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ABSTRACT

In recent years, our web-atlas at www.
TargetGeneReg.org has enabled many researchers
to uncover new biological insights and to identify
novel regulatory mechanisms that affect p53 and the
cell cycle – signaling pathways that are frequently
dysregulated in diseases like cancer. Here, we
provide a substantial upgrade of the database that
comprises an extension to include non-coding
genes and the transcription factors �Np63 and
RFX7. TargetGeneReg 2.0 combines gene expres-
sion profiling and transcription factor DNA binding
data to determine, for each gene, the response to
p53, �Np63, and cell cycle signaling. It can be used
to dissect common, cell type and treatment-specific
effects, identify the most promising candidates, and
validate findings. We demonstrate the increased
power and more intuitive layout of the resource
using realistic examples.

GRAPHICAL ABSTRACT

INTRODUCTION

The cell proliferation cycle and the tumor suppressor p53
are closely linked and represent the most commonly dys-
regulated signaling pathways in cancer. Despite more than
40 years of research on p53 and many more on the cell cycle,
we still lack a comprehensive understanding of the p53 and
the cell cycle-dependent regulation of a surprisingly large
number of genes. Several mechanisms have been proposed
to explain the temporal regulation of hundreds of cell cycle
genes (1,2) and the downstream targets of p53 (3–5), but the
substantial overlap between p53 and the cell cycle render the
analysis of individual genes difficult.

The expansion of publicly available high-throughput
datasets has enabled a more detailed understanding of
gene regulatory mechanisms and networks in recent years.
We developed a meta-analysis approach to cross-validate
results and to improve statistical power by integrating
datasets derived from different experimental setups (6).
The meta-analysis allows inferring p53 and cell cycle reg-
ulation of genes from multiple cell types and treatment
conditions and derive common signature genes. It follows
the intuitive idea that when multiple independent datasets
agree on a finding it is more likely to be accurate and that
the sum of available evidence provides the best guess for
the truth. Previously, we employed this meta-analysis ap-
proach to chart the transcriptional programs of the cell cy-
cle, human and mouse p53, the viral oncoprotein E7, and
the transcription factor �Np63 (6–10). Key findings from
these meta-analyses included that p53 serves as a transcrip-
tional activator, while genes repressed by p53 were actu-
ally cell cycle-dependent genes (6). Specifically, while p53
up-regulates hundreds of genes directly through engaging
with chromatin in physical contact with the gene locus, it
also down-regulates the large group of cell cycle genes indi-
rectly through its target gene CDKN1A. CDKN1A encodes
for the cyclin-dependent kinase (CDK) inhibitor p21 that
suppresses cyclin:CDK activity leading to the activation
of the cell cycle trans-repressor complexes DREAM (DP,
RB-like, E2F4 and MuvB) and RB:E2F (11–17). More-
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over, our meta-analyses revealed that the transcription fac-
tor complexes RB:E2F, DREAM, and MMB:FOXM1 con-
trolled essentially all of the cell cycle genes. The analysis re-
vealed a small number of genes that were specifically acti-
vated by p53 and controlled within the cell cycle by RB:E2F
and DREAM (6). However, transcriptome analyses suggest
that larger subnetworks of the p53 and cell cycle-dependent
gene regulation networks (GRN) are yet to be understood
(5,6).

The target gene regulation (TargetGeneReg) database
developed from the meta-analyses was made available
through a web-based atlas at www.TargetGeneReg.org (6)
to enable researchers to easily scrutinize the influence of
the cell cycle and p53 on any gene of interest. Through
www.TargetGeneReg.org, researchers can rapidly deter-
mine common as well as treatment, cell type, and species-
specific regulations, identify promising targets, and validate
findings. In numerous research projects, it is necessary to
establish the degree to which a given gene is directly or in-
directly affected by p53 and major cell cycle signaling path-
ways. Its easy-to-use interface enables researchers to quickly
gather evidence about the extent and frequency their genes
of interest are affected by these critical regulators. Target-
GeneReg has been used for understanding cell cycle regu-
lators, their signaling cues, and their disease relevance (18–
26). Moreover, our database has helped to identify pathways
that respond to drugs and stress conditions (27,28), among
many other applications.

