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ABSTRACT Urine tests are performed by using an off-the-shelf reference sheet to compare the color of test
strips. However, the tabular representation is difficult to use and more prone to visual errors, especially when
the reference color-swatches to be compared are spatially apart. Thus, making it is difficult to distinguish
between the subtle differences of shades on the reagent pads. This manuscript represents a new arrangement
of reference arrays for urine test strips (urinalysis). Reference color swatches are grouped in a doughnut chart,
surrounding each reagent pad on the strip. The urine test can be evaluated using naked eye by referring to
the strip with no additional sheet necessary. Along with this new strip, an algorithm for smartphone based
application is also proposed as an alternative to deliver diagnostic results. The proposed colorimetric detection
method evaluates the captured image of the strip, under various color spaces and evaluates ten different tests
for urine. Thus, the proposed system can deliver results on the spot using both naked eye and smartphone. The
proposed scheme delivered accurate results under various environmental illumination conditions without any
calibration requirements, exhibiting performances suitable for real-life applications and an ease for a common
user.

INDEX TERMS Smartphone, colorimetric, optical sensor, point-of-care, diagnostics, color-matching,
urinalysis.

I. INTRODUCTION
Point of Care Testing (POCT), [1]–[8], has been gaining
attention for its wide applications in public health. Rang-
ing from blood glucose measurement to complex immuno-
logical assays, POCT is simple to use even for end users
with little technical expertise. This characteristic makes it
particularly suitable for disease detection, quality of care, or
patient compliance monitoring. Although, advancements in
semiconductor technology have helped create transformative
consumer devices, but so far, have limited impact on the med-
ical world. Medical devices have stringent requirements for
safety and effectiveness, and they generally iterate on bulky,
power-hungry designs. One of the leading diagnostic tools of
POCT analysis is strip-based colorimetric diagnostic assays.
When samples such as urine, blood, or other body fluids are
deposited on a test strip, signals are obtained in the form of
colors. Evaluation of the changes in colors, which is done

by simple human perception, is generally accurate. However,
the colors may be perceived differently due to varying light
conditions, resulting in diagnostic errors which are likely to
affect the medical decision-making of users, [9].

To reduce human errors, some technology devices to
assist the interpretation of the diagnostic results have been
introduced. Digital photography, digital scanners, and smart-
phones have been utilized to study the effects of light and
colors on the chemistry of solutions, [10]–[14]. In health
care products, device portable colorimetric readers [15], scan-
ners [10], video cameras [16], or high-resolution digital cam-
eras [17], have been deployed to capture the colorimetric data
as digital images. In these works, mostly, a sample holder
is used to fixate a paper-based microfluidic plastic substrate
and also the surrounding light effects are removed. The color
of the reagent pads on the plastic substrate is then evaluated
under the illumination of a computer screen, [18].
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FIGURE 1. Off-the-shelf diagnostic tools for strip-based urinalysis. (a) Urine test strips with
multi-analyte sensors. (b) Reference colorimetric sheet where color swatches are arrayed in
tabular form, (c) Conventional way of matching the color of reagent pads on the urine test strip.

Among the current technology devices, smartphone is the
most promising imaging analytical device for paper-based
colorimetric detection, [2], [6], [19]–[30]. The convenience
of the embedded built-in cameras and small size of the
smartphone makes it stand out as a distinctive alternative
to conventional medical devices with spectrometric powers.
Employing the use of a smartphone for self-performed uri-
nalysis, Scanadu has launched project Scanaflo [31], which
includes a urine test kit and smartphone application. A com-
peting device is uChek, [32], which provides a system for per-
forming strip-based diagnosis using smartphones and other
auxiliary equipment. However, technical details of these
devices have not been published. In [33], smartphone based
mobile instrumentation platform has been proposed for col-
orimetric diagnosis in pH samples. A change in color is
detected via CCD camera of smartphone and evaluated in
HSV space with the circular reference array. The colorimetric
detection of pH of human sweat and saliva is detected using
a smartphone in [34], and additional equipment is required
to perform the tests. Recently, another algorithm is proposed
for the analysis of colorimetric tests measurements of pH,
protein and glucose in [35]. However, the tests require tedious
system calibrations, which need to be done carefully, hinder-
ing the ease of application. Furthermore, in [36], seven urine
tests are performed utilizing rectangular urine-strips. Also,
Cho et. al. [37], have proposed amicrofluidic paper analytical
device to serve a low-cost POCT urinalysis to monitor UTI
and gonorrhea from human urine. Both Hong and Chang [36]
and Cho et al., [37] have studied the effects of light on
colorimetric analysis of the test but have not provided the
solution to the errors introduced by it.

