
INTRODUC TION

Progressive supranuclear palsy (PSP) and corticobasal degeneration 
(CBD) are sporadic, progressive neurodegenerative diseases, collec-
tively termed tauopathies.[1,2] PSP typically presents with levodopa- 
unresponsive parkinsonism, postural instability, frequent falls, 
vertical supranuclear gaze palsy and cognitive impairment, with the 

most common presentation referred to as Richardson syndrome (RS).
[3] Prototype clinical features of CBD include asymmetric rigidity and 
apraxia, parkinsonism, dystonia, myoclonus, cortical sensory loss, dys-
tonia and cognitive impairment, referred to as corticobasal syndrome 
(CBS).[4] In addition to typical presentations, both PSP and CBD can 
present with RS, CBS, behavioural variant frontal dementia and pro-
gressive non- fluent aphasia.[1,2] This clinical overlap makes a clinical 

Received:	4	November	2020 | Revised:	14	March	2021 | Accepted:	18	March	2021
DOI: 10.1111/nan.12710  

O R I G I N A L  A R T I C L E

Machine learning- based decision tree classifier for the 
diagnosis of progressive supranuclear palsy and corticobasal 
degeneration

Shunsuke Koga1  |   Xiaolai Zhou1,2 |   Dennis W. Dickson1

1Department	of	Neuroscience,	Mayo	
Clinic,	Jacksonville,	FL,	USA
2State Key Laboratory of Ophthalmology, 
Zhongshan Ophthalmic Center, Sun Yat- 
Sen University, Guangzhou, Guangdong, 
China

Correspondence
Dennis W. Dickson, Department of 
Neuroscience,	Mayo	Clinic,	4500	San	
Pablo	Road,	Jacksonville,	FL	32224,	USA.
Email: dickson.dennis@mayo.edu

Funding information
National Institute of Neurological 
Disorders	and	Stroke,	Grant/Award	
Number:	U54-	NS100693;	Jaye	F.	and	
Betty F. Dyer Foundation Fellowship; 
CurePSP;	Karin	&	Sten	Mortstedt	CBD	
Solutions; the Rainwater Charitable Trust

Abstract
Aims: This study aimed to clarify the different topographical distribution of tau pathology 
between progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) and 
establish a machine learning- based decision tree classifier.
Methods: Paraffin- embedded sections of the temporal cortex, motor cortex, caudate nu-
cleus, globus pallidus, subthalamic nucleus, substantia nigra, red nucleus, and midbrain 
tectum	from	1020	PSP	and	199	CBD	cases	were	assessed	by	phospho-	tau	immunohis-
tochemistry. The severity of tau lesions (i.e., neurofibrillary tangle, coiled body, tufted 
astrocyte or astrocytic plaque, and tau threads) was semi- quantitatively scored in each 
region.	Hierarchical	cluster	analysis	was	performed	using	tau	pathology	scores.	A	deci-
sion	tree	classifier	was	made	with	tau	pathology	scores	using	914	cases.	Cross-	validation	
was	done	using	305	cases.	An	additional	ten	cases	were	used	for	a	validation	study.
Results: Cluster analysis displayed two distinct clusters; the first cluster included only 
CBD, and the other cluster included all PSP and six CBD cases. We built a decision tree, 
which used only seven decision nodes. The scores of tau threads in the caudate nucleus 
were	the	most	decisive	factor	for	predicting	CBD.	In	a	cross-	validation,	302	out	of	305	
cases were correctly diagnosed. In the pilot validation study, three investigators made a 
correct diagnosis in all cases using the decision tree.
Conclusion: Regardless of the morphology of astrocytic tau lesions, semi- quantitative tau 
pathology scores in select brain regions are sufficient to distinguish PSP and CBD. The 
decision tree simplifies neuropathologic differential diagnosis of PSP and CBD.
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diagnosis of tauopathy challenging; thus, autopsy is indispensable to 
confirm a diagnosis.

PSP and CBD show similar tau pathology characterised by numer-
ous neuronal and glial lesions composed of pathological aggregates of 
insoluble tau protein in the grey and white matter of the neocortex, 
basal	ganglia,	diencephalon	and	brainstem.[5-	7]	Neuronal	loss	and	at-
rophy in the subthalamic nucleus, red nucleus and cerebellar dentate 
nucleus	are	more	frequent	and	severe	 in	PSP	compared	to	CBD.[5]	
While tau pathology occurs predominantly in hindbrain structures 
in PSP, tau pathology in CBD occurs predominantly in forebrain 
structures.[8,9]	The	distinct	morphology	of	astrocytic	lesions	is	also	
helpful	 in	distinguishing	two	diseases.[5,10]	The	tufted	astrocyte	 is	
characteristic for PSP: a radial arrangement of thin, long, branching 
accumulation	of	tau	in	the	proximal	processes	of	astrocyte.[6,7]	The	
astrocytic plaque is a pathognomonic lesion in CBD and is an annular 
cluster	of	short	and	stubby	processes	of	astrocytes.[5]	Even	though	
the two diseases have different distributions and morphologic fea-
tures of tau pathology, the neuropathologic diagnosis of PSP and 
CBD is sometimes challenging because the distribution pattern of 
neurodegeneration	and	tau	lesions	overlap.[7,9,11,12]