Alternative resources such as the p53 BAER hub and
the Cyclebase v3.0 either focus on p53-dependent regula-
tion or the influence of the cell cycle on gene expression,
respectively (29,30). However, the integration of both layers
of information necessary to understand p53’s contributions
to target gene regulation is not readily possible using these
tools. Likewise, it is of interest for many researchers to study
the target gene expression in other species such as Mus mus-
culus. While Cyclebase v3.0 includes cell cycle-dependent
gene regulation data from other species, the p53 BAER hub
does not provide information beyond Homo sapiens.

The TargetGeneReg resource enabled us to compare the
p53 GRN between mouse and human. Surprisingly, up-
regulation by p53 displayed substantial evolutionary diver-
gence, while down-regulation of cell cycle genes by p53–
p21 is well conserved (9,31). Moreover, we employed the re-
source to compare the GRN of p53 to its sibling �Np63
and, in contrast to previous reports, we demonstrated that
�Np63 minimally affects any direct p53 target. Instead, a
large number of �Np63 targets were cell cycle genes, but
the mechanistic link between �Np63 and the cell cycle re-
mained unclear (10,32). Most recently, TargetGeneReg en-
abled the discovery of the transcription factor RFX7, an
emerging tumor suppressor, as a novel node in the p53
GRN, proposing a mechanism for how p53 regulates sev-
eral targets (33). RFX7 is linked to multiple lymphoid can-
cers (34), such as Burkitt lymphoma where we and others
identified RFX7 as a potential cancer driver (35,36).

Here, we provide a major update for TargetGeneReg
through a substantial expansion of the underlying data re-
sources to include recent RNA-seq and ChIP-seq datasets
on p53 and cell cycle regulation, inclusion of data resources
on �Np63 and RFX7, an upgrade of the website, and vi-

sualizations of expanded ChIP-seq data through the UCSC
Genome Browser.

MATERIALS AND METHODS

RNA-seq analysis pipeline

We used Trimmomatic (37) v0.39 (5nt sliding win-
dow approach, 5′ leading and mean quality cutoff
20) for read quality trimming according to inspections
made from FastQC (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) v0.11.9 reports. Illumina adapters as
well as mono- and di-nucleotide content were clipped us-
ing Cutadapt v2.10 (38). Potential sequencing errors were
detected and corrected using Rcorrector v1.0.4 (39). Ribo-
somal RNA (rRNA) transcripts were artificially depleted
by read alignment against rRNA databases through Sort-
MeRNA v2.1 (40). The preprocessed data was aligned to
the reference genome hg38, retrieved along with its gene an-
notation from Ensembl v102 (41), using the mapping soft-
ware segemehl (42,43) v0.3.4 with adjusted accuracy (95%)
and split-read option enabled. Mappings were filtered by
Samtools v1.12 (44) for uniqueness and, in case of paired-
end data, properly aligned mate pairs. Differential gene ex-
pression and its statistical significance was identified us-
ing DESeq2 v1.30.0 (45). Common thresholds of |log2fold-
change| ≥0.25 and FDR <0.05 were used to identify signif-
icantly differentially expressed genes.

Microarray analysis pipeline

All microarray datasets were available at a pre-processed
stage at the Gene Expression Omnibus (GEO) and we re-
analyzed the datasets with GEO2R to obtain fold expres-
sion changes and Benjamini Hochberg-corrected P-values
(FDR) (46). Gene identifiers were mapped to Ensembl Gene
IDs using the Ensembl annotation data v102 (41). Common
thresholds of |log2fold-change| ≥0.25 and FDR <0.05 were
used to identify significantly differentially expressed genes.

