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Abstract
Purpose Soft tissue deformation severely impacts the registration of pre- and intra-operative image data during computer-
assisted navigation in laparoscopic liver surgery. However, quantifying the impact of target surface size, surface orientation,
and mesh quality on non-rigid registration performance remains an open research question. This paper aims to uncover how
these affect volume-to-surface registration performance.
Methods To find such evidence, we design three experiments that are evaluated using a three-step pipeline: (1) volume-
to-surface registration using the physics-based shape matching method or PBSM, (2) voxelization of the deformed surface
to a 10243 voxel grid, and (3) computation of similarity (e.g., mutual information), distance (i.e., Hausdorff distance), and
classical metrics (i.e., mean squared error or MSE).
Results Using the Hausdorff distance, we report a statistical significance for the different partial surfaces. We found that
removing non-manifold geometry and noise improved registration performance, and a target surface size of only 16.5% was
necessary.
Conclusion By investigating three different factors and improving registration results, we defined a generalizable evaluation
pipeline and automatic post-processing strategies that were deemed helpful. All source code, reference data, models, and
evaluation results are openly available for download: https://github.com/ghattab/EvalPBSM/.

Keywords Soft tissue · Deformation · Surface · Registration · Evaluation

Introduction

In laparoscopic liver surgery, haptic perception ismissing and
it ismore difficult to localize a tumor. Displaying information
about target or risk structures such as the tumor or intra-
hepatic vessels and bile ducts can be very helpful. Indeed,
providing such information in navigation, i.e., intra-operative
image guidance, could assist the surgeon during the interven-
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tion. This is possible by means of visualization, for example
by using stereo-endoscopy, 3D-laparoscopy, and augmented
reality (AR). With this aim, visualization relies on registra-
tion to obtain the accurate location of structures and objects
of interest. However, the liver may deform under pressure
exerted by surgical instruments, characterizing soft tis-
sue deformation. Characteristic hepatic tissue deformations
occur either in the first operative steps (upon mobilization of
the liver or transection of the liver parenchyma), or during
laparoscopy by abnormally high pressure of the capnoperi-
toneum (12–15mmHg). The grade of deformation depends
on the liver stiffness and the patient-specific liver structure.
Indeed, a prerequisite to enable accurate augmentation and
navigation, in soft tissue navigation, is taking into account
such deformations and aligning or registering the pre- and
intra-operative patient data. In hepatic soft tissue naviga-
tion, a three-step pipeline is employed [17,19,23]. First, the
tumor and the organ of interest are segmented in tomographic
patient data, e.g., computed tomography (CT) scan. Second,
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the intra-operative image data, e.g., from a stereo-endoscope,
are employed to reconstruct an intra-operative surface of
the visible hepatic tissue. Then, this liver surface is aligned
to the preoperative model. The latter refers to an initial
registration. Beyond the particular case of the liver, regis-
tration may be performed using different methods to achieve
surgical navigation: manual [13,18], point-based [6,25,26],
calibration-based [3], volume-based [4,5], or surface-based
registration [9]. Indeed, some projects integrate information
from different imaging modalities that are readily available
in the operating room. In the operating room, registration can
be supported by ultrasound. Third, as the liver tissue deforms
under pressure exerted by surgical instruments (i.e., manip-
ulation), or nonlinear forces exerted by breathing motion, or
other organs (e.g., the heart), an important task is tracking
surface changes and registering them. This aspect integrates
soft tissue registration continuously and refers to dynamic
registration. It is not addressed in this manuscript. However
challenging, it is a prerequisite for real-time navigation sys-
tems.

Indeed, intra-operative registration has received a lot of
efforts from the community. Most approaches address legiti-
mate questions such as improving the accuracy of registration
by presenting novel approaches and validating registration
results [16,20]. However, the quality of the geometry (e.g.,
the data noise) and how to improve it has not yet been
addressed. A couple of works addressed the factor of visible
surface in decreasing increments for two different spatial dis-
cretizations: a triangularmesh [16] and a voxel grid [15]. Yet,
the impact of noise and the geometry quality on registration
results remains open.

