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Abstract

To advance our ability to predict impacts of the protein scaffold on catalysis,

robust classification schemes to define features of proteins that will influence

reactivity are needed. One of these features is a protein's metal-binding ability,

as metals are critical to catalytic conversion by metalloenzymes. As a step

toward realizing this goal, we used convolutional neural networks (CNNs) to

enable the classification of a metal cofactor binding pocket within a protein

scaffold. CNNs enable images to be classified based on multiple levels of detail

in the image, from edges and corners to entire objects, and can provide rapid

classification. First, six CNN models were fine-tuned to classify the 20 standard

amino acids to choose a performant model for amino acid classification. This

model was then trained in two parallel efforts: to classify a 2D image of the

environment within a given radius of the central metal binding site, either an

Fe ion or a [2Fe-2S] cofactor, with the metal visible (effort 1) or the metal hid-

den (effort 2). We further used two sub-classifications of the [2Fe-2S] cofactor:

(1) a standard [2Fe-2S] cofactor and (2) a Rieske [2Fe-2S] cofactor. The accu-

racy for the model correctly identifying all three defined features was >95%,

despite our perception of the increased challenge of the metalloenzyme identi-

fication. This demonstrates that machine learning methodology to classify and

distinguish similar metal-binding sites, even in the absence of a visible cofac-

tor, is indeed possible and offers an additional tool for metal-binding site iden-

tification in proteins.
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1 | INTRODUCTION

Biochemical reactions in nature are carried out by
enzymes, which have precise control over the environ-
ment in which a specific chemical transformation will

occur. Metalloenzymes are enzymes that contain at least
one metal ion, and are found extensively in natural sys-
tems, with 40% of known enzyme structures containing
metals (Andreini et al., 2008) and are an important aspect
in many catalytic conversions (Fernandes et al., 2019;
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Holm et al., 1996; Warshel et al., 2006; Williams, 1971;
Wolfenden and Snider, 2001). A significant amount of
work has focused on creating artificial metalloenzymes
because of the high specificity, selectivity, and ability of
native metalloenzymes to function under mild conditions
while employing non-precious metals, as well as their
potential to accelerate nonnatural reactions under mild
conditions (Himiyama and Okamoto, 2020; Röthlisberger
et al., 2008). Only a handful of design principles have
been well established but, based on the often-observed
superior activity of enzymes over synthetic catalysts,
more design principles have yet to be discovered. The
ability to extract these design principles could advance
catalysis in many different areas.

While there are many aspects to the design of artifi-
cial metalloenzymes (Roelfes, 2019; Schwizer et al., 2018;
Yu et al., 2014; Thomas and Ward, 2005; Hosseinzadeh
et al., 2016; Slater et al., 2018; Laureanti et al., 2019), pre-
dicting a protein's metal-binding ability from amino acid
sequence data is a key element. As a starting point, the
structure of an artificial protein can be predicted with
AlphaFold (Jumper et al., 2021). AlphaFold employs a
3D convolutional neural network (CNN), a deep learning
architecture, to produce protein structures from protein
sequences with accuracy similar to experimental struc-
tures (Jumper et al., 2021). However, AlphaFold does not
predict metal binding sites.

Numerous methods to predict metal-binding sites
exist, yet all have inherent limitations. First, highly con-
served amino acid sequences of protein metal cofactors
alone have been used to predict metal binding for metal-
loenzymes. Metal-binding sites often employ similar
amino acid sequence motifs (Passerini and
Frasconi, 2004). For example, in [2Fe-2S] cluster contain-
ing proteins, multiple sequence motifs exist between the
bacteria, plantae, and vertebrae with the most common
bacterial motif of C-X5-C-X2-C-X35-C motif (Agar
et al., 2003). As another example, c type cytochromes
have a predominately C-X2-C-H sequence motif where C
is cysteine, X is any amino acid, and H is histidine
(Andreeva, 2011). Databases built from conserved
sequences alone are currently in use by systems such as
MetalPredator. This system only predicts Fe-S sites by
comparing input sequences to the known binding
sequence in a database for metal binding sites in the
MetalPDB (Andreini et al., 2012). Importantly, MetalPre-
dator was found to accurately predict 75.5% of known
metal sites in the MetalPDB database (Valasatava
et al., 2016).

In addition to amino acid sequence motifs, there are
many other characteristics of a metal-binding site that
experts can use to both identify and classify possible sites.
Residues involved in catalysis have been evaluated as one

approach (Bartlett et al., 2002). An important characteris-
tic is the immediate environment surrounding the Fe
binding sites, which have been previously shown to be dif-
ferent for Fe, Cu, Mn, and Zn. The disparity leads to a
binding site with features which can be defined, including
the amino acid residues with the necessary functional
groups, charge, orientation, and solvent accessibility,
among other features (Karlin et al., 1997). While possible
to identify manually, as demonstrated, this involves con-
siderable time and the number of variables to consider can
make it difficult to achieve high consistency or accuracy.
In a recent example to try to accelerate identification of
binding sites, only one feature, root-mean-square deviation
of atomic positions (RMSD), was used to identify Zn and
iron–sulfur ligand binding sites in AlphaFold structures.
The RMSD value of ligands within proposed regions was
calculated and the region was considered ligand binding if
the RSMD values of a possible ligand orientation fell
below a threshold (Wehrspan et al., 2022). The model from
Wehrspan et al. was only moderately successful at locating
[2Fe-2S] binding sites, finding only 67% of the sites in the
protein database UniProt (Consortium U, 2019), perhaps
due the disulfide-bonds between cysteines potentially
being drawn incorrectly when using AlphaFold informa-
tion. Improvement was observed for locating Zn binding
sites while using experimentally derived data from Uni-
Prot as the input, with a recall of 84% (Wehrspan
et al., 2022; Consortium U, 2019).