Meta-analysis / generation of Expression Scores

Following our meta-analysis approach (6), Expression
Scores for genes regulated by human and mouse p53 and
�Np63 were calculated as the number of datasets that find
the gene to be significantly up-regulated minus the num-
ber of datasets that find the gene to be significantly down-
regulated by the respective transcription factor. Both, the
mouse p53 and the ΔNp63 Expression Score were published
previously (9,10). The p53 Expression Score 2.0 (human)
contains two additional quality control measures. First,
only datasets derived from at least two biological replicates
have been considered for this updated score. Second, all
datasets were removed that failed to identify at least 50 out
of 116 direct p53 target genes that were most recurrently
identified in a previous meta-analysis (3). The Cell Cycle
Expression Score reflects the number of datasets that identi-
fied a gene as cell cycle-regulated gene. The Cell Cycle Gene
Category is calculated by a majority vote of the nine datasets
on cell cycle-dependent gene expression and is displayed
for each gene that shows a Cell Cycle Expression Score ≥
3. Precisely, each dataset that identified peak expression of
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Table 1. Comparison of TargetGeneReg v2.0 features and resource properties to TargetGeneReg v1.0/1.1 (6,9), p53 BAER hub (26), and Cyclebase v3.0
(27). Numbers concern data from human except for when ‘mouse’ is indicated. While Cyclebase v3.0 contains multiple datasets on cell cycle-dependent
gene regulation from various species, it contains only one dataset from human. ChIP-seq replicates were combined to single datasets for TargetGeneReg
but kept separate for the p53 BAER hub. NA – not available, information was not provided in the respective publications

TargetGeneReg v2.0 TargetGeneReg v1.0/1.1 p53 BAER hub Cyclebase v3.0

# human genes 37243 18845 NA NA
human genome version hg38 hg19 hg19 NA
# p53 expression datasets 57 20 16 -
# p53 ChIP-seq tracks/datasets 32 / 28 15 41 -
p53RE prediction yes no yes -
# mouse p53 expression datasets 15 15 - -
# mouse p53 ChIP-seq datasets 9 9 - -
# cell cycle expression datasets 9 5 - 1
# DREAM ChIP-seq datasets 17 9 - -
# RB ChIP-seq datasets 6 2 - -
# MMB-FOXM1 ChIP-seq datasets 22 6 - -
CHR and E2F motif predictions yes yes - -
# �Np63 expression datasets 16 - - -
# �Np63 ChIP-seq datasets 20 - - -
p63RE prediction yes - - -
RFX7 target gene prediction yes - - -
Genome browser visualizations yes no yes no

the gene in ‘G1’, ‘G1/S’, or ‘S-phase’ is grouped as ‘G1/S’,
and peak expression in ‘G2’, ‘G2/M’, ‘M’, and ‘M/G1’ is
grouped as ‘G2/M’.

ChIP-seq data integration

Peak datasets and bigwigs from ChIP-seq experiments were
retrieved from CistromeDB (47) ensuring a common data
processing pipeline and thereby a direct comparability. Only
RFX7 ChIP-seq data were taken from our recent study (33)
as they were not yet available through CistromeDB. Big-
wigs (ChIP-seq tracks) have been made available through
track hubs for the UCSC Genome Browser (48). Notably,
while ChIP-seq replicates are available as individual tracks
in the track hubs, they have been jointly considered as one
dataset for the generation of peak-of-peaks summaries. Pre-
cisely, when replicate experiments were available, all peaks
were used that have been identified in at least two replicates.
To identify overlapping and non-overlapping peaks, Bed-
tools ‘intersect’ was employed, and to generate the peak-
of-peaks summaries, multiple peak files were combined us-
ing Bedtools ‘multiinter’ (49). The p53 and p63 ChIP-
seq collections and summaries on human and mouse p53
and �Np63 have been published previously (9,10). Simi-
larly, p53REs and p63REs were taken from our previous
study (10).