As there’s ample related work for intra-operative regis-
tration, we solely focus on volume-to-surface methods for
non-rigid registration in the particular scope of liver surgery.
Our claim is that different factors influencenon-rigid registra-
tion and lack further investigations. We define three factors:
the orientation of the captured surface of interest, the mesh
quality of its geometrical representation (i.e., the stitched
surface), and the surface mesh size.

In non-rigid registration, an example solution is to create
a biomechanical model that considers organ models as finite
volume meshes and integrates a-priori knowledge about the
mechanical properties of the tissue. The general idea is to
solve the boundary value problem while taking into account
displacement boundary conditions from the intra-operative
surface. In this context, various methods rely on a biome-
chanical model [2,7,10,14]. Since our goal is to evaluate the
effect of different factors on registration performance, we
choose the physics-based shape matching or PBSM method
as an example algorithm for volume-to-surface registration.
Moreover, it outperforms other related work with reports
of mean errors smaller than 1mm [7,14]. Compared to
other methods, it describes the non-rigid registration as an

electrostatic–elastic problem and relies on the finite element
method (FEM) [23]. The PBSM electrically charges the ini-
tial volume and slides it into an oppositely charged rigid
surface or the target surface. The latter is used for the non-
rigid registration and is characteristic of a volume-to-surface
registration.

In an effort to provide baseline data, researchers pub-
lished experimental phantom data and in silico or simulated
data [23]. Although these data were used to validate ad
hoc solutions, the initial surface used for registration was
not evaluated in the context of the three aforementioned
factors. More generally, these factors remain unaddressed
by the related work. Indeed, geometry captures objects
from a real environment and represents them digitally by
means of discretization. Pre- and intra-operative image
data enable us to capture and create surfaces and vol-
umes. However, the geometry quality and how to improve
it has not been addressed in a clinical focus. In the case
of surface reconstruction, various methods using laparo-
scopic images exist [8]. Yet, it is until recently that the
first reference data were made available via the Stereo Cor-
respondence and Reconstruction of Endoscopic Data Sub-
Challenge Part of the Endoscopic Vision Challenge 2019
https://endovissub2019-scared.grand-challenge.org. More-
over, only one related work addressed the question of the
required visible surface to obtain good registration results
[15]. However, this work addressed this factor in relation to
another spatial discretization of the geometry, i.e., voxel grid.
Indeed, the impact of this factor on triangular mesh surfaces
and tetrahedral volumes remains an open question.

Motivated by such questions, our goal is to determine the
effects of each factor on the registration performance. To this
end, we design three specific experiments. First, to charac-
terize the effects of orientation on registration results, we
investigate deformation results on both reference phantom
data and in silico data [23] by using directional bisections.
Second, to describe the effects of noise and unrealistic geom-
etry, we propose two post-processing strategies to improve
the quality of an example stitched target surface and compare
results to the unfiltered version. Third and last, to investigate
theminimum required target surface size,we conduct a sensi-
tivity analysis by iteratively bisecting the target surface from
the laparoscopic point of view and evaluating the registration
results.

Herein, we present our evaluation analyses with the fol-
lowing contributions: (a) uncoverwith statistical significance
that target surface size impacts registration performance, (b)
discover that a minimum target surface area size of 16.5% is
suitable for registration, (c) suggest two automatic strategies
that improve target mesh quality, (d) discover that non-
manifold geometry and noise (i.e., bad mesh quality) have a
negative effect on registration performance, and (e) provide
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Fig. 1 Reference data sets used
in the evaluation. The in silico
data set (left) and phantom data
set (right). The initial surface is
depicted (blue) in the same
coordinate system as the
deformed surface (white)

the three-step evaluation pipeline, the requiredmaterials, and
scripts to conduct future evaluations and analyses.

Materials andmethods

To investigate the formulated questions,we employ reference
data from two liver data sets: in silico data set and phantom
data set, as shown in Fig. 1.

The in silico data set is a deformed liver by means of a
nonlinear biomechanical model. The data comprise initial
surface, initial volume, deformed surface, deformed volume,
and partial deformed surface.

