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ABSTRACT

The ability of cells to transmit bioactive molecules to recipient cells and the extracellular environment
is a fundamental requirement for both normal physiology and disease pathogenesis. It has
traditionally been thought that soluble factors released from cells were responsible for this cellular
signaling but recent research has revealed a fundamental role for microvesicles in this process.
Microvesicles are heterogeneous membrane-bound sacs that are shed from the surface of cells into
the extracellular environment in a highly regulated process. They are shed following the selective
incorporation of a host of molecular cargo including multiple types of proteins and nucleic acids. In
addition to providing new insight into the etiology of complex human diseases, microvesicles also
show great promise as a tool for advanced diagnosis and therapy as we move forward into a new age
of personalized medicine. Here we review current status of the rapidly evolving field of microvesicle
biology, highlighting critical regulatory roles for several small GTPases in the biology and biogenesis
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of shed microvesicles.

Introduction

Microvesicles are heterogeneous, membrane bound sacs,
shed from the surface of myriad cell types." Throughout
the scientific literature, microvesicles have also been
referred to as shedding vesicles, ectosomes, oncosomes,
shedding bodies, and microparticles. In recent years,
investigators have come to appreciate their important
roles in altering the extracellular environment, intercellu-
lar signaling, and facilitating cell invasion through cell-
independent matrix proteolysis.>* For example, through
their ability to transfer bioactive molecules, including pro-
teins, DNA,” mRNA, and miRNA,°® microvesicles are able
to modify the extracellular milieu, proximal, and distal
recipient cells. Additionally, the identification of microve-
sicles in multiple bodily fluids”® has heightened interest
in research aimed at elucidating their functions in both
healthy and diseased tissues. Together with recent advan-
ces in techniques for isolating microvesicles from periph-
eral bodily fluids,”'" these developments suggest that
microvesicles may play an important role in future diag-
nostic and therapeutic strategies, and thus make them an
important focus of continued biomedical research.
Microvesicle biogenesis involves vertical trafficking of
molecular cargo to the plasma membrane, a redistribu-
tion of membrane lipids, and the use of contractile
machinery at the surface to allow for vesicle pinching.’
Shed microvesicles are distinct from another population

of cell-derived extracellular vesicles known as exosomes.
The two populations differ in in size, cargo, and mecha-
nism of formation. Unlike microvesicles (described in
detail below), exosomes are formed by the inward invagi-
nation of late endosomal membranes to form what has
come to be known as a multivesicular body (MVB). The
fusion of a mature MVB with the cell’s limiting mem-
brane then releases its exosomal contents into the extra-
cellular space.'’ Because MVBs and their enclosed
exosomes are derived from endosomal membranes, exo-
somes are observed to be similar in size to their endoso-
mal precursors the intraluminal vesicle (ILV). That is,
exosomes range from 30-100 nm in diameter when
observed by electron microscopy.”> However, since
microvesicles are formed by direct budding from the
plasma membrane, they lack a similar upper size limit
and may be as much as several microns in diame-
ter.>*'>'* Exosome cargo includes proteins from endo-
somes, the plasma membrane, the cytosol, and specific
subsets of cellular protein depending on the cell type as
would be expected given their mechanism of biogene-
sis.'”” While much has been learned regarding the content
of both exosomes, microvesicles, and apoptotic bodies
(another form of extracellular vesicle released specifically
from cells undergoing apoptosis), the identification of
cargo specifically expressed in either type of vesicle
remains an ongoing area of intense research.>'>'* Both
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microvesicles and exosomes are capable of encapsulating
and transferring multiple forms of cargo including pro-
teins, RNA transcripts, and miRNAs. It was, however,
recently reported that there are general differences in the
ability to deliver macromolecules from transiently trans-
fected cells. Microvesicles and exosomes can, for exam-
ple, efficiently incorporate ectopically expressed reporter
proteins, mRNA, and siRNA, however, the researchers
found that only microvesiclces could transfer reporter
function to recipient cells in the form of plasmid DNA."?