With advances in machine learning, the application of computer- 
aided diagnosis is a promising technology to assist diagnostic decision- 
making.[13,14] Several machine learning methods based on deep 
learning, such as image classification and object detection, have been 
applied	in	the	fields	of	radiology,	pathology	and	other	specialties	[15-	
20]; however, due to the “black box” nature of deep learning, it is dif-
ficult to interpret the results from deep learning, which may limit their 
use	in	decision-	making	in	clinical	practice.[21]	A	decision	tree	is	a	prom-
ising	method	to	overcome	this	problem.[22]	A	decision	tree	is	a	machine	
learning method that separates outcomes based on the statistical sig-
nificance,	displayed	as	a	probability	tree.	A	recent	study	has	shown	that	
a machine learning- based decision tree using CSF biomarkers showed a 
higher	diagnostic	accuracy	of	Alzheimer's	disease	(AD)	compared	with	
a traditional cut- off.[23] The advantage of this technique is the “white 
box” nature; clinicians are able to interpret the output of the machine 
learning algorithm and use the results as a flowchart.

The present study aimed to demonstrate that the topographical dis-
tribution and severity of tau pathology, rather than the morphology of 
astrocytic tau lesions or other pathological features, are sufficient to 
distinguish between PSP and CBD. To achieve this, we performed hi-
erarchical cluster analysis using semi- quantitative scores of tau lesions 
in select brain regions from PSP and CBD. In addition, we constructed 
machine learning- based decision tree classifiers to identify the most 
decisive predictive factor and provide a simple flowchart for diagnosis.

MATERIAL S AND METHODS

Case selection and ethical approval

All	brain	tissues	used	in	this	study	were	from	the	Mayo	Clinic	brain	
bank collected between 2000 and January 2020. In this period, 1411 
cases	and	261	cases	have	been	given	a	neuropathologic	diagnosis	of	

PSP and CBD respectively. Cases with known MAPT mutations were 
excluded.	Any	case	with	missing	data	for	at	least	one	neuroanatomi-
cal region for a given tau pathology score were excluded from the 
study.	The	remaining	1219	cases,	consisting	of	1020	PSP	and	199	
CBD, were included in the study. For the validation study, 10 con-
secutive	cases	of	either	PSP	or	CBD	between	June	and	August	2020	
were selected. Demographic information and clinical diagnoses 
were extracted from medical records and a questionnaire filled out 
by a family member. Clinical diagnoses of all cases were divided into 
three categories: RS, CBS and others (i.e., PSP- parkinsonism, fron-
totemporal	dementia,	AD,	dementia	with	Lewy	bodies,	aphasia	and	
PSP- pure akinesia with gait freezing) based on available clinical in-
formation.[2,4] Brain autopsies were performed after consent of the 
legal next- of- kin or individuals with power- of- attorney to grant con-
sent. De- identified studies of autopsy samples are considered ex-
empt	from	human	subject	research	by	the	Mayo	Clinic	Institutional	
Review Board.

Neuropathologic assessment

Formalin- fixed brains underwent systematic and standardised 
sampling with neuropathologic evaluation by a single, experienced 
neuropathologist (DWD). Regions sampled on all cases included six 
regions of neocortex, two levels of hippocampus, a basal forebrain 
section that includes amygdala, lentiform nucleus and hypothalamus, 
anterior corpus striatum, thalamus at the level of the subthalamic 
nucleus, midbrain, pons, medulla and two sections of cerebellum, 
one	 including	 the	dentate	nucleus.	Paraffin-	embedded	5-	μm thick 
sections mounted on glass slides were stained with haematoxylin 
and eosin and thioflavin S. Braak neurofibrillary tangle (NFT) stage 
and Thal amyloid phase were assigned based upon lesion density 
and distribution with thioflavin S fluorescent microscopy according 
to	published	criteria.[24,25]	For	Braak	NFT	stage,	sections	from	the	
entorhinal	cortex	(stage	II),	the	pyramidal	layer	of	the	CA1	subsec-
tor of the hippocampus (stage III), temporal cortex (stage IV), frontal 
cortex (stage V) and primary visual cortex (stage VI) were used. For 
Thal amyloid phase, sections from the frontal cortex (phase 1), the 
pyramidal	layer	of	the	CA1	subsector	of	the	hippocampus	(phase	2),	
putamen	(phase	3),	CA4	subsector	of	the	hippocampus	(phase	4)	and	
the	molecular	layer	of	the	cerebellum	(phase	5)	were	used.	The	neu-
ropathological	diagnosis	of	AD	was	based	on	the	consensus	criteria	
for	the	neuropathologic	diagnosis	of	AD.[26]

Immunohistochemistry for phospho- tau (CP13, Ser202, mouse 
monoclonal, 1:1000, from the late Dr Peter Davies, Feinstein 
Institute,	North	Shore	Hospital,	NY)	was	performed	using	a	DAKO	
Autostainer	(Universal	Staining	System,	Carpinteria,	CA)	to	establish	
a	neuropathological	diagnosis	of	PSP	and	CBD.[5-	7]	The	severity	of	
tau pathology, which included NFTs (including pretangles), coiled 
bodies, astrocytic lesions (including tufted astrocytes and astro-
cytic plaques) and tau threads, was graded semi- quantitatively on 
a four- point scale (0 = absent, 1 = mild, 2 = moderate, 3 = severe) 
by an experienced neuropathologist (DWD) in eight brain regions: 
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temporal cortex, motor cortex, caudate nucleus, globus pallidus, 
subthalamic nucleus, red nucleus, substantia nigra and midbrain tec-
tum. Representative images of tau pathology scores in each lesion 
type are shown in Figure 1.