The phantom data set is a silicone-based liver phantom
with patient-specific geometry and realistic elastic proper-
ties. The data are obtained from an indentation experiment
deforming the liver by using a rigid sphere pushed against
the phantom. The deformation is tracked using CT. The data
are divided into two, as they are acquired from CT and
endoscopic imaging, respectively: initial surface, deformed
surface, partial surface of the deformed liver, and partial
stitched surface (Endo).

Both data sets are openly available at http://opencas.
webarchiv.kit.edu/?q=PhysicsBasedShapeMatching. For
comparability and consistency, we evaluate the effect of each
factor (orientation, mesh quality, target surface size) on reg-
istration performance, by designing three experiments and
an evaluation pipeline. We detail each below.

Evaluation pipeline

We define a three-step pipeline that is target surface size
independent:

1. Volume-to-target surface registration deforms the vol-
ume using the PBSM method. As the PBSM relies on
a FEM to slide the electrically charged volume into the
target surface, it combines potential and elastic energies.

This corresponds to a physics simulation that minimizes
the sum of the regularized energy and the potential
energy. While the regularized energy of the biomechan-
ical model relies on a material matrix, which contains
the Young modulus and the Poisson ratio, the minimiza-
tion occurs over a number of iterations using discrete
time steps [19]. These parameters are set for the in sil-
ico and experimental phantom data sets: Poisson ratio
(p = 0.4), Young modulus (y = 103), time step (dt ∈
{0.5, 1}), number of iterations (i ∈ {50, 200}), and charge
(c ∈ {10, 500}), respectively. For experiments 2 and 3,
the registration parameters of the phantom data set are
employed.

2. Voxelization of the deformed surface into a 10243 vox-
els grid [11,21]. The rational behind using voxelization
is to streamline the analysis by making the deformed
volumes comparable. Hence, when a meshing algorithm
constrains the final element sizes of a volume, the com-
parison of the two deformed volumes is problematic. The
pipeline relieves this, as it is independent of the mesh-
ing algorithms used to create a volume. For example, the
partial target surface from CT is otherwise incompara-
ble to the stitched surface from endoscopic image data
(c.f. phantom data set). The size of the voxel grid is cho-
sen to accommodate as much of the geometry as possible
without loosing too much information, or requiring a lot
of computational power.

3. Computationof similarity, distance, and classicalmetrics
between the test grid or voxelization and the reference
grid (reference deformed volume). Based on relatedwork
which details the correlation among different metrics,
we employ and report the following: Hausdorff distance,
Jaccard index, adjusted Rand index, mutual information,
sensitivity, specificity, and precision [24]. These metrics
are computed on the entire geometry that represents the
liver (surface). The latter has been extracted from the
deformed liver volume (output of the PBSM algorithm)

123

http://opencas.webarchiv.kit.edu/?q=PhysicsBasedShapeMatching
http://opencas.webarchiv.kit.edu/?q=PhysicsBasedShapeMatching


1238 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1235–1245

Fig. 2 Experiment 1. Phantom liver target surfaces. Each target surface
is shown in the xz plane and is reported below. Target surfaces are men-
tioned from left to right and from top to bottom. The top row depicts the
available initial non-deformed volume, the partial surface from CT, and
the partial or stitched surface from intra-operative endoscopy, respec-

tively. The bottom row depicts the bisected surfaces superimposed for
XY andXY-hemi,XZ andXZ-hemi,YZ andYZ-hemi, respectively. Hemi-
surfaces are shown in white, while bisected surfaces are shown in blue.
For example, in the bottom right corner, the YZ-hemi surface (white)
superimposes the XY surface (blue)

as it carries more information about the registration than
a partial surface does.

Experiment 1: orientation

The first experiment focuses on evaluating the effect of ori-
entation by using the aforementioned pipeline. We define
orientation as being the direction from which the target sur-
face is available. For consistency, the parameters are fixed
across different target surfaces of a data set. As a soft tissue
deformation is nonlinear, partial surfaces bisected in different
planes may better describe the deformation and help identify
the relevant orientations. The experimental design relies on
this idea.