Even though these applications utilize the current technol-
ogy as a platform for POCT, the cumbersome setup of the
evaluation settings or calibrations and the need for specified
diagnostic devices, hinder the practical implementation of
these methods for effective POCT use.

In this manuscript, a new urine test strip has been pro-
posed, in which each predetermined composition of inter-
est is arranged in an independent doughnut chart. As for
strip-based urinalysis, time is a significant factor that needs
to be taken into consideration for the accuracy of results.

After 1 minute when the sample is deposited onto the reagent
pads, the color changes in these pads and, lasts for 23̃ minutes.
With the proposed strip, named Doughnut-shaped Nearness
Urine Tester (DONUT), each composition can be monitored
simultaneously as the reference colors in interest are spa-
tially nearby, allowing rapid assessment, with no calibration
requirement, making it easy for the end user.

Furthermore, a smartphone-based colorimetric detection
algorithm is also developed to transform image data into
diagnosis results, without the influence of surrounding illu-
mination conditions. The invariance property of DONUT is
contributed by the self-contained configuration of the strip.
When the light projected on the strip varies from region to
region, the color appearances vary accordingly, preserving
the relative differences of the colors. Thus, the proposed
framework delivers promising results under various light con-
ditions, allowing it to be readily usable anywhere.

The paper is organized in the following manner: A brief
outline of previous works is provided. Followed by the
description of the proposed urine tester and its effectiveness
over conventional reference array system, along with the
proposed colorimetric detection algorithm, in section 2. The
results are presented along with the experimental setup in
section III, which is followed by the conclusion of the paper.

II. FUNDAMENTALS AND METHODS
A urine test strip consists of porous matrices mixed with dried
reagents on a carrier element. The reagent pads interact with
liquid in interest and result in color-change due to chemical
reactions. Fig. 1 shows an illustration of commercially avail-
able urine test strip and the colorimetric reference sheet. The
reference system is in tabular form where the reference color
swatches, for a chemical element of urine in the analysis, are
arrayed in the same row. To obtain a measurable response,
the comparison has to be made for each constituent with the
corresponding row by finding the reference swatch which
best represents the reagent pad in terms of color similarity.

At times, selection of the reference color swatch which
best represents a certain constituent is more challenging as
some color differences are more difficult to tell apart from
another. In these cases, the comparison between possible
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reference color swatches with the color of the reagent pad has
to be performed back and forth when utilizing conventional
reference sheet as shown in Fig. 1(c). On occasions where
these swatches necessary for comparison are located spatially
far apart, users have no choice but to recall the subtly-varied
color gradient of these colors. Consequently, the discomfort
in usage due to the configuration of the reference table would
likely affect the accuracy of the results.

FIGURE 2. Newly proposed urine test strip, Donut-shaped Nearness Urine
Tester (DONUT).

A. CONFIGURATION OF DONUT-SHAPED NEARNESS
URINE TESTER (DONUT)
The proposed test strip, DONUT is given in Fig. 2. It is
designed to analyze the ten predetermined constituents in
urine, which are urobilinogen, glucose, bilirubin, ketones,
specific gravity, red blood cells (RBC), pH, protein, nitrite,
and leukocytes, arranged in two columns. The color swatches
for a particular constituent are contained in a doughnut chart
where a series of varied hues are distributed accordingly
around a square center. The square blocks in the center of
these charts are reserved for the corresponding reagent pads.
The reference system is further supported by digitized values
written with the color swatches.

