase inhibition showed good results for many derivatives such as compound 19
with an IC50 value of 0.24 µM and its deuterium derivative 20 with an IC50 value of 0.54 µM [75].Molecules 2020, 25, 942 8 of 22 
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3.2. Human Cytomegalovirus (HCMV)

Human cytomegalovirus (HCMV, Herpesviridae family) is a ubiquitous deoxyribonucleic acid virus
that infects people of all ages [79,80]. HCMV infection can be acquired through horizontal and vertical
transmission. HCMV spreads from infected people through direct contact with body fluids that carry
the virus, such as urine, saliva, cervicovaginal secretions, sperm and breast milk. Vertical transmission
through organ transplantation, from mother to child or transmission via blood transfusion, is also
possible [79,80]. Blood tests indicate that 60%–90% of the adult population experienced HCMV infection
at some time during their life [81]. Although most of these infections are asymptomatic, certain patient
groups such as babies that are infected before birth and children or adults with weakened immune
systems due to diseases or medications (e.g., HIV-infected patients, organ transplant recipients) can
develop severe illnesses that require medical treatment [79]. HCMV is able to remain latent in several
cells of the human body for a long time and can be reactivated if the person develops immune system
suppression [79,82].

The first-line drugs recommended for the treatment of HCMV infection are intravenous ganciclovir
or orally administered valganciclovir [83]. Although tolerability of ganciclovir and valganciclovir is
acceptable, hematological or neurological side effects can occur. Neutropenia, thrombocytopenia and
anemia are the main toxic effects that limit therapy with these drugs. Serum creatinine levels may
increase during ganciclovir therapy, which requires monitoring of renal function [84]. Encephalopathy
is the neurotoxic effect of ganciclovir and valganciclovir [85]. Foscarnet is also a very effective
anti-HCMV drug, and cidofovir is a broad-spectrum antiviral with good activity against HCMV. Both
drugs cause a high level of nephrotoxicity that limits treatment [83].

Novel 2-amino-1,3,4-thiadiazole derivatives with antiviral activity against HCMV have been
patented [86]. A large number of 472 synthesized compounds were tested in an HCMV polymerase
assay at a concentration of 25 µM. The degree of enzyme inhibition ranged from 20% to 100%.
Among the most active compounds, four derivatives exhibited a 100% inhibition rate, 29 derivatives
showed an inhibition rate of 90.1%–99.9% and 16 derivatives showed an inhibition rate of
80.3%–89.9%. Three structural series stand out among the most active 1,3,4-thiadiazole derivatives:
1,3-dioxo-1,3-dihydro-2-benzofuran-5-carboxamide derivatives such as 21–30, 9-octadecenamide
derivatives such as 31–38 and 2-ethoxy-1-naphthamide derivatives such as 39–42 (Tables 2–4).
Most of the derivatives belong to the 1,3-dioxo-1,3-dihydro-2-benzofuran-5-carboxamide series.
At the same time, the most active compounds belong to this series, so it can be concluded that
the 1,3-dioxo-1,3-dihydro-2-benzofuran-5-carboxamide moiety is a good scaffold for anti-HCMV
activity [86].
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Table 2. Structural details and human cytomegalovirus (HCMV) polymerase inhibition values of
compounds 21–30 (adapted from [86]).

R Inhibition (%) R Inhibition (%)

21 (CH2)10CH3 100 26
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Other compounds also showed good inhibitory activity. These derivatives contain a five- to
six-membered saturated heterocyclic moiety, such as imidazolidinyl, tetrahydrofuryl, piperidinyl,
morpholinyl, thiomorpholinyl or 5- to 10-membered aromatic or unsaturated heterocyclic moiety such
as furyl, pyrrolyl, pyridyl, benzothiazolyl, etc. (e.g., derivatives 43,44) [86].
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While the synthesized derivatives have shown inhibitory activity against HCMV polymerase,
their antiviral activity cannot be limited to a specific mechanism of action. These compounds may
be active against cytomegalovirus by HCMV polymerase inhibition or by other mechanisms of
action. In addition, during the experiments, many of these compounds also showed activity against
other herpes viruses, such as varicella-zoster virus (VZV), Epstein–Barr virus (EBV), herpes simplex
virus (HSV), and human herpesvirus type 8 (HHV-8). Pharmaceutical compositions containing such
compounds or their pharmaceutically acceptable salts useful as antiviral agents have also been studied.
Studies have been conducted for the administration of pharmaceutical preparations by parenteral,
topical, oral or rectal route, depending on the purpose of their use to treat internal or external viral
infections [86].