For each data set, the full target surface is bisected into
six surfaces: six different partial target surfaces, i.e., XZ, XZ-
hemi, YZ, YZ-hemi, XY, XY-hemi. Each partial target surface
is a bisection of the surface at the center of mass (e.g., XZ
is bisected in the xz-plane, normal to the Y-axis). The hemi-
surfaces are surfaces that are bisected in a second iteration in
the same direction of the normal, as shown in Fig. 2. Then,
we run the evaluation pipeline for each data set (i.e., in silico
and phantom) and per target surface.
In the experimental phantom data set, the two partial surfaces
from CT and from endoscopic stereo images have a surface
area of 21% and ∼20%, respectively. Since the liver in each
data set is different, the aforementioned bisections result in
different target surface areas, as reported in Table 1.

Table 1 Surface area (%) of each considered partial target surface

XZ XZ-hemi YZ YZ-hemi XY XY-hemi

in silico 57.5 26.3 52.3 19.3 55.3 20.8

Phantom 59.6 32.2 48.6 24.7 34.5 19.0

Each row reports a data set employed in the experiments. Each column
reports the type of bisection used to create the target surface (full, XZ,
etc.)

Experiment 2: mesh quality

The second experiment focuses on evaluating the effect of
non-manifold geometry and noise on registration perfor-
mance by using two automatic post-processing strategies.
Experimentally, there are a number of things that can
go wrong when creating or importing a surface or mesh
(e.g., non-manifold geometry). Non-manifold geometry is
defined as geometry that cannot exist in the real world; some
examples are an edge is incident to more than two faces,
adjacent faces with normals pointing in opposite directions,
and two or more faces that are connected only by a vertex
and not by an edge. Indeed, it can be difficult to fix such
occurrences by simply viewing them. The rational is to use a
realistic case, or a geometry created experimentally. Hence,
we use the stitched intra-operative surface from the phantom
data set.

To address the aforementioned surface mesh problems,
we define two strategies: Strategy (a) does a quick pass on
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Fig. 3 Experiment 2. Visual
comparison of each
post-processed surface to the
original stitched mesh. The
output surface meshes are shown
after applying strategy (a) on the
left, and after applying strategy
(b) on the right, respectively.
Each superimposes the original
stitched mesh (black). Strategy
(b) changes mesh elements of
the target surface the most, as
more elements are visible after
filtering (black)

the surface mesh without drastically changing the geometry,
while strategy (b) removes all non-manifold geometry and
fills in any consequent holes by relying on local geometry.
Strategy (a) comprises three consecutive removal steps: (1)
duplicate vertices, (2) disconnect vertices and edges, and (3)
separate mesh(es). While strategy (b) comprises seven con-
secutive steps: (1) remove duplicate vertices, (2) remove zero
area faces and zero length edges, (3) make all faces convex,
(4) remove all non-manifold vertices and edges, (5) fill in
holes using boundary edge loops [28], (6) triangulate faces,
and (7) remove disconnected vertices and edges.

We define mesh elements as vertices, faces, and edges.
Each resulting mesh is used as target surface for registration.
Results are evaluated using the aforementioned evaluation
pipeline (c.f. experiment 1).

Experiment 3: surface area size

The third and last experiments focus on evaluating the effect
of surface mesh size provided that the target mesh has a good
quality.

As good quality refers to the absence of noise and non-
manifold geometry, we choose the single manifold target
surface obtained in experiment 2 (strategy b). Then, it is
bisected along the Y-axis direction in a s stepwise increment
with s = 5; the latter is arbitrarily chosen in the local coordi-
nate system.This bisection is carried out in the samedirection
of the indentation experiment and results in twelve target sur-
faces. The rational behind using the Y-axis as a direction for
bisecting the meshes is supported by the accessibility of the
left liver lobe. Moreover, it is a coincidence that most of the
non-rigid deformation is exerted along the same axis (Fig. 3).

As in experiment 2, each resulting surface is used for reg-
istration and results are evaluated. The surface area size is
reported in Table 6.

Results

We report below results for each experiment.

Experiment 1: orientation

For the first experiment, we report the results of our analysis
in Tables 2, 3, and 4. In the in silico data set, we conducted
an ANOVA to investigate the interaction effect of target sur-
face size on the Hausdorff distance (in voxel as reported in
Table 4). We found a significant difference when using dif-
ferent target surface sizes, as the null hypothesis was rejected
with a p value or P = 2e−16.