In a typical analysis process, urine sample is deposited onto
all the reagent pads, or, the test strip can be dipped into a sam-
ple of interest where excess fluid is blotted off. A sufficient
interval is given to ensure that the samples are penetrated and
soaked through the reagent pads. A comparison of the color
similarities between these pads and the surrounding reference
swatches is then made, reflecting the diagnostic results in the
form of a value.

While the detection results can be obtained by simple
evaluation using the naked eye, the new reference system
also supports an alternative to assess the color response of
the urine strip using smart-phones.

B. SMARTPHONE-BASED COLORIMETRIC DETECTION
This section introduces a smartphone-based colorimetric
detection algorithm in an effort to eliminate the factors of
personal subjectivity and surrounding factors.

The interface of the smart-phone application, based on
the proposed algorithm, is provided in Fig. 3. The figure
demonstrates the interface from image acquisition to the
end-result.

The proposed colorimetric algorithm is divided into fol-
lowing main steps:

1) image acquisition
2) circular chart detection

3) segmentation of ROI (Region-Of-Interest)
4) extracting reference and TEST (central swatch of

DONUT) color values
5) color comparison and matching of reference colors

(of DONUT) with TEST
6) classification of results
The process starts after acquiring an image of the test strip

with urine-soaked reagent pads, soaked for about 1 minute,
using a smartphone camera within a range of 5 cm to 10 cm,
as shown in in Fig. 4. This is followed by detection of
the contours of each DONUT chart using Circular Hough
Transform [38].

After these circular shapes are successfully detected from
the captured image, the region of interest (ROI), correspond-
ing to each reagent pad and the reference color swatches,
has to be defined for the purpose of color matching. Even
though the color of each separate swatch appears to be the
same through visual inspection, Fig. 5(a) clearly illustrates
that there are differences in the hue values, especially on the
boundaries of each region.

Based on the former observation, ROIs are selected to
enclose only a sub-region of the test pads and swatches,
excluding the boundaries where the pixel values vary by
a greater extent. The ROIs are defined with the geometric
information acquired from the preceding step. Specifically,
the center of each region is computed and then the width and
height of the ROI are calculated with reference to the center.
The horizontal and vertical distances of R

4 are calculated as
the ROI boundaries; where R is the radius of DONUT shape
as shown in Fig. 6. For reference swatches, each center is
computed at a distance of (± 3R

4 ,±R
4 ) and (±

R
4 ,±

3R
4 ) from the

chart center. The ROIs of these swatches are bounded by the
horizontal and vertical distances of R8 from the center. Image
description of the segmentation method is shown in Fig. 6.
The differences in intensity values due to the outliers, still

present in this dispersed distribution of data, can be filtered
using a median filter on ROI before selecting the mean value
(of ROI) as the reference value. The color values are then
compared to the color value of central test pad, using Match-
ing Factor (MF). AnMF in RGB space is calculated by using
following:

MFRGB(i) = 1−
(1R(i)+1G(i)+1B(i)

255× 3

)
, (1)

where, 1R(i) = |RT − Ri|, 1G(i) = |GT − Gi|, 1B(i) =
|BT −Bi|, and, 1 ≤ i ≤ N represents the color values in a test
and N is the total number of reference color in a given test,
computed in previous step, Ri, Gi and Bi; represent the RGB
values for each reference color in DONUT array, respectively.
MF should be 1 if the colors match perfectly, and 0 if the
colors are opposite to each other. The range of 1R, 1G ad
1B is 0 ∼ 255, respectively.

Matching factor for CIE L*a*b*, and HSV color spaces are
given as:

MFLAB(i) = 1−
(α1L(i)+ β1a(i)+ β1b(i)

(100+ 256+ 256)

)
, (2)
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FIGURE 3. Developed smart-phone application for Android software using the proposed method. (a) Loading new data.
(b) Detecting the strip for urinalysis. (c) Displaying results.

FIGURE 4. Captured images under natural light conditions. (a) Conventional test strip. (b) Proposed test strip.