Immunohistochemistry	 for	 phospho-	tau	 (AT8,	 Ser202/Thr205,	
mouse monoclonal, 1:1000, Invitrogen) was also performed in select 
cases using the sections of caudate nucleus to show similarity with 
CP13 (Figure S1).

Hierarchical cluster analysis

Hierarchical cluster analysis using Euclidean distance and average 
linkage clustering was performed on patients and region- specific 
variables reflecting the tau pathology scores in eight brain regions in 
1219	cases.	A	heatmap	was	generated	to	visualise	hierarchical	clus-
tering using the “pheatmap package” in R 3.4.3 (The R Foundation 
for	Statistical	Computing,	Vienna,	Austria).

F I G U R E  1 Representative	images	
of tau pathology scores in CP13- 
immunostained slides. Images of NFT, tau 
threads and astrocytic plaques are from 
the motor cortex in CBD cases. Images of 
tufted astrocytes are from the caudate 
nucleus, and images of coiled bodies are 
from	the	motor	cortex	in	PSP	cases.	All	
images are the same magnification. Scale 
bar =100 μm
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Machine learning- based decision tree classifier

A	decision	tree	classifier	was	created	using	the	“scikit-	learn”	Python	
module.[27] Classification and regression tree algorithm and Gini 
impurity	measure	were	used	to	construct	decision	trees.	A	total	of	
1219	cases	were	 randomly	divided	 into	a	 training	set	 (914	cases;	
75%)	and	a	testing	set	(305	cases;	25%).	The	target	variable	was	the	
pathological diagnosis (i.e., PSP and CBD). The dependent variables 
were the tau pathology scores in eight brain regions.

Validation study

For further validation of the decision tree, three investigators (SK, 
XZ and DWD), who have different levels of experience in neuro-
pathologic research in tauopathy, blindly assessed tau pathology 
scores of select brain regions in ten most recent cases of either PSP 
or CBD (validation set). For scoring, each investigator separately re-
viewed glass slides under a microscope, rather than using digital im-
ages. The diagnosis of PSP or CBD was made based only on the tau 
pathology scores and the decision tree classifier.

Statistical analysis

All	statistical	analyses	were	performed	using	R	3.4.3.	Fisher's	exact	
test was performed for group comparisons of categorical data, as ap-
propriate.	Mann-	Whitney	rank	sum	test	and	student	t-	test	were	used	
for analyses of continuous variables as appropriate. p-	values	<	0.05	
were considered statistically significant.

RESULTS

Cohort summary

The demographic and clinicopathologic features of 1020 PSP and 
199	CBD	cases	are	summarised	in	Table	1.	Patients	with	PSP	were	
significantly	 older	 than	 those	with	CBD	 (75	 ±	 8	 vs.	 70	 ±	 8	 years;	
p	<	0.001).	Although	the	frequency	of	concurrent	neuropathologic	
diagnosis	 of	 AD	 was	 not	 significantly	 different	 in	 PSP	 and	 CBD	
(10%	vs.	6%;	p	=	0.076),	the	medians	of	Braak	NFT	stage	(2.5	vs.	2;	
p = 0.002) and Thal amyloid phase (1 vs. 0; p	≤	0.001)	were	signifi-
cantly higher in PSP than in CBD. The symptomatic duration of PSP 
was	longer	than	that	of	CBD	(7	vs.	6	years;	p < 0.001). The majority 
of	PSP	patients	(82%)	were	given	a	clinical	diagnosis	of	RS,	followed	
by	CBS	(8%).	In	contrast,	the	clinical	diagnosis	of	CBD	was	more	het-
erogeneous:	CBS	in	37%,	RS	in	36%	and	others	in	28%.

Hierarchical cluster analysis

Hierarchical cluster analysis based on regional semi- quantitative tau pa-
thology	scores	in	1020	PSP	and	199	CBD	cases	were	performed.	The	

results are shown as a heatmap in Figure 2. This heatmap indicates tau 
pathology scores from white (score =0) to red (score =3). Each row repre-
sents the lesion types in a given brain region, and each column represents 
an individual case. The first cluster contained only CBD cases (Cluster 1), 
while the second one contained all PSP cases and six CBD cases (Cluster 
2). This indicates that PSP and CBD were clearly separated based on the 
severity and distribution of tau pathology. For further analysis, Cluster 2 
was subdivided into four clusters (2– 1, 2– 2, 2– 3 and 2– 4).