RESULTS

Similar to TargetGeneReg v1.0 (6), TargetGeneReg v2.0 fo-
cuses on gene regulation by the tumor suppressor p53 in
conjunction with the human cell cycle. An earlier upgrade
(TargetGeneReg v1.1) introduced p53-dependent gene reg-
ulation and p53 binding data from mouse to Target-
GeneReg (9), which, to our knowledge, is unique to the Tar-
getGeneReg resources. Similarly, transcription factor bind-
ing data for central transcriptional cell cycle regulators, in-
cluding the DREAM complex, RB, the MMB complex, and
FOXM1, is unique to TargetGeneReg. The upgrade to ver-
sion 2.0 not only expands the data, but also includes data

on p53’s oncogenic sibling �Np63 and the emerging tumor
suppressor RFX7 (Table 1). In the following sections we
provide more detailed information on the data and the ap-
plicability of the upgraded TargetGeneReg resource.

Gene regulation by p53

In the first version of TargetGeneReg, we integrated 20
datasets on p53-dependent gene regulation (6). Since the
publication of TargetGeneReg v1.0, several additional high-
throughput datasets with varying resolution and experi-
mental strategies became available. To optimally use this
additional data and strengthen the power of our resource,
we have adjusted our quality control regiment. Specifi-
cally, we systematically searched the GEO database for
RNA-seq and microarray datasets that employed experi-
mental strategies known to affect p53 signaling. This search
included experiments involving MDM2 inhibitors (Nut-
lin and RG7388), genotoxic and nucleolar stress induc-
ers (Doxorubicin, 5-FU, Actinomycin D, Daunorubicin,
Etoposide, Bleomycin, Camptothecin, and UV), viral on-
coproteins (SV40 LT, HPV16 E6, and HPV18 E6), exoge-
nous TP53 expression, TNF�, and senescence (oncogene
and replication-induced). For inclusion in the updated re-
source, we required all datasets to comprise at least two
biological replicates for both treatment and control condi-
tions. Notably, all datasets we obtained were derived from
cell line models. We integrated information from 64 RNA-
seq and 35 microarray datasets derived to identify signifi-
cantly differentially expressed genes. To verify the effects of
the selected experiments on known p53-regulated genes, we
used a benchmark dataset of 116 direct and highly respon-
sive p53 target genes identified earlier based on 16 genome-
wide analyses (3). All experiments that yielded <50 signif-
icantly differentially expressed benchmark targets were re-
moved from further analysis (see Materials and Methods).
This measure ensures focus on activation of the p53 path-
way by the experimental setup and sufficient power to iden-
tify specific p53 activities (Figure 1A). A total of 44 RNA-
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Figure 1. (A) Flow chart for the integration of datasets on p53-dependent gene regulation. (B) Datasets on p53-dependent gene regulation in TargetGeneReg
v2.0 compared to TargetGeneReg v1.0. (C) The p53 Expression Score v2.0 from TargetGeneReg v2.0 compared to the p53 Expression Score v2.0 from
TargetGeneReg v1.0 for 17 446 genes present in both databases. Genes are displayed by individual points. The median is indicated by a black line or a red
line to highlight ‘0’. (D) Genes passing the recommended p53 Expression Score threshold to be considered high-recurrence genes that are up or down-
regulated by p53 in TargetGeneReg v2.0 compared to TargetGeneReg v1.0. (E) The p53 Expression Score v2.0 and data from the underlying 57 individual
datasets visualized for 20 selected direct p53 target genes, 20 selected targets of the DREAM complex, and the non-regulated GAPDH genes. It is indicated
whether individual datasets were generated using RNA-seq or microarray. Individual datasets that were also present in TargetGeneReg v1.0 are indicated.
The lncRNAs NEAT1, PINCR, and DINOL are highlighted as they were not available in TargetGeneReg v1.0. Details on three datasets in which most
DREAM targets are not down-regulated by p53 are shown.
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seq and 13 microarray datasets passed this control (Figure
1B).