A spectrum of eukaryotic cell types release microve-
sicles under both physiological and disease conditions."®
The onset of disease states, such as the development of
multiple cancers, can perturb this highly regulated pro-
cess leading to aberrant shedding.’ Microvesicles com-
prise a heterogeneous population with their function
ultimately determined by vesicle cargo content, which is
in turn dependent upon the cell type from which they
are shed. Macromolecular cargoes contained within
microvesicles participate in a wide range of biological
processes. Utilizing the Vesiclepedia'” database, we have
depicted 10 of the most common functions associated
with cargo reported in the literature to date (Fig. 1). Fur-
thermore, studies have documented that cargo content
also varies with the particular profile of gene expression
at the time of release.” Both cargo sorting and microve-
sicle shedding are tightly regulated by several small
GTPases, including members of the ARF (ARF6>'® and
ARF1"), Rab,*® and Rho (Racl and RhoA'®*') families.
Several small GTPases discussed in this review are also
highlighted in Figure 1. Finally, given the plethora of
macromolecular cargo content found within microve-
sicles, it is worth noting that similar to what has been
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described for exosomes,** there are likely heterogeneous
pools containing distinct cargo within the total microve-
sicle population.*>**

When released into the extracellular environment,
shed microvesicles can subsequently release their cargo,
which can itself alter the extracellular milieu, or microve-
sicles can interact with recipient cells via endocytosis,
fusion, or activation of signaling pathways through
receptor interactions.® Microvesicle activities, for exam-
ple, play important roles in coagulation; inflammation;
stem cell expansion and renewal; and tumor progression.
Here, we will review recent advances in our understand-
ing of the biogenesis and biological activity of microve-
sicles as well as the future perspectives and applications
for this research moving forward.

Biogenesis

Microvesicle biogenesis occurs via the direct outward
blebbing and pinching of the plasma membrane releas-
ing the nascent microvesicle into the extracellular
space.>*> Membrane blebbing is accompanied by dis-
tinct, localized changes in plasma membrane protein and
lipid components, which modulate changes in mem-
brane curvature and rigidity (Table 1).***” Changes in
plasma membrane components are complemented by a
vertical redistribution of microvesicle cargo components
which are selectively enriched within microvesicles.” As
described below, these processes represent a unique
mechanism of extracellular vesicle formation in compari-
son to exosomes, which are formed intracellularly within
MVBs, or apoptotic bodies, which result from indiscrim-
inate surface blebbing. This novel mechanism of
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Figure 1. Common biological functions of microvesicle protein cargo identified in Vesiclepedia database. Vesiclepedia cargo content
was analyzed using the FunRich Functional Enrichment Analysis Tool to examine the biological processes associated with each of the
database entries. The 10 most common activities are displayed, and those associated with small GTPases discussed in the text are

highlighted.
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Table 1. Proteins with identified functional roles in microvesicle
biogenesis.

Aminophospholipid translocases (Stachowiak et al., 2013;*°

(flippase and floppases) Yang et al., 2008*")
ARF1 (Schlienger et al., 2014)"
(Activation of contractile

machinery via MLCK)

ARF6 (Muralidharan-Chari et al.,

(Regulates the selective recruitment of 2009)?
proteins into microvesicles and

activates contractile machinery via

MLCK)

ARRDC1, TSG101 (Nabhan et al,, 2012)*
DIAPH3 (Brown et al., 2014;%°

Kim et al., 2014%")
Glutaminase (Li et al, 2012)
Hyaluranon synthase (Rilla et al.,, 2013)*
Localized protein enrichment (Stachowiak et al., 2012)%*°
Myosin-1a (McConnell et al., 2009)*?
Rab22a (Wang et al., 2014)*°

(Selective recruitment of proteins
to microvesicles under hypoxic
conditions)
RhoA (Sedgwick et al., 2015;'®
Links ARF6 activation to MLC Schlienger et al., 2014;"°
phosphorylation via ROCK signaling Li et al,, 2012%)
pathway; also involved in actin
cytoskeletal rearrangements via RhoA-
coflin pathway. Rho family proteins
including Rac1 and RhoA are involved
in an antagonistic relationship that
determines switching between
microvesicle shedding amoeboid, and
invadopodia utilizing mesenchymal
phenotypes

formation results in the regulated release of extracellular
microvesicles containing specifically enriched molecular
cargoes.