Some striking differences in the distribution of tau pathology 
were	observed	between	the	clusters.	Astrocytic	tau	lesions	in	the	
midbrain tectum and coiled bodies in the globus pallidus, subtha-
lamic nucleus, red nucleus and midbrain tectum were less severe 
in Cluster 1 than Cluster 2. NFT and tau threads in the caudate nu-
cleus were more severe in Cluster 1 than Cluster 2. Coiled bodies, 
tau threads, NFT and astrocytic tau lesions in the temporal cortex 
were more severe in Cluster 1 than Cluster 2, except Cluster 2– 2. 
Astrocytic	tau	lesions	in	the	globus	pallidus,	substantia	nigra,	sub-
thalamic nucleus and red nucleus were much less severe in Cluster 
1 than Cluster 2, except Cluster 2– 4. Cluster 2– 2 had a higher bur-
den of tau pathology in the temporal cortex than other clusters (i.e., 

TA B L E  1 Demographic	and	clinicopathologic	features	of	PSP	
and CBD cases

PSP
N = 1020

CBD
N = 199 p value

Male,	No.	(%) 530	(52%) 103	(52%) 0.936

Age	at	death,	years 75	±	8 70	±	8 <0.001

Brain weight, g 1140	±	150 1110	±	140 0.006

Concurrent	AD 97	(10%) 11	(6%) 0.076

Braak neurofibrillary 
tangles stage

II (II, III) II (I, III) 0.002

0 116	(11%) 27	(14%)

I 111	(11%) 27	(14%)

II 336	(33%) 80	(40%)

III 282	(28%) 44	(22%)

IV 154	(15%) 18	(9%)

V 12	(1%) 1	(1%)

VI 9	(1%) 2	(1%)

Thal amyloid phase 1 (0, 3) 0 (0, 2) <0.001

0 452	(44%) 111	(56%)

1 154	(15%) 35	(18%)

2 99	(10%) 23	(12%)

3 220	(22%) 25	(13%)

4 56	(6%) 2	(1%)

5 39	(4%) 3	(2%)

Disease duration, 
years

7	±	3 6	±	2 <0.001

Clinical diagnosis <0.001

RS 836	(82%) 71	(36%)

CBS 77	(8%) 73	(37%)

Other 107	(11%) 55	(28%)

Data	are	displayed	as	n	(%),	mean	±	SD	and	median	(25th,	75th	range).
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2– 1, 2– 3 and 2– 4). Cluster 2– 4 had less severe astrocytic pathology 
in the globus pallidus, substantia nigra, subthalamic nucleus and red 
nucleus, compared with other clusters (i.e., 2– 1, 2– 2 and 2– 3).

Table 2 compares demographic and clinicopathologic features 
among these sub- clusters of Cluster 2. Cluster 2– 2 had several dif-
ferences	 compared	 to	 other	 clusters;	 age	 at	 death	 (81	 ±	 7	 years)	
was	significantly	older,	the	frequency	of	AD	(53%)	was	significantly	
higher	and	the	frequency	of	clinical	diagnosis	of	RS	(69%)	was	sig-
nificantly lower than other clusters. The breakdown of other clinical 
diagnoses is given in Table S1.

Six autopsy- confirmed CBD cases were included in Cluster 2: two 
cases in Cluster 2– 1, two cases in Cluster 2– 2, and two cases in Cluster 
2–	4.	Clinicopathologic	features	are	shown	in	Table	S2.	Although	they	

were included in the PSP- predominant cluster, all cases had astro-
cytic plaques, confirming the neuropathologic diagnosis of CBD 
(Figure S2). Cases in Cluster 2– 1 and cluster 2– 4 were characterised 
by less severe tau pathologies in the temporal cortex, while cases in 
Cluster 2– 2 were characterised by more severe tau pathologies in the 
midbrain tectum (Figure S2). Four of them were clinically diagnosed 
with CBS, and the other two were diagnosed with PSP- RS.

Decision tree classifiers

The cluster analysis showed that several tau pathology scores, 
such as the tau threads in the caudate nucleus, can help distinguish 

F I G U R E  2 Heatmap	and	hierarchical	clustering	based	on	tau	pathology	in	1020	PSP	and	199	CBD	cases.	The	heatmap	reflects	the	
severity of tau pathology, and a colour scale is given at the top right. Each tau lesion type in a brain region is represented with rows, and 
each case is represented with columns. Two distinct clusters are identified by hierarchical clustering. The left cluster (Cluster 1) mainly 
contains CBD cases as shown in orange in the pathology label, while the right cluster (Cluster 2) mainly contains PSP cases as shown in 
blue in the pathology label. Cluster 2 can be divided into four clusters (Cluster 2– 1, 2– 2, 2– 3 and 2– 4). Pathologically confirmed CBD cases 
in	Cluster	2	are	noted	as	#1-	6.	Note	that	Case	3	is	located	at	the	left	end	in	Cluster	2–	2.	Abbreviations:	AD,	Alzheimer's	disease;	Astro,	
astrocytic tau lesions; Caudate, caudate nucleus; CB, coiled bodies; CBD, corticobasal degeneration; CBS, corticobasal syndrome; GP, globus 
pallidus;	MBT,	midbrain	tectum;	NFT,	neurofibrillary	tangle;	Red,	red	nucleus;	MBT,	midbrain	tectum;	Motor,	motor	cortex;	PSP,	progressive	
supranuclear palsy; RS, Richardson syndrome; SN, substantia nigra; STN, subthalamic nucleus; Temp, temporal cortex; Threads, tau positive 
threads