3.3. Respiratory Viruses

Acute respiratory infections are a major global health problem responsible for about 3.9 million
deaths worldwide each year [87,88]. These infections are of the top five causes of mortality worldwide
and the leading cause of mortality among children under five years of age in many developing
countries [87,89]. Acute respiratory infections are most often caused by viruses. Over 200 viral
serotypes are associated with human respiratory diseases [90] including Influenza A and Influenza
B virus, respiratory syncytial virus (RSV), parainfluenza virus (PIV), human adenovirus (HAdV),
human coronavirus (HCoV), human rhinovirus (HRV), human metapneumovirus (HMPV) and human
bocavirus (HBoV). In addition, two human polyomaviruses (HPyV), KIPyV and WUPyV, have been
detected in patients with respiratory infections [91]. These infections affect all age groups, but nearly all
severe episodes occur in children under five years, the elderly and immunocompromised individuals
(e.g., HIV-infected patients) [87,89]. In adults, viral respiratory infections are the cause of 30%–50%
of pneumonia cases, 80% of asthma complications and 20%–60% of chronic obstructive pulmonary
disease exacerbations [87]. Consequently, common viral respiratory infections cause a greater economic
burden than many other clinical conditions in terms of medical expenses and productivity losses [87,92].
The World Health Organization has supported the monitoring of acute respiratory diseases worldwide
since 1977 [91].

The Influenza virus belongs to the Orthomyxoviridae family and causes respiratory infections in
about 20% of the global population every year. The 1918 flu pandemic was caused by Influenza A
subtype H1N1 and killed 50 million people around the world [93]. The Asian Influenza caused by
Influenza A subtype H2N2 occurred in 1957 and the Hong Kong Influenza caused by Influenza A
subtype H3N2 took place in 1968 and made far fewer victims than the 1918 Spanish flu. About 70 people
died in Asia in 2004–2005 due to the H5N1 strain of avian flu [93]. The 2009 flu pandemic (swine flu)
was the second pandemic involving a strain of Influenza A virus. It was classified as Influenza A H1N1
2009 and the genetic material originated from three different species: human, avian and swine [7,94].
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The chemotherapy or prophylaxis of Influenza infections comprises agents blocking the Influenza
A virus M2 proton-selective ion channel (amantadine, rimantadine) and neuraminidase inhibitors
(zanamivir, oseltamivir, laninamivir, peramivir) [1,93]. Both classes can induce virus resistance and
therefore there is an urgent need to develop new antiviral agents with novel mechanisms of action.
An alternative concept has recently emerged and it is based on the idea of designing new molecules
targeting host cell factors that are hijacked by the virus during its replication. Host-targeting antivirals
are an alternative strategy for addressing host structures involved in the virus life cycle. This type
of inhibitors could exhibit a significantly greater barrier for selecting drug-resistant viruses and,
in addition, display broad-spectrum antiviral activity when interacting with a cellular target common
to several viruses. The host factor-directed antiviral therapy is recently studied. This is increasingly
recognized as a relevant approach to combat viral resistance and provides broad-spectrum antiviral
agents [95,96].

Many studies are currently being developed to find new Influenza inhibitors. Tatar et al.
synthesized 2-phenylamino-1,3,4-thiadiazole derivatives 45–48 [49].
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The antiviral activity against some respiratory viruses such as Influenza A H1N1, Influenza A
H3N2, Influenza B, Parainfluenza-3, RSV, Reovirus-1and Feline Coronavirus was investigated and the
results are summarized in Table 5. No activity was observed at the highest concentration tested or at
subtoxic concentration against Influenza B and RSV [49].