Recently, machine learning has been employed to
classify metal-binding sites, using expert-defined features
as inputs. Machine learning has also been used for
related tasks, such as predicting enzyme mechanisms
from sequence data (De Ferrari and Mitchell, 2014) and
predicting catalytic residues based on the features of the
environment (Bobadilla et al., 2007). These features
might include physical descriptors of protein systems
such as amino acid sequences and physicochemical prop-
erties such as polarity and surface tension (Bonetta and
Valentino, 2020). These descriptors are ultimately fea-
tures calculated from protein structural data. Although
there are many advantages to using expert-defined fea-
tures, including the interpretability of the results, there
are also disadvantages, as outlined in a recent paper by
Torng and Altman (2017). First, creating features is a
laborious and highly skilled process. Second, each biolog-
ical question may require a different set of features.
Finally, information is lost when protein structures are
summarized with features, including the orientation
information of the structures. For this reason, it can be
useful to have a method that requires no feature input
whatsoever (Torng and Altman, 2019). This is what
image classification allows—classification without any
information beyond the image.
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In this work, for image classification, we will use a
CNN, a deep learning architecture that has been used for
more than 30 years for image classification. The input
image can use pixels from either a 2D or 3D image
(LeCun and Bengio, 1995). Some studies are successfully
using CNNs on both 3D images, for functional site detec-
tion, including nitric oxide synthase and TRYPSIN-like
enzyme sites (Torng and Altman, 2019), and on 2D
images of 3D structures, for protein structure classifica-
tion (Nanni et al., 2020). Herein, we used a CNN model
to classify 2D images of 3D metal-binding sites in iron–
sulfur proteins. The advantage of using 2D images rather
than 3D images is that a 2D view of a 3D object has been
found to be more accurate than 3D representations to
classify 3D shapes with a neural network (Su et al., 2015).
Nanni et al. (2020) also found that 2D representations of
protein structures, using a limited number of 2D image
rotations, can perform higher than the sequence/property
analysis approach in classifying types of protein struc-
ture. They also compared the effects of various represen-
tations of the structures and found that the ball and stick
representation was one of the top performing representa-
tions (Nanni et al., 2020). Other studies used mono-
colored 3D triangle mesh models from which the 2D
images were obtained from different viewpoints (Qin
et al., 2020).

In addition, when using 2D images, it is possible to
take advantage of models pretrained on large amounts of
image data found in datasets such as ImageNet, an image
dataset with 15 million labeled images (Deng
et al., 2009). It is often beneficial in image classification
to use models that have been pretrained with large data-
sets to learn features that are generalizable to many tasks,
and then to fine-tune the model to the specific task, in
our case, classifying amino acids and metal cofactor sites
(Yosinski et al., 2014). Fine-tuning involves training the
pretrained model further on images pertaining to the spe-
cific task, and has been shown to increase the model's
performance compared with starting with an untrained
model (Yosinski et al., 2014).

We classified images of the environment around two
iron-based cofactors: a single iron (Fe) atom from a
rubredoxin protein, and a [2Fe-2S] cluster from ferre-
doxin proteins. The environments included amino acids
within a 6.0 Å sphere of the metal cofactor. We chose to
employ Fe cofactors as Fe is one of the top three most
abundant metals found in enzymes (Andreini
et al., 2008) and because the [2Fe-2S] cofactor in particu-
lar is one of the most common but functionally diverse
cofactor classes (Agar et al., 2003), providing an optimal
training dataset. We performed three tasks that we
believed would be progressively more difficult for the
neural network model to classify. First, we classified 2D

images of 3D amino acids. We employed each amino acid
as a class, as a proof of principle of using a pretrained
CNN architecture to classify protein structures, and to
identify the most performant model. Then, this model
was employed to classify images of the environment
around a ligand in a metalloenzyme, including all amino
acids within the 6.0 Å sphere of the following cofactors:
Rieske [2Fe-2S], standard [2Fe-2S], and Fe atom. Two
sets of images were prepared: with the cofactor present
and with the cofactor hidden. The only items included in
the image with the hidden cofactors were the ball and
stick representation of the amino acids within the 6.0 Å
radius for classification. Each task started with the origi-
nal model, not the model after fine-tuning the
previous task.

2 | RESULTS

2.1 | Classification of all 20 standard
amino acid residues

Our first task was to classify 2D images of random rota-
tions of 20 standard amino acids, represented in a ball-
and-stick model with color-coded atoms and all backbone
and side chains visible as shown in Figure 1. To find the
best pretrained neural network model, we trained six dif-
ferent neural network models: ResNet (He et al., 2016),
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and
Zisserman, 2014), SqueezeNet (Iandola et al., 2016), Den-
seNet (Iandola et al., 2014), and Inception v3 (Szegedy
et al., 2016). Training datasets consisted of 2D images of
the 3D representation, generated in PyMol the molecular
visualization software (Schrodinger, LLC, 2015), rotated
at 36-degree increments in the x, y, and z direction. After
each model was trained, the best model was chosen by its
performance with the validation set, and the performance
metrics for that model were obtained with the test set.
Both the validation dataset and the test dataset are com-
posed of 250 independent 2D images of random rotations
of the 3D PyMol representation of each amino acid. Of
the six pre-trained models we fine-tuned to classify
amino acids, ResNet proved to be the highest performing
model for the full amino acid dataset, achieving 96%
accuracy with the validation dataset, with a 96% average
recall with 5% standard deviation and 95% average preci-
sion with a 4% standard deviation (Table 1a). The stan-
dard deviation represents differences between recall and
precision of each class, the 20 amino acids.