Cluster 2– 1 Cluster 2– 2 Cluster 2– 3 Cluster 2– 4 p value

Number of cases 568 105 204 149

Male,	No.	(%) 306	(54%) 49	(47%) 102	(50%) 76	(51%) 0.666

Age	at	death,	years* 73	±	7 81	±	7 76	±	7 77	±	8 <0.001

Pathologic diagnosis 
of PSP

566	(99%) 103	(98%) 204	(100%) 147	(99%)

Concurrent	AD** 21	(4%) 56	(53%) 9	(4%) 11	(7%) <0.001

Clinical	diagnosis*** <0.001

RS 483	(85%) 71	(68%) 179	(88%) 105	(70%)

CBS 40	(7%) 15	(14%) 8	(4%) 17	(11%)

Other 45	(8%) 19	(18%) 17	(8%) 27	(18%)

Data	are	displayed	as	n	(%),	mean	±	SD	and	median	(25th,	75th	range).	
*Age	is	significantly	different	between	all	clusters	except	Clusters	2–	3	and	2–	4.	
**The	frequency	of	concurrent	AD	is	significantly	different	between	Cluster	2–	2	and	all	other	
clusters. 
***The	frequency	of	clinical	diagnosis	is	significantly	different	between	Clusters	2–	1	and	2–	2;	and	
Clusters 2– 2 and 2– 3. Pairwise comparison is done using Bonferroni correction.

TA B L E  2 Demographic	and	
clinicopathologic features of cases in 
Cluster 2
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PSP and CBD. To determine the minimum combination of param-
eters that can distinguish the two diseases, we next built machine 
learning- based decision tree classifiers.

When only one decision node was used to construct a tree 
(depth of the tree =1), a score of tau threads in the caudate nucleus 
showed	the	highest	accuracy.	As	shown	in	Figure	3A,	of	914	cases	
in	a	training	set	(152	CBD	and	762	PSP),	743	cases	(7	CBD	and	736	
PSP)	had	the	score	<3	and	171	cases	(145	CBD	and	26	PSP)	had	the	
score	3.	This	 indicates	 that	736	PSP	and	145	CBD	were	correctly	
categorised in each diagnosis; thus, the accuracy of training set was 
96.3%	 (881/914).	 In	 cross-	validation,	 this	 decision	 tree	 correctly	
classified	298	out	of	305	cases	in	a	testing	set	(97.7%	accuracy).

To improve the diagnostic accuracy of decision tree classifiers, 
we increased the number of decision nodes by increasing the max-
imum depth of decision trees. Figure 3B shows a decision tree with 
a depth of 3, which contained 7 decision nodes. The root node used 
the	score	of	tau	threads	in	the	caudate	nucleus.	Most	PSP	cases	had	
a score of <3, so they selected the “True” path. In the second layer, 
the decision node asked whether the coiled body score in the sub-
thalamic nucleus was 0. The majority of PSP cases had coiled bodies 
in this region, so they chose the “False” path. In the third layer, the 
decision node determined whether the coiled body score in the red 
nucleus	was	0.	Almost	all	PSP	cases	had	coiled	bodies	in	this	region,	
so they chose the “False” path and arrived at the leaf node as a PSP 
(719	PSP	and	1	CBD).	This	is	the	main	pathway	for	most	PSP	cases.	
When the coiled bodies score was 0 in the subthalamic nucleus in 
the second layer, then the node in the third layer asked whether the 
score of tau threads in the globus pallidus. The diagnosis of PSP was 
made if the score was lower than 2, and the diagnosis of CBD was 
made if the score was 2 or 3. The majority of CBD cases (and a few 
PSP cases) selected the “False” path at the root node because almost 

all CBD cases had a score of 3 for the tau threads in the caudate 
nucleus. In the second layer, the majority of CBD cases answered 
“True” at the decision node, asking whether a score 0 for astrocytic 
tau in the red nucleus. Finally, these cases were asked whether hav-
ing	 a	 coiled	 body	 score	 of	 <3	 in	 the	midbrain	 tectum.	Most	 CBD	
cases selected the “True” path and arrived at the leaf node as a CBD 
class. If the score of astrocytic tau in the red nucleus was higher 
than 0 in the second layer, then the next node asked the score of 
NFT in the caudate nucleus. The diagnosis of PSP was made if the 
score was lower than 3, and the diagnosis of CBD was made if the 
score	was	3.	As	shown	in	Figure	3B,	903	out	of	914	cases	in	a	train-
ing	set	were	correctly	categorised	as	PSP	or	CBD	(98.8%	accuracy).	
In cross- validation, this decision tree correctly classified 302 out of 
305	cases	in	a	testing	set	(99.0%	accuracy).