FIGURE 5. (a) Circular Hough Transform. (b) Results of segmentation.

and,

MFHSV (i) = 1−
(α1H (i)+ β1S(i)+ β1V (i)

(180+ 100+ 100)

)
. (3)

For CIE L*a*b* color space: α = 0.1634 and β = 0.418, and
also 0 ≤ 1L ≤ 100, 0 ≤ 1a ≤ 256, and, 0 ≤ 1b ≤ 256;

FIGURE 6. Segmentation procedure in DONUT arrays. (a) Partitioning.
(b) ROIs of each region.

and for HSV color space: α = 0.6429 and β = 0.1786, and
also 0 ≤ 1H ≤ 180, 0 ≤ 1S ≤ 100, and, 0 ≤ 1V ≤ 100.
After calculating the MF for each color pad, the best

match (BM) is calculated. BM is the highest value of allMFs,
of the center test pad by comparing to the surrounding refer-
ence swatch colors, and is given by the following equation:

BM = argmax
i

(MF(i)). (4)
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III. RESULTS AND DISCUSSIONS
This section is divided into two categories. The first com-
prises the comparison and effectiveness of the proposed
DONUT shaped array system over the conventional rectan-
gular arrays. The second provides the detailed analysis of the
proposed algorithm as compared to others.

A. EFFECTIVENESS OF DONUT ARRAYS
The goal of the proposed scheme for Smartphone-based col-
orimetric detection is to ease the user to perform urinalysis
while having high accuracy. To compare the performances
of the conventional and DONUT reference array system,
few experiments are performed. The evaluation method for
effects of light on color detection, on both reference arrays,
are discussed below. These reference arrays are separately
illustrated in Fig. 1 and 2.

The self-shadow effect in image acquisition via smart-
phone makes the lighting conditions poor. This effect is
inevitable during image acquisition. When the conventional
strips are used this shadow causes difficulty in matching
the color of the test pad with reference array. In case of
rectangular arrays, the shadow and illumination, problem is
magnified with increasing distance from the test pad.

FIGURE 7. Glucose Test 1 image (a) scanned image (b) smartphone
image.

To show the effectiveness and superiority of the DONUT
reference array over the conventional rectangular reference
array, a single color array is formed and then color matching
is performed, shown in the Fig. 7. The location of reagent
pad is taken as the TEST-target and the locations of reference
swatches in the arrays are compared to this TEST.

For the experimentation, both reference arrays are printed
together and then their image (I ) is acquired.
This is followed by choosing a Region of Interest (ROI ) of

ω×ω pixels for every color reference swatch, as demonstrated
in the Fig. 7(a), and Fig. 7(b). There are mostly five refer-
ence swatches in one urine test (Fig. 4), therefore, for both
reference array systems together, there are eleven reference
swatches in total: one is the TEST-target, and five for each
circular and rectangular reference arrays, respectively.

The image via previous step, is evaluated in RGB, CIE Lab,
or HSV color spaces, [39]–[41]. In any of these color space,
each reference color will have three color component values,
thus producing 11 × 3 images (each with the size of ω × ω)
in total.

In the fourth step, a surface fitting function is applied to
each color component image to remove the noise of each
image. This is followed by obtaining the mean value for all
five colors of circular array and five colors of the rectangular
array. These mean values are matched with the mean of the
test swatch color using a matching factor (MF), by utilizing
(1) (for RGB). Due to the limited space, this paper only rep-
resents the results of RGB space. However, using equations
(2) and (3), for the CIE Lab and HSV color spaces, similar
results are obtained.

Fig. 8(a) represents the results of the matching factor of the
scanned images (Fig. 7(a)) for all the colors of Glucose test
(G1 ∼ G5). It is clear from the figure that the results are near
to the ideal conditions, when there is no effect of light on the
reference colors, the color matching of both the circular and
rectangular array with the test swatch is the same.