The p53 Expression Score, based on these 57 datasets, was
calculated for each gene by the number of datasets yield-
ing significant up-regulation minus the number of datasets
with significant down-regulation of the gene by p53. To cal-
culate the score, we required a gene to be sufficiently ex-
pressed in at least three datasets. A gene was deemed to be
expressed when DESeq2 was able to include it in the dif-
ferential expression analysis, i.e. assign log2fold-change and
FDR values. A direct comparison of the updated score (p53
Expression Score v2.0) with the initial one (p53 Expression
Score v1.0) exhibits a strong correlation but also suggests an
improved resolution (Figure 1C). Most importantly, while
the previous version was limited to 18 845 protein-coding
genes from hg19, the updated resource now provides a p53
Expression Score for 37 243 genes from hg38. The p53 Ex-
pression Score v1.0 had a minimum threshold of ≥5 and ≤–
5 to consider genes with high confidence as being up and
down-regulated by p53, respectively (6). In the case of the
updated p53 Expression Score v2.0, respective thresholds of
≥10 and ≤–10 were passed by 3456 and 3971 genes (Figure
1D). To illustrate the advantage of the updated p53 Expres-
sion Score, we visualized it together with the underlying in-
dividual datasets for 20 selected direct p53 target genes and
20 selected targets of the DREAM complex (Figure 1E).

Of note, some datasets show few if any down-regulated
DREAM targets. This is the case when p21 (CDKN1A)
negative cells were used, since they were unable to reacti-
vate the DREAM complex efficiently. Likewise, an experi-
ment where exogenous TP53 was induced for only 6 h, an
interval too brief to reactivate the cell cycle trans-repressor
complexes, did not lead to a down-regulation of critical
cell cycle genes. Moreover, our comparison identifies p53-
dependent lncRNAs such as DINOL (50), PINCR (51) and
NEAT1 (52,53) excluded from the previous version because
of insufficient data (Figure 1E). In addition to informa-
tion on the p53-dependent regulation of thousands of non-
coding RNAs, the updated p53 Expression Score v2.0 pro-
vides much more detailed information on p53-dependent
regulation for hundreds of genes for which the p53 Expres-
sion Score v1.0 was inconclusive. Consequently, 1674 and
1917 genes that previously displayed a p53 Expression Score
v1.0 between 5 and –5 now passed the threshold of a p53
Expression Score v2.0 of ≥10 and ≤–10, respectively, indi-
cating a differential regulation by p53 with high recurrence.

The direct binding of p53 to the gene promoter is a cru-
cial property of many genes up-regulated by this transcrip-
tion factor (3–5). While TargetGeneReg v1.0 integrated
15 datasets on p53 genome binding (6), the updated ver-
sion now integrates an expanded collection of 28 ChIP-
seq datasets. While the previous version displayed only the
number of datasets that identified p53 binding near a gene’s
TSS, the updated resource contains precise binding loca-
tion information and visualizations thereof. To enable users
to rapidly visualize the large number of 28 individual p53
ChIP-seq datasets, we provide a ‘peak-of-peaks’ data track
representing a pile-up of p53 peak regions from individual
datasets (Figure 2A). Therefore, the ‘peak-of-peaks’ track
provides quick summary information on how many datasets
identified p53 binding to any locus in the genome. In ad-

dition, the p53 response element (p53RE) most closely re-
sembling a canonical p53RE is displayed for each peak-of-
peaks, as described previously (10). In addition, the ChIP-
seq tracks from all individual datasets can be displayed
upon selection, providing a seamless visualization of cell
type and treatment-specific information next to the sum-
mary data (Figure 2A and B). As established previously,
any binding site with support from at least five datasets is
considered to be of high recurrence (9,10). The website’s
‘Overview’ section indicates for every gene whether it dis-
plays a high-recurrence binding site within 2.5 kb of a TSS,
and whether a high-recurrence binding site is linked to the
gene locus through a double-elite enhancer:gene association
listed in the GeneHancer database (54).