Table 5. Antiviral evaluation and in vitro cytotoxicity of compounds 45–48 (adapted from [49]).

Influenza A
H1N1

Influenza A
H3N2 Para Influenza-3 Reovirus-1 Feline

Coronavirus

EC50
(µM)

CC50
(µM)

EC50
(µM)

CC50
(µM)

EC50
(µM)

MCC
(µM)

EC50
(µM)

MCC
(µM)

EC50
(µM)

CC50
(µM)

45 42 > 100 31.4 > 100 > 20 ≥ 20 > 20 ≥ 20 > 100 > 100
46 - 23 - 23 > 100 >100 > 100 > 100 > 100 > 100
47 - 79 - 79 > 20 100 > 20 100 > 100 > 100
48 - 2.7 - 2.7 > 4 20 > 4 20 > 4 11

Oseltamivir
carboxylate 4.7 > 100 9 > 100 - - - - - -

Ribavirine 8 > 100 8.1 > 100 50 > 250 > 250 > 250 - -
Amantadine 127 > 500 1.7 > 500 - - - - - -

MCC: minimum cytotoxic concentration.

The in vitro antiviral assay showed N-{3-(methylthio)-1-[5-(phenylamino)-1,3,4-thiadiazol-2-yl]propyl}
benzamide 45 as an Influenza A H3N2 virus subtype inhibitor. With an EC50 value of 31.4 µM, the
derivative 45 was the most potent among the tested compounds and moderate active compared to
standard drug oseltamivir, but a promising scaffold for future developments. Derivatives 47 and 48
exhibited activity against Parainfluenza-3 and Reovirus-1 and probably the thiourea moiety favors
antiviral activity on these strains (Figure 5) [49].
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3.4. Hepatitis Viruses

Viral hepatitis is a liver inflammation responsible for about 171,000 deaths every year in the
European Region. Patients may have an acute form as a recent infection, with relatively rapid onset or
a chronic form. There are five main hepatitis viruses (HAV, HBV, HCV, HDV and HEV) with different
ways of transmission and different impact on human health [97]. While HAV or HEV infection is
usually mild, with most people recovering quickly and completely, infection with HBV, HCV or HDV
often leads to chronic infections and progressive liver damage with the development of cirrhosis
and liver cancer [97]. There are about 15 million people living with chronic HBV infection and
about 14 million with HCV infection in the European Region [97]. Safe and effective vaccines for
the prevention of HBV infection have been available since the 1990s. These vaccines also provide
protection from HDV infection. Unfortunately, the HCV vaccine has not yet been developed [97,98].
Many patients infected with HBV are adults born before the hepatitis B vaccine became available in the
1990s. In these cases, drug treatment is the only option [98]. Several nucleoside and non-nucleoside
derivatives with anti-HBV (e.g., adefovir, entecavir, lamivudine, telbivudine, tenofovir) or anti-HCV
activity (e.g., boceprevir, grazoprevir, elbasvir, ledipasvir, sofosbuvir, telaprevir) are in use [3,99] and
chronic infections with HBV and HCV can be currently controlled or even cured. Due to the costs
of antiviral drugs for chronic hepatitis, access to treatment is a major obstacle in many countries and
finding new, less expensive antiviral drugs is a necessity [97].

1,2-Dihydro-4,6-dimethyl-2-oxo-1-[(5-(phenylamino)-1,3,4-thiadiazol-2-yl)methyl]pyridine-3-
carbonitrile 49 was prepared from the corresponding phehylthiosemicarbazide by cyclization in
sulfuric acid [6]. The derivative 49 was tested for antiviral activity against the hepatitis B virus (HBV)
using HepG2.2.2.15 cell line, a human hepatoblastoma cell line that produces HBV viral particles.
Cytotoxicity was also tested by the cell viability method (MTT assay). Preliminary screening indicated
high inhibitory activity against HBV with an IC50 value of 0.3 µM, low cytotoxicity (CC50 value of
333.3 µM) and a selectivity index SI of 1111 compared to the standard drug lamivudine (IC50 value of
0.1µM). From these results, it can be concluded that pyridine-2-one may be a good substituent on
the 1,3,4-thiadiazole ring, and these two moieties together make a promising scaffold in promoting
anti-HBV activity [6].
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3.5. Miscellaneous Viruses