Fig. 8(b) represents the results of the same analysis for
the images obtained by the smartphone camera, and it can
be observed from the figure that, when the reference col-
ors are matched with the test swatch, the effect of light
on rectangular reference array is more as compared to the
circular reference array. The color patch which are further
away from the test swatch in the rectangular reference array
have less color matching factor, whereas, the colors matching
factor for the circular reference array is almost constant (and
close to ideal) for all color patches (1 ∼ 5), as their radial
distance from the center of the test swatch is constant. The
solid line in both figures represent the mean data for circular
(blue line) and rectangular (red line) reference arrays, the dot-
ted (blue and red) lines represent the maximum andminimum
of the matching factor for both reference arrays, respectively.
In Fig. 8(a) both dotted and solid lines are also very close
to each other, representing the compactness of the color
matching. Whereas, in Fig. 8(b) the dotted and solid blue line
are close, however, the dotted and solid red line drops from
the ideal condition (1 to 0.75 value for dotted and 1 to 0.95
value for the solid, respectively), as the color reference array
number increases from 1 to 5. This phenomenon can be
observed for all other urine tests as well.

Fig. 9(a) and 9(b) show the color flow of the Glucose test
in RGB space, for scanned image and smartphone image.
In Fig. 9(a), the color scheme of all the colors of Glucose
Test is compact and close to each other for both DONUT and
conventional reference arrays. However, in Fig. 9(b), it can
be clearly observed that the color deviation of conventional
reference arrays (shown by red line) is greater as compared
to the color deviation of DONUT arrays (shown by blue).
The color pattern, in both the figures, is different due to
the change in illumination. For Fig. 9(a) the pattern of color
flow is close to ideal. Whereas, in Fig. 9(b) the color pattern
is more close to the darker region of RGB color space.
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FIGURE 8. Matching factor for Glucose Test 1 for both conventional and the proposed method in RGB color space
(a) for scanned image (b) for smartphone image.

FIGURE 9. Color flow for all colors of Glucose Test for both conventional and proposed strips in RGB color space
(a) for scanned image (b) for smartphone image. (The color pattern in both the figures is different due to the
illumination change.)

In the Fig. 9(a) and 9(b), the green line represents the
connectivity-flow of the colors from 1 ∼ 5.

Fig. 8(a) & 8(b), and Fig. 9(a) & 9(b) confirm the view
point that the proposed circular (DONUT) shaped array is less
prone to noise caused by the varying light conditions when
taking the image from the smartphone, as compared to the
rectangular (Conventional) reference array.

The second test uses human vision to compare the effec-
tiveness of the proposed array with conventional array. Under
normal room light conditions, 16 participants were asked to
evaluate visually the color of test pads, soaked with urine
samples, using an assigned array at a time. These participants
were chosen among students who did not have color blind-
ness, ranging from 18 to 30 years old. Experiments using
conventional and DONUT reference system were separated
by three days interval to ensure the integrity of the results.
In these experiments, accuracy is achieved when the concen-
tration level of the constituent is same with the ground truth
data while precision is evaluated by referring to the standard
deviation. A clear comparison of the results can be observed
from Fig. 10(a) for a normal urine sample and Fig. 10(b)
for an abnormal urine sample. According to these figures,

the new reference systems had considerably small standard
deviations in average as compared to the conventional system.
These results indicate that decisions of the participants are
consistent when they are using the new reference system.

B. EXPERIMENTAL SETUP FOR PROPOSED
ALGORITHM ANALYSIS
The test samples used in the experiments are stabilized
solutions, composed of urine samples from several individ-
uals, tightly closed and stored at a temperature between
−2 ◦C to −6 ◦C. A urine strip reader of model CYBOW
Reader 720 is used to obtain the ground truth data before
performing the series of experiments. Two smartphones-
Samsung Galaxy Note III and I-Phone 5s-are used for image
acquisition and processing.

C. PERFORMANCE EVALUATION OF THE
PROPOSED ALGORITHM UNDER VARYING
ILLUMINATION CONDITIONS
The goal of the second set of experiments is to demonstrate
that the performance of the proposed smartphone-based algo-
rithm is also invariant to different illumination conditions.
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FIGURE 10. Results obtained with the conventional and new reference system. (a) Normal urine test sample. (b) Abnormal urine test sample.
Standard deviations are plotted on top of each bar.