Although we chose ResNet for further studies, other
models performed with relative success, and none were
statistically significantly different within error. Some of
the models even surpassed that of ResNet for specific
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amino acid characterization, such as DenseNet or VGG
for alanine predictions. Our continued use of ResNet for
all future tasks was due to ResNet showing the highest
accuracy.

We assessed the performance of ResNet with the test
set. It is standard practice to use a separate dataset, a test
dataset, to assess the performance of a model selected with
the validation dataset due to the model having already
been affected by the validation dataset. The test dataset had
a 96% accuracy with the validation dataset, with a 96%
average recall with a 4% standard deviation and 96% aver-
age precision with a 4% standard deviation (Table 1b). Of
the 20 amino acids, 15 had a recall and precision above
95% of the time, and even the amino acid with the lowest
recall, serine, had a recall of 90% and a precision of 98%.
Example rotations that were misclassified are shown in
Figure 2, and we believe these are due to the image block-
ing distinguishing atoms as discussed in more detail below.

2.2 | Classification of Fe and [2Fe-2S]
cofactors from metalloproteins

After finding that the pretrained ResNet model could be
trained to distinguish amino acids, we fine-tuned the
original pretrained model to more difficult tasks: (1) clas-
sification of metal cofactors, and (2) specific folding/

metal binding motifs within a class of metal cofactors.
We employed ResNet as the base model since it per-
formed well in the single amino acid investigation and
fine-tuned the pre-trained original ResNet model with
the new images. Using the Protein Data Bank (PDB), we
found 120 unique proteins of Fe-rubredoxin (FeRd) and
720 proteins of [2Fe-2S] cofactor containing ferredoxins.
We further split the [2Fe-2S] ID's into the two sub-cate-
gories: standard and Rieske cofactors with 474 and
253 unique proteins within each group, respectively. A
small number of proteins contain multiple types of rele-
vant cofactors and so the protein, but not the cofactors,
are included in multiple groups.

Figure 3 allows a visual comparison of all metal cofac-
tors employed and the connecting ligands, which consists
of the: (1) Fe cofactor with four connecting cysteines;
(2) standard [2Fe-2S] with four connecting cysteines; and
(3) Rieske [2Fe-2S] cluster containing two cysteine
ligands on one iron atom and two histidine ligands on
the other iron atom. The bottom panel shows the cofac-
tors as they appear in PyMol using the Crystallographic
Information File (CIF) files from the PDB. The bonding
information is often incorrect in these downloaded files.
This could be corrected manually, but we wanted this
workflow to be as automated as possible and we achieved
a high accuracy despite not correcting the bonding
information.

FIGURE 1 Confusion matrix from the ResNet model with the test dataset as input. Each amino acid employed 250 rotations.
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For each metalloprotein type, the proteins were split
into either a training or test dataset. The proteins within
each class were used multiple times with different rota-
tions if needed to create the 1000 training and 500 test
images. The relevant metal cofactors and amino acids
within 6.0 Å of the metal cofactors are shown and rotated
to create 2D images. We initially planned to include a
fourth group, type-IV [2Fe-2S] cluster. We found that our
initial parameters within PyMol incorrectly included stan-
dard [2Fe-2S] cofactors with the HIS amino acid within a
sphere but not as ligand to the 2Fe-2S. We discovered this
after a spot-check on the images revealed that the model
misclassified this metal cluster. After this, we implemen-
ted a secondary check with a Python web-scraper, MolQL
Explorer (MolQL, n.d.; Rose et al., 2018) to verify the cor-
rect amino acids were bonded to the cofactor.

Table 2a and Figure 4 show the tabulated data and
the resulting confusion matrix, respectively, for the
ResNet model when classifying individually between the

three Fe systems shown in Figure 1, Fe ion, [2Fe-2S], and
Rieske [2Fe-2S]. There was a 95% accuracy when classify-
ing images as either a Rieske 2Fe-2S, standard [2Fe-2S],
or a single Fe cofactor (Table 2b). The average recall was
95% with a 1% standard deviation and the average preci-
sion was 95% with a 2% standard deviation. Our success
rate for successful image classification is high. We sur-
passed the results of Nanni et al. (2020) which achieved
an accuracy of 90% for protein fold classification and 77%
for protein class classification with 2D images of 3D pro-
teins. We were able to make the prediction with fewer
examples, using only one rotation per prediction instead
of the 125 rotations used by Nanni et al., but with 95%
accuracy. Situations in which the image is improperly
classified often include rotations of the clusters that only
show the histidine ring edge on. To demonstrate the
improvement of using a pretrained model, Figure S1
shows the confusion table resulting from classifying with-
out using a pretrained model. Figure 5 shows images of

TABLE 1a Recall (True Positive/[True Positive + False Negative]) for DenseNet, Inception, VGG, ResNet, AlexNet, and SqueezeNet for

each of the 20 standard amino acids.