As	maximum	depth	 increases,	both	 training	and	 testing	 scores	
increased. The decision tree achieved the best testing score of 
0.997	when	 the	maximum	depth	was	 6	 (data	 not	 shown).	 Table	 3	

F I G U R E  3 Decision	tree	for	the	diagnosis	of	PSP	and	CBD.	The	colour	of	nodes	indicates	the	diagnosis:	blue	=CBD,	orange	=PSP.	The	
darker	colour	indicates	higher	proportion	of	each	disease.	(A)	A	decision	tree	with	the	maximum	depth	of	1.	Of	914	cases	(762	PSP	and	152	
CBD)	in	a	training	set,	881	cases	are	correctly	classified	(accuracy	=96.3%).	(B)	A	decision	tree	with	the	maximum	depth	of	3.	Of	914	cases,	
903	cases	are	correctly	classified	(accuracy	=98.8%).	Abbreviations:	Caudate,	caudate	nucleus;	GP,	globus	pallidus;	MBT,	midbrain	tectum;	
NFT, neurofibrillary tangle; RN, red nucleus; STN, subthalamic nucleus

TA B L E  3 Training	and	testing	scores	of	decision	tree	classifiers	
in each maximum depth

Maximum depth Training score
Testing 
score

1 0.963 0.977

2 0.978 0.987

3 0.988 0.990

4 0.997 0.993

5 0.998 0.993

6 1.000 0.997

7 1.000 0.997
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summarises the training and testing scores of the decision tree clas-
sifier in each maximum depth.

Validation study

For further validation of the decision tree, three investigators blindly 
assessed the tau pathology scores and made a diagnosis in 10 cases 
using a flowchart created by the diagnostic tree classifier (Figure 4). 
All	the	scores	in	six	brain	regions	and	final	diagnoses	are	shown	in	
Table	4.	All	 three	 reviewers	made	 a	 correct	 diagnosis	 in	 all	 cases,	
although the diagnostic path was different in the two cases. In Case 
5,	for	instance,	Reviewer	1	and	3	scored	3	in	the	caudate	tau	threads,	
but	 Reviewer	 2	 gave	 a	 score	 of	 2.	 After	 the	 root	 node,	 Review	1	
and 3 assessed astrocytic lesions in the red nucleus and coiled bod-
ies in the midbrain tectum, while Reviewer 2 assessed coiled bodies 
in the subthalamic nucleus and tau threads in the globus pallidus. 
Nevertheless, the final diagnosis was CBD in all reviewers. This 
result indicated that despite some inter- rater differences, multiple 
nodes rescued the final diagnosis. The same result was observed in 
Case	9.

Decision trees without the subthalamic nucleus or 
caudate nucleus

Given the fact that all brain regions we used in the study might not 
be routinely sampled in other research laboratories, we also built 
decision tree classifiers without the subthalamic nucleus or caudate 
nucleus. Without the subthalamic nucleus, the scores of NFT in the 
caudate nucleus were used instead of coiled bodies in the subtha-
lamic	nucleus	 (Figure	S3A).	The	 testing	 score	of	 this	decision	 tree	
with	a	depth	of	3	was	0.987,	slightly	lower	than	that	of	the	decision	
tree that used the subthalamic nucleus. When the caudate nucleus 
was excluded from the decision tree, the root node used the scores 
of coiled bodies in the midbrain tectum (Figure S3B). The testing 
score	of	this	decision	tree	with	a	depth	of	3	was	0.964,	lower	than	
that of the previous two decision trees. Training and testing scores 

of these two decision trees in each maximum depth are given in 
Table S3.

DISCUSSION

The first aim of the present study was to investigate whether the 
distribution and severity of tau pathology are sufficient to distin-
guish PSP and CBD, regardless of the morphology of astrocytic tau 
lesions. We used a score of astrocytic tau lesions for both tufted 
astrocytes in PSP and astrocytic plaques in CBD; therefore, the 
morphology of astrocytic tau lesions was not taken into account for 
the clustering. Nevertheless, the two diseases were almost entirely 
separated into two clusters, indicating that besides morphology, dis-
tribution patterns of tau pathology are distinct between the two dis-
eases. This result also indicates that the information about neuronal 
loss and gliosis were not necessary to distinguish the two diseases. 
Using this finding, a second aim of the present study was to develop 
decision tree classifiers to differentiate PSP and CBD using the tau 
pathology	scores	in	select	brain	regions.	As	we	expected	from	the	
heatmap finding, several tau pathology scores were sufficient to dis-
tinguish these diseases.

Although	 the	heatmap	visualised	different	distribution	of	 tau	
pathology between the two diseases and we could observe some 
differential features, the decision tree was helpful to identify the 
parameters that contributed to classifying the two diseases.[22] 
Surprisingly, when only one variable was selected (tau threads in 
the	caudate	nucleus),	 the	 testing	 score	was	0.977.	This	 indicates	
that the score of tau threads in the caudate nucleus is the stron-
gest predictor for diagnosing CBD. The diagnostic criteria of CBD 
stated that “the neuropathologic diagnosis of CBD is based upon 
detection of tau- positive neuronal and glial lesions, in particular 
astrocytic plaques and thread- like processes in grey and white 
matter,	in	a	characteristic	distribution”.[5]	The	results	of	our	study	
propose that the high burden of tau threads in the caudate nucleus 
has the highest value in the differential diagnosis of CBD and PSP, 
followed by the paucity of astrocytic tau lesions in the red nucleus 
in CBD.