TABLE 1. Performances of the proposed algorithm for different smartphones, with different light conditions, for normal and abnormal urine samples.
(Unit: Percentage Rate %)

The color changes of urine reagent pads are examined visu-
ally under dim light, room light, and outdoor environments.
The experiment procedures are as follows:
1. An image of DONUT array, with urine-soaked test pads,
is captured using a smartphone.
2. The diagnostic results of the captured image are eval-
uated with the inbuilt app on a smartphone and also with
MATLAB version 8.0 on a 3.4 GHz Pentium PC.

The images obtained via smartphones are alternated
between normal and abnormal urine samples. The experi-
ments are performed 100 times for each smartphone, with one

urine test sample at a time in a particular environment. The
results are provided in Table 1 and 2.

As per expectations, the results are similar in all environ-
ments, as shown in the tables. This is further supported by
comparing the results between different smartphone models,
where no significant changes are reflected. The slight dif-
ferences in accuracy rates according to smartphone model
systems is due to the fact that different smartphones have
different camera specifications.

Ketone, Nitrite, and Leukocytes components showed lower
accuracy rates when compared with other constituents.
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TABLE 2. Performances of the proposed smartphone based algorithm under different light conditions (even and uneven) as compared to other methods.
(Unit: Percentage Rate %)

The deviations are wide in general regardless of the refer-
ence systems used. Therefore, the lower accuracy rates can
be ascribed to the reason that these constituents are more
challenging to be matched to the right concentration level.
However, a good overall outcome with an accuracy rate
of 80% and above, revealed the effectiveness of DONUTwith
the proposed algorithm.

D. PERFORMANCE COMPARISON OF THE PROPOSED
ALGORITHM WITH OTHER SMARTPHONE-BASED
COLORIMETRIC DETECTION
In this set of experiments, comparisons are made between
the proposed and the other smartphone-based approaches.
In the work proposed by Jong and Chang [36], black and
white markers are placed on both ends of a urine test strip
to compensate for the surrounding illumination changes, as
shown in Fig. 4. Then, different constituents of the urine
sample are evaluated under either H or S channels of HSV
color space, and converted into concentration values based
on the predetermined calibration curves. The aforementioned
method and the proposed smartphone-based algorithm are
tested ten times, with Galaxy Note III, under dim, indoor,
and outdoor light conditions. The averaged results are shown
in Table 2. The experiments are repeated for uneven light
conditions, where the strips were shaded partially to make
uneven illumination condition. The results are also illustrated
in Table 2.

For even light distribution, it can be seen that both systems
obtained high accuracy rates. A steep drop in accuracy rates
for Jong’s method is observed in the experiments with uneven
light conditions whereas, the proposed algorithm maintained
high performance. This sharp accuracy drop in Jong’s method
occurred due to the incorrect digitization of black and white
markers on both ends of the strip, resulting in the different
amount of light spreading on these markers. The proposed
smartphone-based algorithm did not suffer from the same
drawback due to its self-contained configuration. This design
is shown in Fig. 4(b), where light is spread uniformly on

each doughnut chart even when shadow is partly shading the
strip. As the relative differences among the reference color
arrays and reagent pad remained the same, diagnostic results
are correctly computed. Thus, as for the robustness against
uneven illumination especially in the presence of shadows,
it is shown that the proposed system is suitable for real-life
scenarios. This is because the even distribution of light on the
surface of the urine test strip cannot be guaranteed in normal
circumstances.

IV. CONCLUSION
Point of care testing (POCT) has been integrated into the
healthcare system, creating a paradigm shift and offering
faster results using portable, easy-to-use devices that can
lead to improved patient outcomes. A number of factors,
such as demand for development of advanced, faster, and
easy-to-use devices are stimulating the demand for POCT.
This manuscript aims the development of a new urine test
strip along with smartphone-based colorimetric detection
algorithm for POCT application. The simplicity, uniqueness,
robustness and accuracy of proposed strip and algorithm shall
have a great impact on POCT and in general paper based
analytical devices.