Amino acid Test set ResNet ResNet DenseNet Inception AlexNet VGG SqueezeNet

ALA 96% 96% 97% 94% 93% 98% 92%

ARG 100% 100% 99% 100% 98% 99% 98%

ASN 98% 98% 98% 96% 98% 98% 90%

ASP 99% 99% 91% 85% 97% 96% 100%

CYS 100% 100% 100% 100% 100% 100% 100%

GLN 90% 85% 88% 80% 92% 84% 94%

GLU 96% 97% 98% 97% 96% 86% 98%

GLY 100% 100% 100% 100% 100% 100% 100%

HIS 100% 100% 100% 100% 99% 100% 97%

ILE 90% 85% 91% 73% 70% 61% 57%

LEU 90% 87% 85% 81% 78% 69% 65%

LYS 98% 99% 100% 100% 97% 98% 100%

MET 100% 100% 98% 100% 98% 99% 100%

PHE 96% 94% 94% 98% 90% 91% 90%

PRO 100% 99% 100% 99% 100% 98% 98%

SER 90% 95% 98% 99% 96% 95% 92%

THR 98% 98% 96% 94% 94% 86% 88%

TRP 96% 96% 94% 97% 92% 98% 94%

TYR 98% 96% 97% 91% 96% 95% 94%

VAL 92% 93% 82% 94% 86% 98% 68%

Accuracy 96% 96% 95% 94% 94% 92% 91%

Std. Dev. 4% 5% 5% 8% 8% 11% 13%

Note: Recall for ResNet was the highest of the neural networks investigated. Recall is shown from greatest to least from the left (ResNet) to right (SqueezeNet),
with the first column showing recall for the test set. The remaining scores for the validation dataset are shown in bold. As the class sizes are equal, and the
average recall is equal to the total accuracy. The standard deviation in the last row refers to the standard deviation of the recall scores per model.
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the Fe cofactor and the 6.0 Å environment around the
cofactor, which the model incorrectly classified as [2Fe-
2S] cofactor types. The bottom panel shows the same

metal cofactor as in the top panel, but rotated so the
ligands are identifiable with the face-on view of the histi-
dine rings.

TABLE 1b Precision (True Positive/[True Positive + False Positives]) for DenseNet, Inception, VGG, ResNet, AlexNet, and SqueezeNet

for each of the 20 standard amino acids.

Amino acid Test set ResNet ResNet DenseNet Inception Alexnet VGG SqueezeNet

ALA 95% 91% 98% 100% 89% 98% 95%

ARG 97% 100% 98% 98% 99% 100% 97%

ASN 95% 92% 87% 98% 87% 99% 95%

ASP 99% 98% 98% 92% 89% 82% 99%

CYS 100% 100% 100% 100% 100% 100% 100%

GLN 100% 99% 100% 97% 93% 94% 100%

GLU 92% 98% 97% 88% 96% 89% 92%

GLY 97% 98% 97% 98% 97% 94% 97%

HIS 100% 99% 100% 100% 99% 98% 100%

ILE 87% 87% 94% 81% 81% 58% 87%

LEU 88% 90% 89% 81% 89% 70% 88%

LYS 96% 94% 97% 95% 97% 96% 96%

MET 100% 100% 100% 100% 100% 100% 100%

PHE 96% 98% 91% 92% 98% 95% 96%

PRO 96% 93% 97% 95% 97% 81% 96%

SER 98% 87% 79% 92% 91% 95% 98%

THR 96% 93% 91% 98% 98% 95% 96%

TRP 97% 99% 99% 99% 93% 95% 97%

TYR 98% 99% 100% 90% 99% 91% 98%

VAL 93% 94% 77% 78% 68% 85% 93%

Average precision 96% 95% 94% 94% 93% 91% 96%

Std. Dev. 4% 4% 7% 7% 8% 11% 4%

Note: Precision for ResNet was the highest of the neural networks investigated. Precision is shown from greatest to least from the left (ResNet) to right
(SqueezeNet), with the first column showing precision for the test set. The remaining scores for the validation dataset are shown in bold. The standard
deviation in the last row refers to the standard deviation of the precision scores per model.

FIGURE 2 Improperly classified images from three structurally similar amino acids (valine, isoleucine, and leucine). The side chain

branching patterns are masked at various rotations, leading to improper classification.
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2.3 | Classification of Fe and [2Fe-2S]
cofactors from metalloproteins in the
absence of metal cofactors

To further test the robustness and flexibility of our
model, we also investigated the original neural network's

FIGURE 3 Metal cofactors employed in this study. (Panels a–c) A closeup view of the metal cofactors with the four coordinating protein

residues with the correct bonds manually added (top) and as they appear without adjustments to the Crystallographic Information File (CIF)

files in PyMol (bottom). Panel (a) displays an Fe cofactor from a rubredoxin metalloprotein (PDB 4D4O). Panels (b) and (c) show two [2Fe-

2S] metal cofactors: standard (PDB: 6TGA) and Rieske [2Fe-2S] (PDB: 1BGY), respectively. Atoms were colored according to their respective

element (C = gray, N = blue, O = red, H = white, S = yellow). PDB, Protein Data Bank.

TABLE 2a Confusion table for the

ResNet neural network to properly

classify the image of the environment

around the metal cofactor, amino acids

within 6.0 Å.

Metal cofactor name Fe [2Fe-2S] standard [2Fe-2S] Rieske Total images

Fe 478 3 19 500

[2Fe-2S] standard 10 482 8 500

Rieske 2 27 471 500

Note: Metal cofactors were included.