F I G U R E  4 Diagnostic	flowchart	for	PSP	and	CBD	based	on	the	decision	tree	classifier.	Values	indicate	semi-	quantitative	tau	pathology	
scores	(0	=	none;	1	=	mild;	2=	moderate;	3	=	severe).	*This	class	indicates	PSP	at	80%	accuracy,	so	also	consider	CBD.	**This	class	indicates	
CBD	at	67%	accuracy,	so	also	consider	PSP.	Abbreviations:	Caudate,	caudate	nucleus;	GP,	globus	pallidus;	MBT,	midbrain	tectum;	NFT,	
neurofibrillary tangle; RN, red nucleus; STN, subthalamic nucleus
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Table 3 shows that the decision tree achieved the best testing 
score	when	the	maximum	depth	was	6;	however,	we	did	not	show	
this decision tree as the main result of this study because it is too 
complicated	for	practical	use.	This	decision	tree	consisted	of	6	lay-
ers	and	16	decision	nodes,	using	the	tau	pathology	scores	from	the	
caudate nucleus, subthalamic nucleus, red nucleus, globus pallidus, 
midbrain tectum, substantia nigra, temporal cortex and motor cor-
tex.	Although	the	testing	score	was	slightly	lower,	we	propose	that	
a decision tree with a depth of 3 is helpful for decision- making for 
pathologic diagnosis of PSP and CBD.

To determine whether this decision tree is useful in decision- 
making, we performed a validation study using ten additional cases. 
Three investigators blindly assessed tau- immunostained slides 
in select brain regions without any clinical or other pathological 

information.	Morphology	of	astrocytic	 tau	 lesions	was	not	consid-
ered; only the semi- quantitative tau scores were used to make a di-
agnosis.	Although	 there	was	some	discrepancy	 in	 scores,	all	 cases	
were correctly diagnosed as either PSP or CBD by all three investi-
gators who have varying experience in diagnostic neuropathology. 
Although	the	size	of	the	validation	set	is	relatively	small,	this	result	
indicates that the decision tree classifier in the present study has 
sufficient accuracy for making a diagnosis of PSP and CBD.

In addition to the main decision tree, as shown in Figure 4, we 
also created two decision trees, which do not include the subtha-
lamic nucleus or caudate nucleus because these brain regions might 
not	be	routinely	sampled	in	some	brain	banks.	As	we	expected,	the	
decision tree without the subthalamic nucleus showed a similar test-
ing score because the most important region, the caudate nucleus, 

TA B L E  4 Validation	study	by	three	investigators

Case ID Reviewer
Caudate: Tau 
threads STN: CB RN: CB RN: Astrocytes MBT: CB

GP:
Tau threads Dx

1 1 3 0 1 CBD

2 3 0 0 CBD

3 3 0 0 CBD

2 1 3 0 1 CBD

2 3 0 1 CBD

3 3 0 2 CBD

3 1 1 3 3 PSP

2 1 3 2 PSP

3 1 3 3 PSP

4 1 2 2 3 PSP

2 1 3 2 PSP

3 2 3 3 PSP

5 1 3 0 1 CBD

2 2 0 3 CBD

3 3 0 0 CBD

6 1 1 3 3 PSP

2 0 3 3 PSP

3 1 3 2 PSP

7 1 1 3 3 PSP

2 1 3 3 PSP

3 1 3 3 PSP

8 1 1 1 1 PSP

2 1 1 1 PSP

3 1 2 1 PSP

9 1 2 0 3 CBD

2 3 1 0 1 CBD

3 3 0 1 CBD

10 1 1 2 3 PSP

2 1 3 2 PSP

3 2 2 1 PSP

Abbreviations:	Caudate,	caudate	nucleus;	CB,	coiled	bodies;	Dx,	pathologic	diagnosis;	GP,	globus	pallidus;	MBT,	midbrain	tectum;	RN,	red	nucleus;	
STN, subthalamic nucleus.
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was included. Unexpectedly, another decision tree, which lacked 
the caudate nucleus, also achieved relatively high scores when the 
maximum depth was two or higher. This finding suggests that even 
without the caudate nucleus, a combination of two or more tau pa-
thology scores, such as the coiled bodies in the midbrain tectum, tau 
threads in the substantia nigra, and coiled bodies in the subthalamic 
nucleus, can achieve significant accuracy in the diagnosis of PSP and 
CBD.