Sindbis fever, a less common human viral disease, is caused by a mosquito-borne virus called
Sindbis virus (Togaviridae family). Despite the wide distribution of Sindbis virus, symptomatic infections
in humans have been reported in only a few limited geographical areas such as northern Europe
(Finland, Sweden and Russia), South Africa, Australia and China [100]. 1,3,4-Thiadiazole derivatives
50–55 were tested for antiviral activity against several viruses [101].
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Figure 6. The influence of substituents of 1,3,4-thiadiazole derivatives 50–55 on viral inhibition. 

2-Phenylamino-1,3,4-thiadiazole derivatives 45–48 were also screened against herpes simplex 
HSV-1 and HSV-2, herpes simplex virus-1 TK-KOS ACV, Sindbis virus, Coxsackie virus B4 and 
Punto Toro virus (Table 6) [49]. While amide 45 and amine 46 did not exhibit antiviral activity at 
subtoxic concentrations, in vitro tests showed antiviral activity for thiourea derivatives 47 and 48, 
highlighting what other studies have reported that derivatives bearing the -NH-CS-NH- group have 
demonstrated antiviral activity. Derivative 48 exhibited activity against different strains of HSV and 
both derivatives 47 and 48 showed activity against Sindbis virus, Coxsackie virus B4 and Punto Toro 
virus (Figure 7) [49]. 

The derivatives 50 (methyl) and 51 (allyl) showed antiviral activity against herpes simplex virus-1
TK-KOS and herpes simplex virus-1 TK-KOS ACV, Sindbis virus, Coxsackie virus B4 and Punto Toro
virus at a concentration of 16 µg/mL. The highest antiviral activity was exhibited against Sindbis virus
by derivative 50 at a concentration of 9.6 µg/mL. It seems that the size of the amino group substituent
influenced the antiviral activity. While derivatives 50 and 51 with small alkyl groups showed antiviral
activity, compounds with bulky aromatic (52, 53 and 54) or cycloalkyl (55) groups were not capable of
viral inhibition (Figure 6) [101].

Molecules 2020, 25, 942 13 of 22 

 

3.5. Miscellaneous Viruses 

Sindbis fever, a less common human viral disease, is caused by a mosquito-borne virus called 
Sindbis virus (Togaviridae family). Despite the wide distribution of Sindbis virus, symptomatic 
infections in humans have been reported in only a few limited geographical areas such as northern 
Europe (Finland, Sweden and Russia), South Africa, Australia and China [100]. 1,3,4-Thiadiazole 
derivatives 50–55 were tested for antiviral activity against several viruses [101]. 

F

F

OH

S

N
N

H
N

R = CH3 (50); CH2CH=CH2 (51); C6H5 (52)

R

C6H4CH3(p) (53); C6H4OCH3(p) (54); C6H11 (55)  
The derivatives 50 (methyl) and 51 (allyl) showed antiviral activity against herpes simplex 

virus-1 TK-KOS and herpes simplex virus-1 TK-KOS ACV, Sindbis virus, Coxsackie virus B4 and 
Punto Toro virus at a concentration of 16 μg/mL. The highest antiviral activity was exhibited against 
Sindbis virus by derivative 50 at a concentration of 9.6 μg/mL. It seems that the size of the amino 
group substituent influenced the antiviral activity. While derivatives 50 and 51 with small alkyl 
groups showed antiviral activity, compounds with bulky aromatic (52, 53 and 54) or cycloalkyl (55) 
groups were not capable of viral inhibition (Figure 6) [101]. 