FIGURE 4 Confusion matrix for the ResNet neural network to

properly classify the environment around the metal cofactor, amino

acids within 6.0 Å, as belonging to the metal cofactor. Each metal

center employed 500 images.

TABLE 2b Recall, precision, and accuracy for the ResNet

neural network to properly classify the image of the environment

around the metal cofactor, amino acids within 6.0 Å.

Class Recall Precision Total accuracy

Fe 96% 98% 95%

[2Fe-2S] standard 96% 94%

[2Fe-2S] Rieske 94% 95%

[2Fe-2S] average 95% 94%

Average 95% 95%

Std. Dev. 1% 2%

Note: Metal cofactors were included.
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ability to classify the metalloprotein images with the
metal cofactor hidden. After fine-tuning the originally
downloaded ResNet model, ResNet did very well in clas-
sifying the 2D images as metal binding sites. The images
included all amino acids within 6.0 Å of the Fe and [2Fe-
2S], with the metal cofactor hidden, and they were classi-
fied into the classes defined in the training data—a
Rieske [2Fe-2S], standard [2Fe-2S], and Fe cofactor.
Tables 3a and 3b and Figure 6 show the classification
results when using the same residues and rotations as
employed in Section 2.2 to build a library of images with
the exception that the metal cofactor was omitted from
this dataset of images. There was an 96% accuracy when

FIGURE 5 Incorrect classification of the image of the environment around the metal cofactor—the amino acids within 6.0 Å of a metal

cofactor, and the metal cofactor. The model incorrectly classified the Fe cofactor as a [2Fe-2S] cofactor at the rotation shown in the top

panels. The bottom panels show the same cofactors but rotated so that the cysteine ligands are clearly visible (circled and colored in green).

The green color is for illustrative propose—the image used by the model had the same color scheme used for all atoms. The metal residual

identification of the images are: (a) PDB: FD4O, Chain: C, Residue: 501; (b) PDB id: 4X33, Chain: A, Residue: 101; (c) PDB id: 6J27,

Chain: C, Residue: 401. PDB, Protein Data Bank.

TABLE 3a Confusion table for the

ResNet neural network to properly

classify the image of the environment

around the metal cofactor, amino acids

within 6.0 Å.

Metal cofactor name Fe [2Fe-2S] standard [2Fe-2S] Rieske Total images

Fe 468 18 14 500

[2Fe-2S] standard 10 482 8 500

Rieske 0 6 494 500

Note: Metal cofactors were not included.

TABLE 3b Recall, precision, and accuracy for the ResNet

neural network to properly classify the image of the environment

around the metal cofactor, amino acids within 6.0 Å.

Class Recall Precision Accuracy

Fe 94% 98% 96%

[2Fe-2S] standard 96% 95%

[2Fe-2S] Rieske 99% 96%

[2Fe-2S] average 98% 95%

Average 96% 96%

Std. Dev. 3% 1%

Note: Metal cofactors were not included.
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classifying images as either a Rieske [2Fe-2S], standard
[2Fe-2S], and single Fe ion cofactor. The average recall
was 96% with a 3% standard deviation and the average
precision was 96% with a 1% standard deviation.

2.4 | Classification of a predicted
AlphaFold structure

To demonstrate the model's ability to classify the metal
binding site for a predicted protein structure, we searched
the PDB (Berman et al., 2003) for the PetF protein from
Phaelodactylum tricornutum, which is a standard [2Fe-
2S] containing ferredoxin. Although 14 structures from
P. tricornutum were located in the PDB, PetF was not one
of the deposited structures. However, we did find the pro-
tein associated with the petF gene in the AlphaFold Pro-
tein Structure Database (Jumper et al., 2021; Berman

et al., 2003). As this protein is a predicted protein struc-
ture rather than a structure produced from experimental
efforts and deposited in the PDB, it is an ideal candidate
to test the model.

Using our trained model, we classified images of rota-
tions of the PetF protein structure, predicted using the
AlphaFold Protein Structure Database. These images
included all amino acids within 6.0 Å or 6.5 Å of the cen-
ter of four cysteine residues, where the cysteine residues
were identified by an expert. Residues with at least one
atom located within the 6.0 Å sphere from any atom in
the metal cofactor were previously used to create the
training image, rather than 6.0 Å from the center of the
metal cofactor. Therefore, we increased the radius to
6.5 Å to compensate for measuring from the center rather
than the nearest atom of the metal cofactor. As we only
had one structure, we classified incremental rotations of
the cluster and found that the model correctly identified
the images as standard [2Fe-2S] in 117 out of 125 rota-
tions (Table 4).

3 | DISCUSSION

Providing alternate methods to analyze metal binding
sites beyond the analysis of the primary protein structure
could provide significant advances in the development of
artificial enzymes that mimic features of nature. In this
work, we used CNNs to determine if image classification
can be used as a tool to identify metal binding sites both
with and without the metal in the pocket. Similar to pre-
vious studies where they were studying protein classes or
protein structure classes, we also found success in classi-
fying structures based on 2D images (Qin et al., 2020)
and specifically using ball and stick representations
(Nanni et al., 2020) when classifying metal-binding sites.

The best fine-tuned models identified single amino
acids and metal cofactors with a >95% accuracy, demon-
strating the ability of CNNs to distinguish these 3D pro-
tein structures from 2D images. Most interesting was the
ability of the model to properly classify a protein scaffold
that binds a single Fe atom from a protein scaffold that

FIGURE 6 Confusion matrix for the ResNet neural network to

properly classify the environment around the metal cofactor—the

amino acids within 6.0 Å of a metal cofactor—as belonging to the

metal cofactor in the absence of the native metal cofactors. The

images used the same database of PDB IDs and same rotations as in

Figure 4 with the exception that the atoms of the Fe containing

metal cofactors were removed.