The experimental results demonstrate that the proposed
system is suitable for real-life implementation, whether the
detection is performed using naked eye or smartphones. After
the process is performed, the diagnostic results can be saved
for health monitoring or transmitted immediately to clinical
laboratories for professional therapeutic decisions. The inde-
pendent configuration of DONUT contributes to high perfor-
mances under varying light conditions, even in the presence
of shadows. Thus, it is not only applicable to strip-based
urinalysis, but can be widely applied to other strip-based
colorimetric detections such as drug strip testing and water
quality testing. It is envisioned that these applications can
be built on various platforms in the future. This manuscript
represents the image analysis in RGB domain; better results
are expected if CIE Lab or HSV color space are used.
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TABLE 3. Categorical sensitivity and specificity comparison of the proposed algorithm with urinalysis analyzer machine (UAM).

When using conventional strips, for samples such as urine,
blood, or other body fluids, signals are obtained in the form
of colors. Evaluation of the changes in colors, which is
done by simple human perception, is perceived differently
due to varying light conditions, resulting in diagnostic errors
which are likely to affect the medical decision-making of
users. The main advantage of the proposed strips (DONUT)
is robustness against different light conditions even when
viewed with naked eye. Besides the DONUT, the proposed
smart phone algorithm also have several advantages; such
as, no calibration requirements; easy-to-go, compatibility
with both Android and iOS based systems, and equiva-
lence in accuracy as compared conditional urine-analysis-
machine (UAM). These advantages makes it particularly
suitable for early disease detection and patient self-
monitoring. Along with these advantages these features also
make it more appropriate for quick clinical use.

In future, the improvements can be made in visual per-
ception of the DONUT shape. The compatibility of the
DONUST strips and conventional strips for UAM use can
be added, which will give another advantage for proposed
strips as it could be used for both smartphone and UAM
without the hassle of change in equipment. Furthermore, the
design of DONUT shape can be improved to incorporate

the manufacturing constraints of the urine strips. In addition
to this, the proposed algorithm could be further improved
for higher accuracy of results. The robustness against noisy
conditions can also be added.

APPENDIX
CATEGORICAL SENSITIVITY AND SPECIFICITY
COMPARISON OF THE PROPOSED ALGORITHM
WITH URINALYSIS ANALYZER MACHINE
This section explains the categorical sensitivity and speci-
ficity of the proposed method and compares the results
with Urinalysis Analyzer Machine (UAM). For experiments,
300 artificial urine samples prepared using the method
described in [42]–[44], are prepared with different concen-
tration levels and are then analyzed via both UAM and the
proposed method. The test results of UAM and the proposed
method are compared to the actual ground truth of the sam-
ples. The categorical sensitivity and specificity of each test
using proposed method are also compared with the ground
truth data. The results are computed under random light
conditions. Also the devices used to carry out the experiments
(Galaxy Note III and iPhone 5s) are selected randomly.

Each test is divided into three categories each; namely,
safe, risk and high. For example, the glucose test has five

VOLUME 6, 2018 2800111



M. Ra et al.: Smartphone-Based Point-of-Care Urinalysis Under Variable Illumination

concentration levels, level 1 is categorized as safe,
level 2 and 3 are categorized as risk and, 4 and 5 are cate-
gorized as high. The measures are used to compare the pro-
posed algorithm with the results of Urine Analyzer Machine;
namely–sensitivity (also called the true positive rate), which
measures the proportion of positives that are correctly iden-
tified for the correct category; and specificity (also called
the true negative rate), which measures the proportion of
negatives that are correctly identified. Table 3 represents the
actual concentration levels, the average measurements using
UAMand averagemeasured level using the proposedmethod.
It also shows the categorical sensitivity and specificity of the
proposed method. Except for few, most of the results shown
have 100% true positive and true negative rates, reflecting the
effectiveness of the proposed scheme.
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