Membrane lipids and dynamics

Despite growing understanding and appreciation of
extracellular microvesicles as a novel means of cell-cell
communication, the mechanisms governing their forma-
tion and release remain, as of this writing, incompletely
understood. Microvesicle budding from the limiting
plasma membrane, though a distinct process from exo-
some formation which occurs in late-endosomal com-
partments, does utilize endosomal machinery to allow
for vesicle formation. This includes the Ras-related
GTPase ADP-ribosylation factor 6 (ARF6), discussed in
greater detail below, and components of the ESCRT sys-
tem.”® It was recently reported that a process similar to
viral budding results from the interaction of arrestin
domain-containing protein-1 (ARRDC1) with the late
endosomal protein TSG101 leading to the relocalization
of TSG101 from endosomal membranes to the plasma
membrane likely resulting in localized changes in mem-
brane curvature in an epithelial cell model. This shift in
TSG101 localization subsequently leads to the release of
membrane microvesicles which contain both TSG101
and ARRDCI along with other cellular components but

lacking known markers of late endosomal compart-
ments.”®

Researchers have recently outlined another mechanism
through which proteins, even those unrelated to the gener-
ation of membrane curvature, can result in bending of the
plasma membrane due to crowding at the cell periphery
and lateral pressure generation through protein-protein
interactions, even in a cell-free lamellar vesicle system.29
With these results indicating that the crowded protein
environment on the surface of cellular membranes can
contribute to membrane shape changes it is tempting to
speculate that the enrichment of protein cargo alone at
sites of nascent microvesicle formation could be sufficient
to drive de novo microvesicle formation.

In addition to reports outlining multiple roles for protein
composition in the regulation of plasma membrane
bending, alterations in lipid composition may also perturb
membrane rigidity and curvature, acting at times to
stabilize membrane-bending forces.” The unequal distribu-
tion of plasma membrane lipid components can result in
changes to local membrane curvature consistent with the
events of microvesicle budding. For example, phospholipids
comprised of large head groups and small hydrocarbon tails
(or vice versa) can take on a roughly conical shape and the
uneven distribution of these irregularly shaped components
between plasma membrane leaflets used to impose discreet
membrane curvature. Additionally, the local recruitment of
aminophospholipid translocases (flippase and floppases)
could readily contribute to the formation of membrane
curvature during microvesicle formation as has previously
been reported during formation and fission of Golgi vesicles
in vitro.”' Furthermore, research has implicated the buildup
of extraneous membrane at microvillar tips as a source of
microvesicles shed into the gut lumen in a myosin-la
dependent fashion.>? Similarly, researchers have also
reported that increased production of hyaluronan can lead
to the release of microvesicles from the ends of long,
microvilli-like projections.” Taken together, these reports
suggest that under certain conditions pinching of microvilli
or other cell protrusions may be yet another mechanism
for microvesicle release.

Cargo trafficking

Microvesicles are not simply random samplings of cellular
components; protein and nucleic acid cargos are selectively
recruited into micrcovesicles while others are excluded.’
One protein identified as a regulator of selective recruit-
ment of proteins, is ARF6. Specialized ARF6 recycling
endosomes target specific protein cargo such as VAMP3,
B-1 integrin, and MHC-I for incorporation into tumor
cell-derived microvesicles.” Interestingly, although transfer-
rin receptor is trafficked via ARF6 positive endosomes, it is