Together, TargetGeneReg v2.0 provides information on
p53-dependent gene regulation for twice as many genes
from almost three times as many datasets in total and al-
most five times as many datasets that follow the tightened
control measures. In addition, it provides almost twice as
many p53 ChIP-seq datasets, predictions for the underlying
p53RE, and precise location visualizations.

Cell cycle-dependent gene regulation

Cell cycle genes play essential roles in cell cycle progression
and therefore are typical markers of proliferation that are
dysregulated in many cancers (55). The tumor suppressor
p53 down-regulates cell cycle genes to sustain cell cycle ar-
rest. Based on TargetGeneReg v1.0, we consolidated the five
cell cycle gene peak clusters defined by Whitfield et al. (56)
to two major groups of cell cycle genes, namely G1/S and
G2/M genes (6). Here, we expanded the previous resource’s
five datasets to include four additional datasets (Figure 3A).
For all genes identified as cell cycle-dependently regulated
in at least three of the nine datasets, we predicted whether
the gene is a G1/S or a G2/M gene based on a majority vote
by the nine datasets (see Materials and Methods). The web-
site’s ‘Overview’ section provides information on the num-
ber of datasets that suggest a gene to be driven by the cell
cycle (‘Cell Cycle Expression Score’) and its classification
prediction (‘Cell Cycle Gene Category’).

The two distinct groups of G1/S and G2/M genes are
primarily characterized by E2F and CHR (cell cycle genes
homology region) DNA recognition motifs in their pro-
moters, respectively (2,6,57). The DREAM complex can
bind to both E2F and CHR motifs through its respec-
tive subunits E2F4 and LIN54, while RB:E2F specifically
binds G1/S cell cycle genes through E2F motifs. In contrast,
the transcription factors B-MYB (also known as MYBL2)
and FOXM1 associate with DREAM’s LIN54-containing
MuvB core complex later in the cell cycle to specifically
activate the expression of G2/M genes through binding
their CHR sequences (2). To allow a more comprehensive
analysis of cell cycle-dependent regulation, we expanded
the nine datasets on genome binding by DREAM complex
components to 17. Similarly, we extended the two previous
datasets on RB binding to six datasets, and the previous
six datasets on MMB:FOXM1 (B-MYB:MuvB:FOXM1)
binding to 22 datasets. Potential E2F and CHR motifs un-
der respective RB and MMB:FOXM1 binding sites have
been predicted using HOMER (58). The individual ChIP-
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Figure 2. (A) Image of UCSC Genome Browser displaying the CDKN1A locus linked from TargetGeneReg v2.0. The blue tracks display the p53 peak-
of-peaks summary and the most likely underlying p53RE that has been identified. Individual p53 ChIP-seq tracks can be selected from (B) the track hub
that is loaded through the TargetGeneReg v2.0 linkage. Together, the visualization provides precise visualization of p53 binding sites locations and their
underlying p53RE and enables seamless comparisons between summary data and individual datasets. (C) Image of UCSC Genome Browser displaying
the PTHLH locus linked from TargetGeneReg v2.0. The blue tracks display the p53 peak-of-peaks and p63 peak-of-peaks summaries and the most likely
underlying p53RE and p63RE. Individual p63 ChIP-seq tracks can be selected from the track hub hat is loaded through the TargetGeneReg v2.0 linkage, as
shown for p53 above. PTHLH is a direct target of �Np63 but not p53, and the unique p63 binding site can be readily seen by comparing the peak-of-peaks
summary binding data.

seq tracks, peak-of-peaks, and motif predictions are avail-
able through UCSC Genome Browser visualizations.