In Table 2, we report registration results for the different
target surfaces shown in Fig. 1. The term significance is only
employed when the p value P , such as P < 5e−2. This per-
mits us to formulate the hypothesis that information enclosed
in these partial target surfaces is enough to match the nonlin-
ear deformation, with a surface area size of 52.3 and 55.3%,
respectively. Our hypothesis is confirmed by the low range
of values for the Hausdorff distance of partial surfaces YZ
and XY, 30.0 voxels and 36.9 voxels, respectively (Table 4).

For the experimental phantom data set, we observed larger
values for the Hausdorff distance. Compared to the in silico
data set, the distance values were larger by a factor of 4.7
when using the full target surface and reached a factor of 7
for the stitched partial surface. We conducted a one sample t
test for these distances to find whether they are significantly
different from themean value of 106.44 voxels, when using a
full surface. As the null hypothesis was not rejected with a p
value of 0.073 (P < 5e−2), we concluded that the different
registration results are not significantly different from results
for the phantom data set.

Moreover, we calculated P of the different Pearson’s
product–moment correlation. In both data sets, we found that
the XZ and the XZ-hemi-surfaces were on par with the full
surface results. On the contrary, we found that that there was
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Table 2 Registration results for
the in silico data set

Metric Full XZ XZ-hemi YZ YZ-hemi XY XY-hemi

JACRD 0.96 0.91 0.91 0.94 0.74 0.93 0.74

ADJRIND 0.95 0.94 0.88 0.93 0.65 0.91 0.65

MTLINFO 0.84 0.78 0.71 0.75 0.46 0.73 0.46

RMSE 77.16 77.54 77.20 77.73 75.82 77.71 75.82

Each row reports a metric, by descending order: Jaccard, adjusted Rand index, mutual information, and the
RMSE. Each column corresponds to one registration, that is to say the registration of the volume to the given
target surface (e.g., Full, XZ, etc.). The RMSE is computed using the reference deformed surface that is
provided in the in silico data set

Table 3 Registration results for
the experimental phantom data

Metric Full XZ XZ-hemi YZ YZ-hemi XY XY-hemi CTa Endoa

JACRD 0.93 0.93 0.93 0.83 0.79 0.87 0.83 0.87 0.80

ADJRIND 0.92 0.92 0.92 0.8 0.75 0.84 0.8 0.85 0.76

MTLINFO 0.72 0.7 0.57 0.52 0.62 0.57 0.45 0.62 0.54

RMSEb 0 6.14 6.14 11.71 5.56 2.47 7.34 2.52 3.76

Each row reports a metric, by descending order: Jaccard, adjusted Rand index, mutual information, and the
RMSE. Each column corresponds to one registration using the PBSM algorithm, that is to say the registration
of the volume to the given target surface (e.g., Full). a CT and Endo are partial surfaces obtained from the CT
scan and the endoscope, respectively. b The RMSE is computed by using each resulting deformed surface. As
the full surface from CT is the reference, the RMSE cannot be calculated due to the lack of correspondence
between mesh vertices, i.e., different numbers of vertices and vertex indices. It is possible to decimate the
surface to decrease the number of vertices, yet the correspondence of vertex indices cannot be done. In turn,
we use the full deformed surface as reference to calculate the RMSE. This is yet another reason why we opted
for a uniform voxel grid to compute relevant registration metrics

Table 4 Hausdorff distance (in
voxels) for each
volume-to-surface registration

Full XZ XZ-hemi YZ YZ-hemi XY XY-hemi

in silico 22.0 33.5 88.6 30.0 170.6 36.9 170.6

Phantom 106.4 109.8 109.8 112.2 119.5 115.5 106.8

The distance was computed to the voxelized deformed reference volume. Each cell of the table corresponds
to one registration. Each column reports the target surface employed by the PBSM method. The baseline
(i.e., using the initial and non-deformed surface) results in 170.60 and 181.86 for the in silico and experimental
phantom data sets, respectively. The use of the initial surface makes it possible to establish what it means not
to use a registration and to have no deformation. Additional distance values are 115.2 voxels for the partial
CT scan and 155.01 voxels for the stitched surface or Endo

no difference between using XY, YZ, XY-hemi, XY-hemi, or
the partial surface from CT. This uncovered the importance
of orientation, in this particular case the Y-axis orientation.