not incorporated into microvesicles.” This result suggests
that there are multiple mechanisms for selective cargo
recruitment at the budding vesicle in addition to the selec-
tion that occurs by virtue of being trafficked via ARF6 posi-
tive endosomes, with the nascent vesicle being a
convergence point for multiple membrane trafficking path-
ways. In addition to ARF6-regulated endosomal trafficking,
for example, it has recently been demonstrated that in
breast cancer cells, Rab22a co-localizes to shedding micro-
vesicles and overexpression of Rab22a leads to increased
microvesicle shedding® Furthermore, it is likely that
Rab22a is responsible for selectively recruiting proteins uti-
lized for microvesicle formation under hypoxic conditions
as Rab22a knockdown abrogates hypoxia-induced
increases in microvesicle generation, but has only a small
effect on microvesicle biogenesis in non-hypoxic condi-
tions.”® Furthermore, additional cargo trafficking that con-
verges on vesicle blebbing and shedding is mediated by
interaction with specific v-SNAREs. It was previously dem-
onstrated that when the surface protease (and known com-
ponent of shed microvesicles) MT1-MMP associates with
VAMP?7, the protease is delivered to invadopodia.** How-
ever, the same MT1-MMP cargo, when associated with
VAMP?3 is trafficked to shedding microvesicles in a CD-9
dependent fashion where it will facilitate matrix invasion
by tumor cells.* With nucleic acids, very few mechanisms
for regulated trafficking into nascent microvesicles have
been elucidated. One possible mechanism by which
mRNAs are selectively incorporated into microvesicles was
uncovered in glioblastoma cells where it was demonstrated
that conserved zip code RNA sequence motifs in the 3’
untranslated regions function to enrich mRNA in microve-
sicles.’>** miRNA have also been shown to be associated
with RNA trafficking proteins such as T-cell internal anti-
gen 1 as well as proteins involved in RNA stability such as
Argonautez.37 Furthermore, CSE1L, a functional nuclear
export protein that has been implicated in chromatin bind-
ing, was recently shown to be included in melanoma
microvesicles.”® Taken together, these studies highlight the
likelihood that nucleic acids are co-trafficked with protein
cargos into budding microvesicles. Finally, it is also worth
noting the possibility that this vertical redistribution of
cargo is tightly regulated and dependent on the physiologi-
cal context and a wide variety of extracellular stimuli. For
example, in endothelial cells, TNF-« signaling leads to vesi-
cle shedding with distinct populations of protein cargo and
different levels of miRNA inclusion.>

Contractile machinery and vesicle fission

Microvesicle fission and release from the cell surface is
dependent upon the interaction of actin and myosin
together with a subsequent ATP-dependent contraction.”
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Interestingly, ARF6, with its known roles in peripheral
actin remodeling, cell invasion, and endocytic traffick-
ing,">*! has been shown to be a key regulator of microve-
sicle shedding. ARF6-mediated activation of extracellular
signal-regulated kinase (ERK) via phospholipase D (PLD)
leads to localized myosin light chain kinase (MLCK)
activity at the neck of budding vesicles, phosphorylation
of myosin light chain (MLC), and activation of the afore-
mentioned contractile machinery.” This phosphorylation
of MLC has been shown to occur down stream of ARF6
as well as ARF1 occurring via activation of the Rho
GTPases, in particular RhoA, which phosphorylates MLC
via a Rho-associated protein kinase (ROCK) signaling
pathway.'®"” In addition to phosphorylation of MLC,
RhoA has long been known to regulate actin cytoskeletal
rearrangements via the RhoA-cofilin pathway* which
may also play a role in vesicle fission as actin rearrange-
ments are likely essential to effective fission.'**?

Biological roles of microvesicles

Blood cell derived microvesicles (coagulation,
inflammation, and immunity)

Microvesicles found in the circulatory system with roles
in coordinating the pro-coagulatory response are shed
from a variety of cell types, among them platelets, mac-
rophages, and neutrophils.® Much of the work on these
pro-coagulatory microvesicles has focused on vesicles
released by platelets but vesicles from other blood mono-
nuclear cells have also been shown to promote coagula-
tion.* A pro-coagulant response can be produced via
microvesicles due to 2 key properties of circulatory sys-
tem microvesicles: tissue factor, a transmembrane pro-
tein that acts as a cofactor for factor VIIa (FVIIa), and
exposure of anionic phospholipids on the external leaflet
of the vesicle membrane. Surface exposure of tissue fac-
tor, the primary biological initiator of the coagulation
cascade™ has been documented in microvesicles shed
from platelets, and platelet derived microvesicles have a
50-100 fold higher pro-coagulant activity than activated
platelets alone. These results indicate that vesicles shed
by platelets may be even more important to clotting than
the platelets themselves.*>*® This difference in clotting
activity is due in large part to the externalization of
anionic phospholipids like phosphotidylserine as the
anionic microvesicle membrane can then serve as a cata-
Iytic surface for the cationic domains of clotting pro-
teins.*”*® Tt is likely that numerous other coagulation
mechanisms are activated by blood cell-derived microve-
sicles as well, for example the FXII dependent coagula-
tion pathway initiated predominantly in erythrocyte and
platelet derived microvesicles.*’
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The link between coagulation and the innate immune
system has long been appreciated®® and it follows that
microvesicles released from circulatory cells would have
functional roles in immunity as well as coagulation. It
was recently shown that Staphylococcus aureus infection
leads to tissue factor positive microvesicle release.’*
Microvesicles released by peripheral blood mononuclear
cells in response to infection function both to aid in com-
batting infection as they can opsonize bacteria and to
promote coagulation.*’ In particular, microvesicles from
neutrophillic granulocytes contribute to immunity as
they contain antibacterial proteins such as PMN granule
proteins.””> Neutrophil derived microvesicles generated
in response to the presence of bacteria contain more
antibacterial proteins and are more effective at combat-
ing infection than neutrophil derived vesicles generated
in response to other stimuli’*>®> This differential
response in shed vesicle content depending on whether
or not the cells were exposed to bacteria indicates that
cargo is selectively recruited into vesicles and can vary in
response to stimuli. Together with the reports describing
the impact of TNF-« signaling these results highlight a
variation in cargo recruitment in response to stimuli that
is likely an interesting property of microvesicles in gen-
eral.®® Furthermore, a hypercoagulant state has been
identified in cancer patients where tumor cells have been
shown to release TF positive microvesicles® subse-
quently associated with the increased likelihood of dis-
tant metastases in lung cancer.>