F

F

OH

S

N
N

H
N

R

CH3  increases antiviral activity (50)

loss of activity

exchange with bulky groups

CH2CH=CH2  beneficial for antiviral activity (51)

CH3

OCH3

52 53

54 55

50-55

 
Figure 6. The influence of substituents of 1,3,4-thiadiazole derivatives 50–55 on viral inhibition. 

2-Phenylamino-1,3,4-thiadiazole derivatives 45–48 were also screened against herpes simplex 
HSV-1 and HSV-2, herpes simplex virus-1 TK-KOS ACV, Sindbis virus, Coxsackie virus B4 and 
Punto Toro virus (Table 6) [49]. While amide 45 and amine 46 did not exhibit antiviral activity at 
subtoxic concentrations, in vitro tests showed antiviral activity for thiourea derivatives 47 and 48, 
highlighting what other studies have reported that derivatives bearing the -NH-CS-NH- group have 
demonstrated antiviral activity. Derivative 48 exhibited activity against different strains of HSV and 
both derivatives 47 and 48 showed activity against Sindbis virus, Coxsackie virus B4 and Punto Toro 
virus (Figure 7) [49]. 

Figure 6. The influence of substituents of 1,3,4-thiadiazole derivatives 50–55 on viral inhibition.

2-Phenylamino-1,3,4-thiadiazole derivatives 45–48 were also screened against herpes simplex
HSV-1 and HSV-2, herpes simplex virus-1 TK-KOS ACV, Sindbis virus, Coxsackie virus B4 and Punto
Toro virus (Table 6) [49]. While amide 45 and amine 46 did not exhibit antiviral activity at subtoxic
concentrations, in vitro tests showed antiviral activity for thiourea derivatives 47 and 48, highlighting
what other studies have reported that derivatives bearing the -NH-CS-NH- group have demonstrated
antiviral activity. Derivative 48 exhibited activity against different strains of HSV and both derivatives
47 and 48 showed activity against Sindbis virus, Coxsackie virus B4 and Punto Toro virus (Figure 7) [49].
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Table 6. Antiviral evaluation and in vitro cytotoxicity of compounds 45–48 (adapted from [49]).

HSV-1 HSV-2
HSV-1

(TK-KOS
ACV)

Sindbis
Virus

Coxsackie
Virus B4

Punto Toro
Virus

EC50
(µM)

MCC
(µM)

EC50
(µM)

MCC
(µM)

EC50
(µM)

MCC
(µM)

EC50
(µM)

MCC
(µM)

EC50
(µM)

MCC
(µM)

EC50
(µM)

MCC
(µM)

45 > 20 ≥ 20 > 20 ≥ 20 > 20 ≥ 20 > 20 ≥ 20 > 20 ≥ 20 > 20 ≥ 20
46 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100
47 > 100 > 100 > 100 > 100 > 100 > 100 > 20 100 > 20 100 > 20 100
48 > 20 100 > 20 100 > 20 100 > 4 20 > 4 20 > 4 20

Acyclovir 0.9 > 250 0.4 > 250 > 250 > 250 - - - - - -
Ribavirine - - - - - - > 250 > 250 > 250 > 250 112 > 250

MCC: minimum cytotoxic concentration.
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2-Amino-5-(2-sulphamoylphenyl)-1,3,4-thiadiazole 56 reduced the replication of some DNA
viruses such as adenovirus Ad17 and herpes simplex HSV-1 and RNA viruses such as Poliovirus 1,
Echovirus 2 and Coxsackie virus B4 at concentrations ranging from 20 to 100 µg/mL [102,103]. In vitro
experiments were performed using samples of 106 human aneuploid HEp-2 cells that were infected
with 10 infectious units per cell. Derivative 56 was highly active against all viral strains, significantly
reducing viral replication at a concentration of 50 µg/mL. The best inhibition was recorded against
Echovirus 2 virions that were completely inhibited at a concentration of 20 µg/mL (Table 7). Regarding
the mechanism of action, the authors assume that compound 56 may act on the viral structural proteins
preventing the assembly of virus particles [102].