We concluded that the target surface size impacted reg-
istration results and that results were on par in terms of
orientation, across both data sets.

Experiment 2: mesh quality

For the second experiment, motivated by the fact that intra-
operativemesh creation does not always produce good results
and little to no work has been in the domain application
to improve the created geometry, we investigated the effect
of bad mesh quality on registration results. In the scope of
this manuscript, this specifically relates to noisy and non-
manifold meshes, which are used as input for the task of
registering a volume to a target surface. As reported in

Table 5, the evaluation shows a clear improvement in the
registration performance by using post-processing strategies,
especially strategy (b).
Between strategies (a) and (b), we observe a decrease in
surface area size of 0.2% and 1.5% due to the removal of
noisy and non-manifold mesh elements. However, thanks
to the removal of unrealistic geometry, the registration per-
formance improved across all metrics. This is valid except
for the RMSE for strategy (b). Indeed, such an increase in
the RMSE may be explained by the loss of too many ver-
tices, faces, and edges compared to the original geometry.
Indeed, the RMSE metric might not be suitable to properly
account for improvement in registration results, as it only
accounts for surface-to-surface changes and may be too sen-
sitive to changes introduced by strategy (b).Moreover, thanks
to the removal of all non-manifold geometry, we observed
an overall improvement for strategy (b). That is to say, an
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Table 5 Results for each post-processing strategy (a) and (b) compared
to the original Endo target surface (no strategy or post-processing)

Metrics/Strategy none (Endo) (a) (b)

Surface area (%) ∼20 19.8 18.5

JACRD 0.80 0.81 0.87

ADJRIND 0.76 0.78 0.84

MTLINFO 0.54 0.55 0.61

PRCISON 0.85 0.86 0.93

RMSE 3.76 2.90 6.87

Each row reports a metric, by descending order: Jaccard, adjusted Rand
index, mutual information, and the RMSE. Each column reports the
target surface used in the registration experiment. Compared to the other
metrics computed on the voxelized volume of each deformed liver, the
RMSE is calculated using surface meshes with the Stanford triangle
format (STL). The RMSE is computed and compared to the full surface

improvement in each metric: Jaccard by 6.9%, the adjusted
Rand index by 7.1%, the mutual information by 9.8%, and
the precision by 7.5%.

Experiment 3: surface size

For the third and last experiments, motivated by knowing
how much surface can be used for acceptable registration
results we have iteratively bisected the Endo surface along
one axis. In this experiment, this corresponds to the direction
in which the indentation experiment was carried out: The Y-
axis. Indeed, this corresponds to a sensitivity analysis as we

investigate the quantitative registration metrics for each of
the twelve bisections (Table 6). This corresponds to twelve
registrations using each of the resulting surfaces as target
surface for the registration.
In Fig. 4, we observe a general trend that shows an increase
in registration metrics with surface size. As 20% of the liver
organ surface was captured, a particular interest was to find
theminimum required surface size to achieve acceptable reg-
istration results [22]. To do so, we reported the Hausdorff
distance for each bisection in Fig. 5.We found out that, when
the surface is in the deformation direction, a target surface
size of 16.54% (bisection 8) was satisfactory to achieve good
registration results. In this instance, the deformation direction
refers to the direction in which the indentation experiment
was carried out, that is to say the Y-axis as shown in Fig. 6.