Gene regulation by mouse p53 and its difference to human
p53

Previously, we employed our meta-analysis approach on
mouse p53 synthesizing p53-dependent gene regulation
data across 15 datasets, and we made the data available
through TargetGeneReg v1.1 (9). Here, we integrated our
database on p53-dependent gene regulation in mice (mm10)
with the updated database on p53-dependent gene regu-

lation in humans (hg38) described above. Therefore, Tar-
getGeneReg v2.0 includes mouse p53-dependent gene reg-
ulation data for the one-to-one orthologs of 14 712 hu-
man genes. While there is a good correlation between the
mouse p53 Expression Score and the human p53 Expression
Score v2.0 for genes down-regulated by p53, the correla-
tion for up-regulated genes is poor (Figure 3B), indicating a
strong and a comparably low evolutionary conservation of
p53 down and up-regulated genes, respectively. Similar re-
sults have already been reported for the first p53 Expression
Score (9,31). Precise binding data (ChIP-seq) of mouse p53
is available through links to the UCSC Genome Browser
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Figure 3. (A) Four new datasets on cell cycle-dependent gene expression have been added (63–66). Following our previous quality control (6), we tested
whether the datasets were more likely to identify a gene as cell cycle gene when more datasets from TargetGeneReg v1.0 (X-axis) agreed on its cell cycle
gene status. (B) The mouse p53 Expression Score (9) compared to the human p53 Expression Score v2.0 for 14 712 one-to-one orthologs with both scores.
Genes are displayed by individual points. The median is indicated by a black line or a red line to highlight ‘0’.

with embedded track hubs similar to human protein bind-
ing data described above.

Gene regulation by �Np63

We previously employed our meta-analysis approach to
provide a comprehensive resource for gene regulation by
p53’s sibling �Np63, an essential oncoprotein in squa-
mous cell carcinomas (10). Given its relevance to cancer
and close connection to p53, we integrated our �Np63
database comprising 16 datasets on p63-dependent gene
regulation and 20 ChIP-seq datasets on p63 DNA bind-
ing into TargetGeneReg v2.0. The ΔNp63 Expression Score
and predictions of p63 targets (180 high-recurrence tar-
gets available in Table 1 from Riege et al. (10)) and po-
tential p63 targets (comprising all genes bound and regu-
lated by p63) are available through the website’s ‘Overview’
section. DNA binding data and identified p63 response
elements (p63RE) are available through UCSC Genome
Browser track hubs and enable a seamless comparison
between individual p63 ChIP-seq tracks, summary data
thereof (p63 peak-of-peaks), and respective data from p53.
PTHLH, for instance, is a direct target gene of �Np63 but
not of p53 (Figure 2C).

Expanding the p53 gene regulatory network through RFX7

Complex cross-talk between signaling pathways impedes
the identification of indirect gene regulatory mechanisms
employed by p53. For example, following two decades of
conflicting data on mechanisms of p53-dependent gene re-
pression, p53 was found to serve as a transcriptional acti-
vator that represses genes indirectly, with its target p21 tak-
ing a predominant role through its profound influence on
down-regulating the cell cycle genes (3,4,6,7,59). Recently,
we identified the transcription factor and emerging tumor
suppressor RFX7 as a vital node in the p53 transcriptional
program. RFX7 orchestrates a subnetwork of tumor sup-
pressor genes in response to cellular stress and p53 (33) and
cooperates with p53 to inhibit the pro-survival kinases AKT

and mTORC1 (60). Given the crucial role of the novel p53-
RFX7 signaling axis in the p53 gene regulatory network and
its potential importance to cancer biology, we included the
data on RFX7 target genes in TargetGeneReg 2.0. The web-
site’s ‘Overview’ section displays whether a gene has been
predicted as an RFX7 target, offering a mechanistic ex-
planation for its p53-dependent up-regulation. In addition,
RFX7 ChIP-seq tracks are available through the UCSC
Genome Browser visualizations.