It has long been known that inflammation is a result
of the interactions between various cell types in the
blood™ and it has since become clear that microvesicles
are involved in this crosstalk. Microvesicles can exert
both pro-inflammatory”” and anti-inflammatory*>’
effects on their environment principally through the hor-
izontal transfer of cytokines and chemokine receptors to
recipient cells; and by inducing recipient cells to subse-
quently release cytokines. It has been suggested that tog-
gling between pro- and anti-inflammatory vesicle release
changes throughout the inflammation response® likely as
a result of extracellular stimuli being integrated with acti-
vation of intracellular signaling pathways in shedding
cells. For example, a recent report demonstrated that
exposure to cigarette smoke induces pro-inflammatory
vesicle shedding in mononuclear cells via intracellular
Ca*" mobilization.” It is also important to note that
microvesicles may regulate the inflammatory response in
cytokine independent mechanisms including apoptotic
induction of immune cells through vesicle associated
FasL signaling.®’ This, together with the fact that inflam-
mation itself stimulates coagulation and the crosstalk
between these 2 systems can be accomplished by micro-
vesicles,”>** further solidifies that the roles of blood cell

derived microvesicles in coagulation, immunity, and
inflammation are interconnected and interdependent.
This is of particular importance because the coordination
of these physiological functions as regulated by microve-
sicles has a crucial role in the development of cardiovas-
cular disease.***°

Tumor cell derived microvesicles

Tumor cells of varied origins release significant numbers
of microvesicles.® The amount of shed vesicles has been
documented to correlate with increased invasiveness and
disease progression.8 Tumor microvesicles (TMVs) have
many postulated roles during the onset and spread of
disease. These roles, including transfer of growth factor
receptors, increased cell motility, induction of angiogen-
esis, evasion of immune detection, and development of
drug resistance; are often attributed to the ability of shed
TMVs to condition the extracellular milieu.” The mecha-
nisms through which TMVs mediate disease progression
are varied. Tumor microvesicles can, for example, partic-
ipate in the horizontal transfer of bioactive cargo, includ-
ing oncogenic growth factor receptors such as EGFRVIII
from aggressive glioma cells to naive non-aggressive
cells.”” Transfer of the oncogenic variant of the EGF
receptor in turn leads to activation of transforming sig-
naling pathways (Akt and ERK) and an increase in the
expression of EGFRVIII related genes. In addition to cell
surface receptors, TMVs also contain multiple pro-
angiogenic cargos such as VEGF,®® TGF-$, and miRNA
1246.%° These vesicles also contain cargo such as indole-
amine-2,3-dioxygenase which suppresses T-cell prolifer-
ation and enables tumor cells to evade detection and
elimination by the immune system.”””' Furthermore,
TMVs are reported to contribute to the development of
chemotherapeutic resistance via the transfer of P-glyco-
protein and Multidrug Resistance-Associated Protein 1
which serve as a plasma membrane multidrug efflux
transporters to clear drugs from the intracellular
space.”>” Although the influence of tumor derived
microvesicles on these hallmarks of cancer has been
understood for a number of years, much of the recent
work has succeeded in putting previous results into con-
text whether in different disease states such as multiple
myeloma;” physiological conditions such as hypoxia;*
exposure to environmental insults, for example, tobacco
smoke extract;” or the induction of senescence.”® Inter-
estingly microvesicles have also recently been implicated
in cancer cachexia via induction of myoblast apoptosis
resulting from exposure to miR-21 positive microve-
sicles.”” Finally, TMVs are known to contain a host of
proteases, including MMPs, which act to digest matrix
components. This degradation has multiple pro-