Clinicopathological correlations of each disease are not the main 
focus of this study, but the heatmap implies that the distribution 
and severity of tau pathology is not sufficient to predict a clinical 
diagnosis	of	PSP	or	CBS.	Although	the	pathologic	diagnosis	of	PSP	
and CBD were almost completely divided into different clusters, 
clinical diagnoses (i.e., RS, CBS and others) were not clearly sep-
arated by our clustering analysis. Clinicopathological correlations 
in PSP and CBD need to be addressed in future studies using more 
detailed clinical information, ideally from a longitudinal prospective 
cohort.[28]

Interestingly, when Cluster 2 was divided into four clusters, 
Cluster	2–	2	had	some	distinct	 features.	As	shown	 in	the	heatmap,	
this cluster is characterised by the high burden of tau pathology in 
the temporal cortex, which can be explained, in part, by the high 
frequency	of	concurrent	AD	pathology.[29]	Patients	 in	this	cluster	
were older and were given a clinical diagnosis of RS less frequently 
than	other	clusters.	These	findings	indicate	that	concurrent	AD	can	
be seen in elderly PSP patients, and this co- pathology may modify 
clinical presentations, leading to a clinical diagnosis of CBS or de-
mentia.	Although	it	is	less	obvious,	Cluster	2–	4	is	also	an	interesting	
group. Less severe astrocytic pathology in the globus pallidus, sub-
stantia nigra, subthalamic nucleus and red nucleus is similar to the 
pattern in CBD (Cluster 1). The frequency of clinical diagnosis of CBS 
was nominally higher in this cluster compared to other “typical” PSP 
clusters (Cluster 2– 1 and 2– 3). These findings suggest that the distri-
bution pattern of tau pathology may characterise “subtypes” of PSP 
and	 reflect	 different	 clinical	 presentations.[9,30,31]	 Mimuro	 and	
Yoshida described three pathological subtypes of PSP: typical PSP, 
pallido- nigro- Lyusian type and CBD- like type based on the severity 
of	neurodegeneration	and	the	amount	of	tau	deposition.[9,11]	Our	
heatmap did not reproduce their classification probably because 
our heatmap did not include the severity of neurodegeneration. To 
further discuss the correlations between clinical presentations and 
underlying pathology in each disease, not only tau pathology, but 
neuronal loss and gliosis should be taken into account. In addition, 
other co- pathologies, such as argyrophilic grain disease, Lewy body 
disease and TDP- 43 pathology, may also be included in future stud-
ies.[32- 34]

A	major	limitation	of	this	study	is	the	external	validity	of	the	de-
cision trees. The decision trees were made using the tau pathology 
scores assigned by a single neuropathologist. When other neuropa-
thologists use our decision tree classifiers, inter- rater discrepancy 
of tau pathology scores might be inevitable because the scores 
are assigned semi- quantitatively and not defined by objective 
means. Ideally, tau scores should be made by objective methods, 

including digital imaging analysis and machine learning- based ob-
ject	 detection.[17,19]	 As	 the	 validation	 study	 showed,	 however,	
the decision tree seems robust against some discrepancy of the 
scores	due	to	the	combination	of	multiple	decision	nodes.	Another	
potential limitation is that tau pathology scores were made based 
on immunohistochemistry with CP13 antibody, which is less widely 
used	compared	 to	AT8.	We	believe,	however,	 that	 the	difference	
between	CP13	 and	AT8	 does	 not	 affect	 the	 result	 because	 both	
antibodies	 show	 similar	 staining	 patterns	 in	 PSP	 and	CBD.[35]	 In	
addition,	we	also	compared	CP13-		and	AT8-	stained	slides	using	the	
sections of caudate nucleus in PSP and CBD, which were indistin-
guishable (Figure S1). Therefore, our decision tree classifiers can be 
used	for	AT8-	immunostained	slides.	Finally,	our	decision	tree	classi-
fiers can be used only for the dichotomy of PSP and CBD. In a prac-
tical setting, not only PSP and CBD, but other 4- repeat tauopathies, 
such as globular glial tauopathy and tauopathies due to MAPT muta-
tions,	might	be	raised	in	the	differential	diagnosis.[36,37]	Patients	
with MAPT mutations have an unusual distribution pattern of tau 
pathology;	thus,	they	may	fit	neither	PSP	nor	CBD.[38]	Future	stud-
ies need to include these diseases and concurrent pathologies to 
develop more practical and versatile machine learning- based diag-
nostic algorithms.

Conversely, a strength of this study is the large sample size of 
both	PSP	and	CBD	cases.	The	Mayo	Clinic	brain	bank	in	Florida	
has a focus on a wide range of neurodegenerative disorders, as 
well as normal and pathological aging. PSP and CBD cases in-
clude not only advanced disease, but also preclinical and early- 
stages. The decision tree classifiers were made using cases with 
a wide range of severity. Thus, we think our decision tree clas-
sifiers can be applied more widely by investigators using their 
case material.

In conclusion, the present study indicates that the semi- 
quantitative scores of tau pathology in select brain regions are suf-
ficient to distinguish PSP and CBD, regardless of the morphology 
of astrocytic tau lesions. The burden of tau- positive tau threads in 
the caudate nucleus is the most decisive predictive factor for the 
diagnosis of CBD. The diagnostic flowchart created by a machine 
learning- based decision tree classifier can be readily used by neuro-
pathologists, which may assist decision- making in the neuropatho-
logic diagnosis of PSP and CBD.
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