TABLE 4 Confusion table for the ResNet neural network to properly classify the image of the environment around the center of four

cysteine residues in a protein structure predicted from AlphaFold, Phaelodactylum tricornutum (PetF), which includes the cysteine residues

and additional amino acids within 6.0 Å and 6.5 Å.

Metal cofactor name Fe [2Fe-2S] standard [2Fe-2S] Reiske

6.0 Å [2Fe-2S] standard 29 96 3

6.5 Å [2Fe-2S] standard 7 117 1

Note: The correct cofactor, [2Fe-2S], was identified for 117 of the 125 rotations.
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binds a [2Fe-2S] using only the protein microenviron-
ment that directly encapsulates the coordinated
metallocenter.

We found that ResNet did very well in identifying
amino acids. It had a 100% recall for arginine, histidine,
and proline, and above 95% recall of 15 out of 20 amino
acids, and it had a 100% precision for cysteine, glutamine,
and methionine, and above 95% precision of 16 out of
20 amino acids. One difficulty of using neural networks
to classify is that only input and outputs are observable,
thus it can be difficult to diagnose the reasons the model
does or does not classify correctly. We can only infer pat-
terns in the images that were correctly and incorrectly
classified. These images are 2D snapshots of the 3D clus-
ter taken at a random angle, with color-coded atoms and
connections drawn by PyMol.

Likewise, classifying confusion within amino acids of
similar physical properties is sensible as a terminal func-
tional group may be shared, but the carbon chain con-
necting the functional group to the amino acid backbone
may differ by only one carbon atom. For instance, isoleu-
cine images were confused as leucine 6% of the time, and
leucine was confused as isoleucine 8% of the time
(Figure 2). Figure 3 shows some of the images of these
amino acids that the model confused. Each residue side
chain contains saturated sp3 carbon atoms which branch
and terminate in methyl groups. Given the similarities of
the physical composition, ResNet may have trouble dis-
tinguishing different configurations of carbon branching
patterns. Perhaps the model more often confused isoleu-
cine and leucine with each other rather than with valine
because valine is slightly more structurally dissimilar to
isoleucine and leucine, as valine has a shorter chain
length than both isoleucine and leucine. It is also possible
that the improperly classified images simply indicate that
any given random rotation can be an inherently poor
descriptor when the amino acid side chains are not fully
visible, and thus are not ideal for identifying residues via
image analysis.

In some cases, it is difficult to find a reason why the
model may have confused amino acids as some misclassi-
fication was between groups that would likely be readily
distinguished by human classifiers. For example, serine
was confused with alanine 5% of the time and valine was
confused with threonine 5% of the time despite the pres-
ence or absence of an oxygen atom in the confused amino
acid. When using random rotations to define a structure,
there will be inherently non-opportunistic poses that
place important side chain atoms at an angle that is
obstructed for the identification of features in the image.
The result is an image that shows only the edge of an
amino acid or an accessory amino acid that is obstructing
a metal-bonding amino acid from view.

Based on our success with amino acids, we chose
ResNet as the preferred model for the classification of the
metal cofactors. This task is unrelated to the task of clas-
sifying amino acids, and the original pretrained neural
network was fine-tuned for the task. In this case, the clas-
sification model is not required to identify amino acids
within the images, which would be object detection.
Instead, the model is classifying images as associated
with a metal cofactor based on the entire image. After
fine-tuning, ResNet had higher average recall and preci-
sion within the [2Fe-2S] cofactor class at 98% and 95%,
respectively (Table 2b) compared to the Fe cofactor class
at 95% and 94%, respectively (Table 2a). One possible rea-
son behind the increase in recall and precision for [2Fe-
2S] and Rieske cofactors as opposed to the Fe cofactor
was that the Fe cofactor classes were created from a data-
set containing 6 times more unique proteins than the
[2Fe-2S] clusters due to the lower availability of experi-
mentally derived protein structures.

Figure 5 shows improperly classified images of an Fe
cofactor class that the model classified as one of the two
types of [2Fe-2S] clusters. Not only do unfavorable poses
place atoms in positions that make them difficult to
assess with this tool, but atomic information can also be
hidden when rotated in the direction orthogonal to the
2D view, leading to a loss of both connectivity and color
value information to be used as structural reference
material. The bottom panel in Figure 5 shows the same
metal cluster that was misclassified but rotated so that
the cysteine ligands are clearly identifiable. In addition,
the model used color images, and the backbone nitrogen
atoms may impede correct classification as unfavorable
poses will place blue nitrogen atoms where chelating his-
tidine residues could possibly reside. While this high-
lights some of the limitations of this technique, the
overall predictive performance was very high, with an
accuracy of 96%. It is expected that using 600–800 images
would allow us to approach 99%, however, the level of
accuracy achieved with this approach positions us to use
this technique to identify binding pockets with a high
level of confidence.