tumorigenic qualities including the release of sequestered
cytokines and growth factors; and the formation of paths
of least resistance to facilitate tumor cell invasion.*'®”®
Furthermore, the release of preotolytically active, MT1-
MMP containing TMV's was recently demonstrated to be
necessary to support the amoeboid-type invasion of
tumor cells.”

Invading tumor cells can interchangeably adopt dis-
tinct morphologies: mesenchymal cells are characterized
by their elongated morphology and robust utilization of
invadopodia-mediated cell invasion while amoeboid cells
are characterized by their rounded appearance with
dynamic plasma membrane blebbing and the release of
protease-loaded microvesicles. The switch between
modes is regulated in part by an antagonistic relationship
between Racl and RhoA” which is in turn governed by
the physical characteristics of the extracellular matrix.'®
For example, when tumor cells encounter compliant
matrices, this plasticity of invasive mechanisms results in
high levels of active RhoA and increased microvesicle
shedding from cells that are amoeboid in morphology.'®
Interestingly, membrane blebbing and microvesicle
shedding is further linked to the amoeboid phenotype as
both rely on increased intracellular tension and contrac-
tility based on phospho-MLC and actin interactions.*’
Additional molecular pathways linking shedding and the
amoeboid phenotype include the Rho effector DIAPH3.
Depletion of DIAPH3 has been shown to both increase
shedding from prostate cancer cells®" and lead to adop-
tion of the amoeboid invasive/migratory phenotype in
multiple tumor cell lines.*® This link between shedding
and the amoeboid phenotype is important in disease
contexts because tumor cells assuming the amoeboid
phenotype are equipped with a 2 pronged method of
invasiveness since the increased cell contractility of the
amoeboid phenotype allows cells to deform in order to
force themselves through small voids in the ECM,%
while increased microvesicle shedding may allow cells to
create paths of least resistance through protease-medi-
ated ECM degredation.” Taken together, these results
indicate that tumor derived microvesicles and the
increased shedding that occurs during the development
of cancer affect disease onset, spread, progression and
co-morbidities.

Stem cell microvesicles

Investigators have come to appreciate that much of the
efficacy of stem cell therapies such as bone marrow
transplants, come not from the implanted stem cells
replacing cells of the injured target tissue, but rather
through the effects of soluble factors acting on injured
cells.*>** Microvesicles have been implicated as one of
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the crucial factors involved in this paracrine signaling
between stem and recipient cells as early as 2006.%
Microvesicles play critical roles in the crosstalk between
stem and injured cells in part through their facilitating a
reciprocal interaction between the 2 cell populations.””
Microvesicles shed from damaged cells may facilitate the
differentiation-dependent repair associated with stem
cell based therapies. Microvesicle-mediated transmission
of bioactive signals released from injured tissue results in
stem cell differentiation in order to compensate for the
loss of cells following injury.**® Interestingly, it has
been shown that tumor cells use microvesicles to influ-
ence mesenchymal stem cells (MSCs) leading the MSCs
to acquire a more malignant phenotype with increased
proliferation, migration, and protease secretion.®® This,
together with the fact that mesenchymal stem cells are
recruited to tumors in vivo,®’ may indicate that stem
cell-based therapies may be an ill-advised treatment plan
for cancer patients. Cell free therapy using microvesicles,
however, may avoid these adverse effects. Microvesicles
released from stem cells have been shown to activate
regenerative programs in injured recipient cells and
induce functional changes including enhanced prolifera-
tion and inhibition of apoptosis.*** MSC derived micro-
vesicles have also been shown to have anti-inflammatory
properties via suppression of the Akt and STAT3 signal-
ing pathways” and by inhibiting T-lymphocyte func-
tions as well as modifying the cytokine production of
dendritic cells, naive and effector T-cells, and natural
killer cells.”” Endothelial precursor stem cells also release
microvesicles containing pro-angiogenic mRNA and
miRNA which upon receipt can activate quiescent endo-
thelial cells facilitating vascularization and thus injury
healing.”"”> More recent work has identified the use of
stem cell-derived microvesicles as a general method for
rescuing the phenotype of dying organs and tissues after
various injuries ranging from acute and chronic renal
fibrosis,®® acute lung injury, and pulmonary edema.”
Taken together these findings indicate that use of stem
cell derived microvesicles may provide a future effica-
cious cell free approach to regenerative therapies.