Navigating the TargetGeneReg 2.0 website

Our updated resource is tailored to rapidly provide infor-
mation on genes of interest entered in the main input field.
The arguably strongest asset of the TargetGeneReg resource
is summary data on gene regulation by various transcrip-
tion factors generated through a synthesis of multiple indi-
vidual datasets integrated by our meta-analysis approach.
Therefore, the ‘Overview’ section situated at the top of the
one-page website provides all summary information on the
genes of interest that have been entered (Figure 4). Impor-
tantly, it enables a quick direct comparison of the sum-
mary data between multiple genes. More detailed informa-
tion on gene regulation from the individual datasets, a pie
chart illustration of the summary data, as well as volcano
and box-plots of the dataset results are provided in the de-
tailed sections below, which are equipped with sorting op-
tions to quickly identify the most relevant data. Precise tran-
scription factor binding data visualized through the UCSC
Genome Browser (48) are available through the genomic po-
sition links provided in the ‘Overview’ section for both hu-
man (hg38) and mouse (mm10).

DISCUSSION

The TargetGeneReg has gained a strong reputation in the
p53 and cell cycle communities. It provides a deeper insight
into p53 and cell cycle-dependent gene regulation mecha-
nisms. The presented upgrade, TargetGeneReg v2.0, sub-
stantially improves this resource. Like its predecessor, the
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Figure 4. The TargetGeneReg 2.0 website design. Start by entering your genes of interest as gene symbol or Ensembl gene ID. The overview section provides
a helpful summary on the regulation of your genes of interest. Details on each point in the overview section is available through mouse-over boxes and
through the ‘About’ section. The additional sections are available through the navigation bar in the upper left corner or by scrolling through this one-page
website design. The additional sections contain more detailed information, such as data from the individual datasets and citation and history data for the
resource.
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resource is tailored to quickly retrieve information on the
users’ genes of interest and provides swift comparisons be-
tween genes and experimental conditions. TargetGeneReg
v1.0 was a starting point to help the p53 and cell cycle com-
munities to gain deep biological insights by providing refer-
ence points and a platform that enables users to quickly test
whether their genes of interest are likely regulated by p53 or
the cell cycle. The new version integrates more datasets, sub-
stantially improving its power. Specifically, TargetGeneReg
now includes data on non-coding RNAs and provides in-
formation on the gene regulation by p53’s oncogenic sibling
�Np63 and the emerging tumor suppressor RFX7.

Visualization of the transcription factor binding data
through the UCSC Genome Browser provides precise loca-
tion information for the user to better interpret the potential
consequences of the binding for their gene of interest. For
example, p53 binding to intronic locations can induce al-
ternative transcription start sites leading to transcript vari-
ants with shortened 5′ sequences, as reported for MDM2
and FBXW7 (61,62). Visualization of the strongest scoring
underlying p53RE and p63RE provides an unprecedented
depth of binding information.

While the summary data, such as the Expression Scores
are particularly helpful to quickly assess the regulation of
genes, it is critical to tally the characteristics of individual
datasets and genes used for the generation of this summary.
Importantly, a low Expression Score does not rule out p53
or cell cycle-dependent regulation. In addition to biolog-
ical variability, such as cell line-specific differences, genes
may evade the differential expression detection due to low
transcript abundances, low but biologically relevant fold-
changes, or methodological limitations (e.g. limited num-
ber of replicates and sequencing depth). For example, many
non-coding RNAs have low expression levels and thus may
have a low p53 Expression Score although they are actually
strongly regulated by p53 (e.g. DINOL displayed in Figure
1E). From a statistical perspective, this situation would re-
quire the integration of more datasets to increase the statis-
tical power. To address this limitation in spite of additional
datasets, we display the ‘p53 median log2FC’. The combi-
nation of a low p53 Expression Score and a high ‘p53 me-
dian log2FC’ might indicate that a gene evades differential
expression detection due to a low overall expression level.

Together, with TargetGeneReg 2.0 we provide a compre-
hensive resource on p53-dependent regulation in humans
and mice. Additional information on �Np63 and cell cycle-
dependent gene regulation facilitates the discovery of fur-
ther novel biological insights.
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