Derivatives of compound 56 were prepared. Methyl derivative 57 and allyl derivative 58 reduced
the replication of RNA viruses (Poliovirus 1 and Coxsackie virus B4) at concentrations of 50 and
100 µg/mL, while ethyl derivative 59 was completely inactive against all viral strains (Table 7).
These results suggest the importance of the side chain for antiviral activity (Figure 8) [102].
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Table 7. Antiviral evaluation and in vitro cytotoxicity of compounds 56–59 (adapted from [102]).

Concn
(µg/mL)

Ad17
(Cells

Number)

HSV-1
(Cells

Number)

Poliovirus
1 (Cells

Number)

Echovirus
2 (Cells

Number)

Coxsackie virus
B4 (Cells
Number)

MNC
(µg/mL)

blank 5 × 108 3 × 106 3 × 109 2 × 109 3 × 108

56
20 7 × 106 6 × 105 4 × 106 0 6 × 105

90050 4 × 102 5 × 104 2 × 103 0 2 × 103

100 2 × 102 3 × 104 1 × 103 0 2 × 103

57
50 6 × 108 3 × 106 2 × 105 - 8 × 104

800100 6 × 108 2 × 106 8 × 104 - 2 × 104

58
50 4 × 108 2 × 106 3 × 104 - 2 × 104

800100 5 × 108 3 × 106 2 × 104 - 2 × 104

59
50 4 × 108 2 × 106 3 × 109 2 × 109 3 × 108

1300100 5 × 108 3 × 106 3 × 109 2 × 109 3 × 108

Concn: concentration; MNC: maximum noncytotoxic concentration.
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The use of non-nucleoside derivatives as antiviral chemotherapeutic agents has stimulated 
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nucleoside analogs that act by suppressing the synthesis of viral DNA or RNA which leads to 
inhibition of virus replication or cell division. Research has been carried out to find new nucleoside 
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Cui et al. synthesized several pyrrolyl-1,3,4-thiadiazoles with general formula 60 (Figure 9).
The compounds showed antiviral activity against some viruses of the Flaviviridae family such as West
Nile virus and dengue virus [25,104].
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The use of non-nucleoside derivatives as antiviral chemotherapeutic agents has stimulated
extensive research into the synthesis of compounds of this class. However, many antiviral drugs
are nucleoside analogs that act by suppressing the synthesis of viral DNA or RNA which leads to
inhibition of virus replication or cell division. Research has been carried out to find new nucleoside
antiviral agents in which the natural nucleobases have been replaced by heterocyclic rings, as can be
seen in derivatives 61–64 [105].
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The antiviral activity was evaluated in vitro against viral strains parasitizing Chenopodium
amaranticolor. The ability of derivatives 61–64 to control the viral infection of Chenopodium amaranticolor
leaves was studied at two concentrations: 1000 ppm and 100 ppm. Generally, the compounds
showed good rates of viral infection control at 1000 ppm. The best results were observed for the
derivatives bearing the D-xylobutyl group (compound 62—82% control and derivative 64—76%
control). The substituent on the aryl ring did not significantly influence biological activity, although
the compounds 61 and 62 having a methoxy group were slightly more active than derivatives 63 and
64 bearing a methyl group (Table 8, Figure 10). The study may be useful in obtaining new pesticides
for agriculture [105].
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4. Conclusions

The research focused on 1,3,4-thiadiazole derivatives indicates a broad spectrum of
pharmacological activities associated with good physicochemical and pharmacokinetic properties.
This article presents a literature review of 2-amino-1,3,4-thiadiazole derivatives that have been evaluated
for antiviral activity against several viral strains. In addition to the 2-amino-1,3,4-thiadiazole moiety,
antiviral activity is also dependent on the nature of the substituents, and structure–activity studies have
shown the most efficient substituents for antiviral activity in each class. Based on the literature data,
the 2-amino-1,3,4-thiadiazole scaffold may be considered a possible pharmacophore group that can be
incorporated into the structure of known compounds to enhance antiviral activity and contributes to
the search and development of new medicines as an alternative to the treatment of viral infections.
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