Neurodegeneration

Protein aggregation is a hallmark feature of many neuro-
degenerative disorders with accumulation of B-amyloid
and tau in Alzheimer disease; «-synuclein in Parkinson
disease, TDP-43 in ALS, and mutant huntingtin in Hun-
tington’s disease.”* These proteins can be spread indis-
criminately following cell death or may be selectively
released and shed in extracellular vesicles and subse-
quently taken up by naive recipient cells.”>*® Much of
the work on the cell-to-cell transmission of these
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aggregating proteins has focused on exosomes but inves-
tigators are beginning to appreciate the critical role of
microvesicles in this process. For example, tau has
recently been detected in the interior of shed microve-
sicles and is shed to a greater extent in microvesicles
than exosomes.”” Additionally, microglia derived micro-
vesicles also contribute to Alzheimer disease pathogene-
sis by converting extracellular B-amyloid from an
insoluble form to its more toxic soluble form.”® Further
study is needed to determine whether these and other
neurodegenerative proteins are present in microvesicle
fractions. Finally, recent research has shown that mye-
loid-derived microvesicles contribute to neuroinflamma-
tion, a characteristic of many neurodegenerative
disorders, and it was very recently demonstrated that
microglial microvesicles carry N-arachidonoy-lethanol-
amine (AEA) which is able to stimulate presynaptic
type-1 cannabinoid receptors, inhibit spontaneous
gamma-aminobutyric acid release, and likely represent a
mechanism through which microglia participate in
inflammation associated excitatory phenomena.”” "'

Future perspectives

The continued study of microvesicles has led to an
increased appreciation of their value as biomarkers in
disease, potential therapeutic targets, and platforms for
drug delivery. Using microvesicles as biomarkers has dis-
tinct advantages in that they are easily accessible in vari-
ous biological fluids (as opposed to repeated tissue
biopsies) and their isolation simultaneously isolates and
concentrates the molecular changes occurring in the
pathologically relevant tissue thereby increasing sensitiv-
ity.” For example, this enrichment was recently demon-
strated in a recent study wherein isolated TMV's isolated
from the ascites, serum, or intraperitoneal washings of
ovarian cancer patients were enriched with VAMP3,
MT1-MMP, ARF-6 and CA-125 (a commonly used bio-
marker for ovarian cancer) relative to the unfractionated
fluids.* Together these advantages increase the likelihood
of early detection and diagnosis of pathological condi-
tions and thus have the potential to positively affect
patient outcomes. The combination of disease specific
markers such as matrix metalloproteases in cancer;'%?
and tissue factor in thromboembolism and disseminated
intravascular coagulation;'” as well as tissue specific
markers including cytokines in microglia;”> and myelo-
peroxidase and lactoferrin in neutrophils®* could allow
for defining a unique and specific microvesicle biosigna-
ture for multiple diseases. Given that vesicles are shed by
most cell types under normal physiological conditions,
critical to this diagnostic capacity would be the

establishment of standardized protocols to isolate dis-
eased cell vesicles from other shed vesicle populations.

Since genomic and proteomic expression profiles can
change with disease progression or in response to treat-
ment, microvesicles can also be used for disease staging
and monitoring treatment efficacy and/or response. This
prognostic capacity is especially important for risk
assessment and determining patient management
options and has the potential to be paradigm shifting for
patient care. For example, a patient with a non-invasive,
slowly progressing form of breast cancer that is respond-
ing to treatment may opt to avoid invasive procedures
such as lumpectomy or mastectomy in favor of other
treatment options. Profiling microvesicle cargo to deter-
mine what genomic and proteomic abnormalities are
present and driving disease progression also will allow
for personalized and individual treatment plans, for
example, targeting a specific signaling pathway as
opposed to targeting the disease or its symptoms more
generally.