In the absence of metals, the average recall is 96 with
a standard deviation of 3% and the average precision is
96 with a standard deviation of 1% when distinguishing
three possible cofactor classes: Rieske [2Fe-2S], standard
[2Fe-2S], and a single Fe ion, which is slightly higher
than with metals (average recall of 95% with a standard
deviation of 1% and average precision is 95% with a stan-
dard deviation of 2%). This is interesting as these results
suggest that the metal cofactor is introducing increased
error in some image rotations. Symmetrical operations
may produce identical images in the single Fe binding
site and the [2Fe-2S] cofactor binding site when the metal
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atoms overlap. Removal of the metal cofactors likely
lowers the number of disadvantageous viewing angles in
the created images by allowing atoms that would nor-
mally be hidden behind the Fe atom to be visible, and
thus included in metal binding site predictions.

The high level of classification accuracy even in the
absence of the metals implies that an aspect of each
cofactor must be consistent within each class. Consider-
ing that both the Fe ions and standard [2Fe-2S] cofactors
are both connected by sulfur atoms from four cysteine
residues, yet still can be distinguished from each other,
this hints at the conservation of traits independent of
each cofactor type. Further, recognition of a metal bind-
ing site must involve more than the atoms of ligands
directly bound to the metal, that is, the first coordination
sphere. These additional features may include the influ-
ence of the exogenous molecule bound to those ligands,
and thus a second coordination sphere and the intermit-
tent orientations or locations of any of the amino acids
within the 6.0 Å sphere may inhabit. The ability of the
model to correctly identify images of a predicted protein
structure as standard [2Fe-2S] in 117 out of 125 rotations
when using 6.5 Å from the center of the expert-identified
cysteine residues shows this methodology can be applied
to predicted structures within the AlphaFold database.

Counterintuitively, ResNet had similar accuracy for
the three classification tasks: (1) single amino acids,
(2) protein structural images containing atomic informa-
tion for amino acid residues and metal cofactors, and
(3) protein structural images containing atomic informa-
tion for only amino acid residues and no atomic informa-
tion for the metal cofactors. Since each task had the same
starting model and did not build sequentially upon each
other, our initial expectation was to observe a decrease in
classification performance as our perception of the com-
plexity of the task increased from 1 to 2 to 3. However,
incorrectly classified images may have been the result of
poor bonding information, unfavorable rotational space,
or a lack of structural examples. From our analysis, it
appears that evolutionary pressure conserves important
structural information, such as metal-binding environ-
ments, and thus allows for reasonable classification of
metal-binding proteins from information derived purely
from the images of the environment around the metal
cofactors.

Evolutionary conservation is also observed via amino
acid sequence motifs, which are contained within the
original PDB file and can guide the elucidation of known
metal binding sites. However, a portion of the same motif
employed by all [2Fe-2S] clusters, C-X2-C, has been
shown to be used by protein scaffolds to coordinate all
metal ions in the PDB except for Mg2+ (Belmonte and
Mansy, 2017). This is an example where our CNN for

image classification of metal binding sites can enable
another layer of quality assurance when classifying novel
protein structures.

Ultimately, we would like to accelerate our ability to
predict metal binding pockets to create artificial metal-
loenzymes. Deep learning models like AlphaFold, which
has been shown to predict protein folding with a very
high level of accuracy, have accelerated our ability to pre-
dict protein structure. However, posttranslational modifi-
cations such as the incorporation of metal cofactors are
not currently included, and additional techniques are
needed to identify binding pockets that can host metals.
Methods such as AlphaFill have become available
recently that allow the prediction of small molecules and
metal ions (Hekkelman et al., 2022). Our methods
described in this paper, of using 2D images of 3D struc-
tures have advantages over using expert-defined features
in classification. First, the process of categorizing an
enzyme into a list of features may result in the loss of
important structural or other information. For example,
the exact orientation of each amino acid relative to the
others might be lost in an individual image, while the
global set of images retains all required information. Sec-
ond, the model requires only the images of the cluster,
but no prior knowledge of what is visible in the image.
The result is that expert input will not be needed beyond
defining the parameters for the training data. In addition,
a lower need for prior knowledge means that this method
can easily be adjusted for new questions and classifica-
tion tasks even if features are not defined or understood.
The strength of this method then is that it requires low
cost and effort compared with using expert-defined fea-
tures, while rapidly delivering high predictive
performance.

4 | CONCLUSION

We have successfully updated the pretrained CNN
ResNet to classify all 20 standard amino acid residues
with an overall accuracy >96%. Resnet showed the high-
est accuracy among six evaluated CNN architectures and
was employed for more detailed studies of metal cofac-
tors and their metal binding pockets. The original ResNet
was trained to successfully classify the amino acids
within a 6.0 Å sphere around two metal cofactors, Fe ion
and [2Fe-2S] cluster, with and without the metal cofactor
visible. We further showed the ability to differentiate
among the coordination spheres of two types of [2Fe-2S]
cofactor containing ferredoxins.

Classifying known metal-binding sites is a necessary
aspect of identifying metal-binding sites in nonmetal
binding proteins, that is, artificial metalloenzyme studies.
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Our work illustrates a method to distinguish similar clus-
ters from each other with minimal expert input and time.
Our method can be run quickly with PyMol scripts and
requires limited time from experts beyond spot checks
and the initial definition of the sites used to create the
training images. It is the first case, in our knowledge, of
using 2D images of 3D structures to classify metal cofac-
tor sites and opens an opportunity for the rapid classifica-
tion of metal binding sites in proteins, with potential to
extend to other binding sites in proteins.