Discussion

First, our findings indicated that an intra-operative surface
with an area of less than 20% is challenging to register,
especially if the available surface is not oriented in the defor-
mation direction. By comparing registration results from
using different target surfaces for the phantom data set, we
found that the XZ and XZ-hemi-surfaces achieved results that
are on par with the full surface. We hypothesize that these
target surfaces contain enough information about the defor-
mation. Although the XZ-hemi surface covered 26.3% (in
silico) and 32.3% (phantom) of the full target surface, results

Table 6 Surface area size (%)
of each of the twelve bisections
along the Y-axis

1 2 3 4 5 6 7 8 9 10 11 12

1.58 3.83 6.65 8.64 10.36 12.37 14.39 16.54 17.65 18.21 18.47 18.5

Fig. 4 Quantitative metrics as a
function of the intra-operative
surface area (in percentage). The
reported metrics are Jaccard
coefficient, adjusted Rand index,
mutual information, and
precision. The more the surface
area increases, the higher each
metric reported is. All reported
metrics show a similar and
correlating trend when the
surface size increases
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Fig. 5 The Hausdorff distance (in voxels) as a function of the avail-
able intra-operative surface area (in percentage). As the surface area
increases, the better the registration, hence the smaller the distance.
The interval of values with acceptable registration results is highlighted
in blue

Fig. 6 Experiment 3. Illustration of the bisections in the Y-axis (inden-
tation direction). Target surface mesh from strategy (b) shown in blue,
while the extent of each bisection is shown in white

indicated that it achieved a good registration performance
across both data sets. These results pointed at the relevancy
of orientation as both data sets have a similar general direc-
tion for the forces exerted on the liver and showed that it is
important to obtain a target surface in the general direction
of the deformation. However, our findings also showed that
mesh quality greatly impacts the registration performance.
In our case, and once the target surface mesh quality was
improved, only 16.5% of the target surface mesh was neces-
sary in our experiment. We speculate that this also depends

on the deformation and its extent, and possibly the organ
of interest. Previous work that employs a different spatial
discretization, particularly a voxel representation, has found
that a target surface of ∼20% of the visible organ surface
was necessary and corresponded to the largest drop in error
[15]. Indeed, this corresponds to the size of the unfiltered
stitched surface (Endo) used in [23] and is roughly half the
amount of accessible liver surface that is accessible. Indeed,
in laparoscopic liver surgery, up to 40% of the liver surface
may be visible. This value may increase by 20 to 30% when
the liver is mobilized. However, we argue that improving the
mesh quality and acquiring a surface in the correct orientation
permits to diminish the required surface size to 16.5%.More-
over, our results show that efforts to obtain a larger surface
size should be considered, especially from intra-operative
imaging. Indeed, even if the target surface size is increased
for a couple of percentages, the registration performance is
overall improved; as observed by the general trend in Fig. 4.
To achieve this feat, however difficult, a slow and careful
panning of the endoscope across the visible and accessible
organ’s surface is preferable. Our hypothesis is that by doing
so, a better image sequence could result, in turn improving
the stitching and the reconstruction of the target surface.

Second, in an effort to be comparable with existing and
more general state-of-the-art methods, the mean geometri-
cal error was calculated for both the PBSM method and the
coherent point drift (CPD) algorithm using a full target sur-
face [12]. Results showed a higher accuracy in the case of
the PBSMmethod by a factor of 4. We found a mean error of
0.48mm, as opposed to 1.96mm for the CPD algorithm for
the in silico data set. These values corroborate with previous
research contrasting these methods in terms of displacement
error and accuracy, respectively [22].

Third, our findings point toward the need for research
efforts in the usage and evaluation of partial surfaces in
non-rigid registration schemes. Their usage is challenging,
especially when the employed surface lacks salient features
and contains errors or even noise (especially in the case
of a stitched surface). Further endeavors in the operating
room to acquire intra-operative target surfaces for registra-
tion are necessary. Future efforts could focus on smoothing
such surfaces, or introducing a uniform noise to characterize
quantitatively the influence of noise, or even validating our
findings in the case of other organs (e.g., the kidney).