Although microvesicles participate in normal growth,
development, and homeostasis,'® microvesicle shedding,
and in particular altered levels of shedding,® play impor-
tant roles in the progression of various diseases as dis-
cussed above. As such, inhibiting the horizontal transfer
of biomolecules accomplished by microvesicles may be
an important and valuable therapeutic goal. As outlined
by Andaloussi and colleagues, there are 4 principle
mechanisms that can be targeted to accomplish this: the
biogenesis and formation of microvesicles; the shedding
and release of microvesicles; the uptake of microvesicles
by recipient cells; and the trafficking to microvesicles of
specific cargoes involved in disease progression.'®* How-
ever, in order to turn these hypothetical targeting possi-
bilities into bona fide clinical treatment options, more
study is needed on the mechanisms of molecular sorting
and plasma membrane budding and fission as we have
yet to completely elucidate the regulatory mechanisms of
either process though research progresses on these
fronts. Take, for example, RhoA signaling which has
been shown to be both necessary and sufficient for
microvesicle shedding in multiple tumor cell lines. Cer-
ione et al. have shown that glutaminase inhibition, which
has been shown to block Rho GTPase-dependent growth
of cancer cells in culture and mouse xenografts,'” also
potently blocks microvesicle shedding in vitro."® This
work provides a powerful example of how insight into
the process of microvesicle biogenesis and the GTPases
regulating that process can lead to the identification of
therapeutic targets for inhibition of microvesicle
shedding.

Because of their ability to horizontally transfer biomo-
lecules, microvesicles can be harnessed for targeted drug



and therapeutic delivery. In addition to unmodified
microvesicles, discussed in more detail below, drug deliv-
ery may also be accomplished using engineered microve-
sicles. This has been accomplished, for example, through
the overexpression of miRNA-143 in THP-1 cells fol-
lowed by intravenous injection of transduced cells into
nude mice where they shed miRNA-143 positive
vesicles.'” These genetically engineered vesicles have
more recently been shown to be viable delivery vehicles
using additional cell culture model systems including
their ability to deliver suicide genes to cancerous schwan-
noma recipient cells'*® and anti-obesity miRNA-130b to
adipocytes.'” Microvesicles are particularly exciting in
terms of drug delivery as they offer several advantages
over other delivery vectors. Microvesicles are biocompat-
ible, can be immunologically inert, and can, if necessary,
be patient derived.' Additionally, research has shown
that these vesicles may be able to target specific recipient
cell tissues through proteins on the vesicle surface such
as CD44 (isoform 10).”> Similarly, microvesicles have
been shown to increase the effectiveness of adeno-associ-
ated virus based gene therapy as association with micro-
vesicles increases viral capsid transduction efficiency and
protects capsids from anti-adeno associated virus anti-
bodies.' "

As discussed above, unmodified microvesicles released
from stem cells have the ability to activate angiogenic pro-
grams in endothelial cells, suppress apoptosis, stimulate
cell proliferation, and ultimately activate regenerative
programs in injured tissue.'®* Additionally, it is conceiv-
able that microvesicles with the capacity to modulate
inflammation could be exploited to induce or inhibit the
immune response. For this potential to be realized it will
be necessary to specifically isolate and capture microve-
sicles with the desired functionality, illustrating the
importance of establishing standardized protocols for iso-
lating specific populations of microvesicles.

Conclusions

Despite a growing understanding of their roles in both
normal and disease physiology, little remains known
about the mechanisms regulating cargo enrichment and
microvesicle release. Further investigation in these areas
has the ability to radically change our understanding of
how cells interact with the surrounding environment
during normal tissue homeostasis or the onset and pro-
gression of many disease states. The ability to readily
purify microvesicle populations from bodily fluids can
be paradigm shifting in the way in which we diagnose,
monitor, and treat multiple diseases. Research into func-
tional applications of shed microvesicles has only
scratched the surface and the future of this research
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hinges upon further refinement of enrichment and isola-
tion techniques. The mounting evidence reviewed here
points to microvesicles becoming an increasingly appre-
ciated mechanism of intercellular communication and
vital components of both laboratory and clinical re-
search.
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