5 | METHODS

5.1 | Image database of amino acid
rotations

The molecular graphics program, PyMol, was employed
to produce all images in the training/validation/testing
datasets. Each amino acid was downloaded from PDB
within PyMol. Training was completed using 2D snap-
shots of the 3D representation for each amino acid. The
amino acids were represented as ball and sticks, where
atoms are represented as spheres and bonds as cylinders.
Atoms were colored according to their respective ele-
ment: C = gray, N = blue, O = red, H = white,
S = yellow. Depth and shadow were included to empha-
size the foreground and background of the amino acid.
Training data were created from amino acids rotated in
each possible combination of 36-degree increments
around the x, y, and z-axis. At each rotation a 2D snap-
shot was saved, resulting in 1000 images for each amino
acid. Model validation and testing datasets employed
amino acid CIF files that were rotated by random degrees
on the x, y, and z-axis and 2D snapshots were taken at
each rotation, resulting in 250 snapshots of each amino
acid in the validation dataset, used to select the optimal
neural network model, and 250 snapshots in the test
dataset.

5.2 | Image database of metal cofactor
rotations

Clusters containing Fe and [2Fe-2S] were found by down-
loading a list of all proteins containing (1) Fe (III) and Fe
(II) ion and (2) FeS, respectively, from the Protein Data.
A PyMol script identified the cofactors that contained
one iron atom and four cysteine residues within a 3.0 Å
sphere of the Fe residue. The PyMol script filtered the
[2Fe-2S] cofactors into three classes: standard, Rieske,
and other. Standard [2Fe-2S] was chosen if the residue
FeS contained at least four cysteine residues with 3.0 Å.

Rieske [2Fe-2S] cofactors were chosen if the cysteine resi-
dues were equal or greater than two and the histidine res-
idues were equal to two. All FeS residues that did not fit
into either of these two categories were discarded. The
classification was confirmed by using a Python web
scraper to download a list of residues bonded to the
metals from the MolQL Explorer website (MolQL, n.d.),
with residues that did not meet the bonding requirement
discarded. Seventeen proteins were not downloadable
from MolQL, so the classification of their residues was
confirmed with a visual inspection of the orientation of
the amino acids to the metal cofactor in PyMol.

For each class of cofactors, the CIF files were down-
loaded within PyMol. A 6.0 Å sphere around each metal
cofactor, Fe or FeS, in the protein, was created using
PyMol commands to show only the metal cofactor of
interest and the residues with at least one atom located
within the 6.0 Å sphere from the metal cofactor. Training
was completed using 2D snapshots of the 3D representa-
tion for each of the spheres centered by, and including
the metal cofactors. A 1000 images were created for each
cofactor (Fe, Rieske 2Fe-2S, and standard 2Fe-2S) in the
training and 500 in the test dataset. Separate proteins
were used in training and test sets. Tables S2–S4 identify
the metal cofactor residues used as the center of each
cofactor.

A ball and stick visualization method within PyMol
was used with the same atom coloring scheme as the sin-
gle amino acid representations, but without depth or
shadow as the overlapping amino acids within the cluster
already provide information on which structures are in
the foreground and background. To create the training
data, a list was created of each possible combination of
36-degree increments about the x, y, and z-axis to create a
rotation list with a 1000 items. For each rotation combi-
nation and for each possible cofactor (Fe only, standard
2Fe-2S, Rieske 2Fe-2S) in the training dataset, a random
unique protein ID was fetched and rotated. If multiple
metal cofactor residues existed in one protein, the dupli-
cate residue numbers on different chains were not used.
The script used a new metal cofactor residue ID associ-
ated with the protein each time the protein is selected
(restarting with the initial residues once all residues are
used). To create the test data, 500 random cofactors from
the test dataset were rotated by random degrees on the x,
y, and z-axis, and a 2D snapshot was taken at each rota-
tion. As only ResNet was used for classifying metal cofac-
tors, there was no need for model validation sets. The
same residues and rotations were employed to create the
images without metals, with the PyMol script hiding the
metal cofactors.

This method was modified slightly to test classifica-
tion on an AlphaFold protein (entity A0A6B9XN65). As
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the metal cofactor is not included in an AlphaFold struc-
ture, the image was centered instead by the four cysteine
residues identified by an expert. We used a radius of
6.0 Å or 6.5 Å to create the images. The image was
rotated at 72-degree increments across the x, y, and z-axis.
These images were only used to test the previously
trained models—they were not used in the training set.

5.3 | Machine learning models

We fine-tuned and evaluated the performance of the
models ResNet (He et al., 2016), AlexNet (Krizhevsky
et al., 2012), VGG (Simonyan and Zisserman, 2014),
SqueezeNet (Iandola et al., 2016), DenseNet (Iandola
et al., 2014), and Inception v3 (Szegedy et al., 2016). A
Python library used for computer vision, PyTorch
(Paszke et al., 2019), was employed to execute the
models. All data preprocessing, model fine-tuning, and
inference was performed on NVIDIA P100-based GPU
nodes. The script used was modified from the webpage,
Finetuning Torchvision Models Tutorial (Inkawhich,
2017). Test images were resized and normalized to match
the required input of the neural network, and output of
the last layer was fed into a classification layer, for exam-
ple, for amino acids the output layer was modified for
20 classes. We used pretrained models, which allow the
parameters of the neural network to be preloaded based
on 15 million images from an image dataset, ImageNet.
The models were tuned using 50 epochs each, a batch
size of 16, and updating weights of the entire model as
opposed to only updating the final layer. We then
selected the model with the highest accuracy score in the
validation set to assess performance in the test set for
amino acid classification. We also used the original pre-
trained model to both train and test the metal cofactor
classification. The same machine learning methods were
used for the metal cofactor classification.
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