Fourth, the herein presented evaluation pipeline is gener-
alizable. However, this pipeline is computationally intensive
and time intensive as the voxel grid size is large. In future
work, it is relevant to conduct a sensitivity analysis to investi-
gate both the grid size and its effects on the reported metrics.
In practice, this would enable us to use theminimum required
grid size to efficiently evaluate registration results, poten-
tially in a clinical setting.
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Fifth, our evaluation framework was motivated by differ-
ent facts: (a) Target surface meshes and volumes may differ
in size and geometry (number of nodes, edges). This makes
a comparison difficult using meshes or volumes of differ-
ent resolutions, (b) the voxelized geometry cannot be simply
converted to millimeters in case of anisotropic voxel sizes,
which is why we propose a 10243 grid that carries the same
dimension or a uniform resolution size, and (c) a convergence
analysis is not always possible, especially in a clinical set-
ting.This is particularly truewhen the intra-operative stitched
surface does not geometrically match the preoperative geom-
etry (i.e., edges and nodes represent different physical parts
of the real world/in this case liver organ). Indeed, this was
the case for the stitched intra-operative target surface and the
preoperative geometry.

Sixth, the hole filling step in strategy (b) relies on existing
information, that is to say local and neighboring geometry.
Indeed, since the reconstructed geometry relies on the neigh-
boring topology, it is advisable that future work integrates
such a step with care. As the size of the holes is larger, the
larger the uncertainty for the boundary edge loops filling
algorithm. Hence, it would be important to investigate the
threshold at which the size no longer becomes suitable for
this algorithm.

Seventh, although experiment 1 is designed with themoti-
vation of investigating orientation, it is a difficult task to
achieve. Indeed, we do not know how close the surface ori-
entation has to be to the deformation direction to achieve
acceptable registrations. Future work could look at the ori-
entation and its relation to the deformation direction by
sampling the space given a user settable deformation direc-
tion. That is to say, such a sampling could be carried out in
one specific direction to reduce the computational expense
of the evaluation and possibly could have an overview for
such a characterization by focusing on a couple of relevant
metrics.

Eighth, there exist initial liver registration methods which
use only the intra-operative endoscopic image feed. Indeed,
such methods do not rely on the representation of an object
of interest, that is to say its geometry. Some of these meth-
ods rely on feature extraction, while others combine feature
extraction with feature tracking (i.e., mosaicing). These
approaches fit preoperatively extracted features directly
into the intra-operative image data [1,7,27]. Although
these approaches are different from the presented non-
rigid volume-to-surface registration method we evaluate, we
hypothesize that these approaches may benefit from sensi-
tivity analyses that entail varying the signal-to-noise ratio,
image resolution, and other limiting factors that may influ-
ence the registration performance.

Ninth, and in a clinical setting, the orientation can be
approximated. However important, the orientation in which
the liver is, is difficult to grasp during surgery. Our findings

point toward the importance of such a factor only when a
small surface area is accessible. Provided a panning shot is
accomplished, orientation is still important yet granted sec-
ondary to the problem. It becomes important only when the
surface does not carry enough information of the deforma-
tion. Logically, we may think of surface size; however, the
order of the tetrahedra that define the surface mesh affects
this result. This has been shown in silico in the thesis of S.
Suwelack that the second-order tetrahedra better carry the
deformation than the first-order tetrahedra. We foresee that
future work may better study and characterize such a point
in a realistic setting.

Tenth and last, we designed different experiments in an
effort to improve registration results. Results from our case
study prompt for further investigations that would integrate
more observations or data sets.

Conclusion

As a means of conclusion, we bring forth three points. First,
the evaluation pipeline permitted us to investigate the impact
of target surface size on registration performance across two
data sets. By employing directional bisections, we found that
different orientations, hence parts of the full target surface,
contain different deformation information. This characteri-
zation plays a pivotal role and shows the variability of the
information carried out by a deformation and its impact on
registration results.

Second, we found that the unfiltered intra-operative or
stitched surface, with approximately 20% of surface area
size, was of good size to achieve acceptable registration
results. Yet, in this particular case and compared to the full
surface, we observed a loss of 10.5%, and 7.6% in precision
when compared to the partial surface from CT, respec-
tively (Fig. 2). This was no longer the case after removing
noise and non-manifold geometry. We found out that a min-
imum surface size of 16.5% achieved good results (Fig. 4).

Third and last, mesh quality is of paramount impor-
tance. As seen in experiment 2, each post-processing strategy
reduced the target surface size, yet improved registration
results.

Our findings serve as a standard for future volume-to-
surface-based registrationmethods and couldmotivate future
endeavors in obtaining intra-operative surfaces of better qual-
ity and with a larger surface area size.
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