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L’uboš Danišovič 3,5 and Mária Csöbönyeiová 2,*

����������
�������

Citation: Hollý, D.; Klein, M.;

Mazreku, M.; Zamborský, R.; Polák,
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Abstract: Oral and craniofacial bone defects caused by congenital disease or trauma are widespread.
In the case of severe alveolar bone defect, autologous bone grafting has been considered a “gold
standard”; however, the procedure has several disadvantages, including limited supply, resorption,
donor site morbidity, deformity, infection, and bone graft rejection. In the last few decades, bone tissue
engineering combined with stem cell-based therapy may represent a possible alternative to current
bone augmentation techniques. The number of studies investigating different cell-based bone tissue
engineering methods to reconstruct alveolar bone damage is rapidly rising. As an interdisciplinary
field, bone tissue engineering combines the use of osteogenic cells (stem cells/progenitor cells),
bioactive molecules, and biocompatible scaffolds, whereas stem cells play a pivotal role. Therefore,
our work highlights the osteogenic potential of various dental tissue-derived stem cells and induced
pluripotent stem cells (iPSCs), the progress in differentiation techniques of iPSCs into osteoprogenitor
cells, and the efforts that have been made to fabricate the most suitable and biocompatible scaffold
material with osteoinductive properties for successful bone graft generation. Moreover, we discuss
the application of stem cell-derived exosomes as a compelling new form of “stem-cell free” therapy.

Keywords: alveolar bone regeneration; stem cell-based therapy; tissue engineering; exosomes

1. Introduction

The restoration of severe periodontal defects, such as damage to the alveolar bone
or soft periodontal tissue, is still a complex and challenging field for clinicians. There are
various causes of bone defects including congenital anomalies, medications, local inflam-
mation, periodontitis, traumatic injuries, malignancies, and dental surgical interventions.
The traditional therapy to overcome bone atrophy relies on the use of more or less inva-
sive techniques. Autologous alveolar bone grafts represent “the gold standard” due to
their osteogenic, osteoinductive, and osteoconductive properties. Therefore, they are the
first-choice option in the reconstruction of large bone defects [1]. However, the use of
autografts is usually associated with donor site morbidity, graft failure, and immunological
rejection. A limited source of graft tissue is also a problem that needs to be addressed.
Moreover, this procedure is painful and often results in prolonged hospitalization. There
are some other bone tissue substitutes, such as allografts and xenografts; however, their
disadvantages include the possibility of immune rejection and pathogen transmission from
the donor to the host. The application of synthetic grafts is also limited because of their
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non-optimal integration with native tissue, which can often lead to graft failure [2–4]. As
of today, an ideal technique with the ability to completely regenerate harmed bone tissue
has not been found.

A promising alternative in reconstructing alveolar bone tissue is tissue engineering
techniques and stem cell-based regenerative therapies, where the key factor is the most
suitable combination of cells, scaffolds, and signaling molecules [5] (Figure 1).
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There are already several dentistry regenerative approaches based on the most com-
monly used stem cell type: mesenchymal stem cells/stromal cells (MSCs), which have been
applied in implantology and periodontology. MSCs, with their multilineage differentiation
potential (differentiation into osteocytes, chondrocytes, adipocytes, muscle cells, and even
neurocytes) are widely available from various tissues sources. The MSCs used in oral and
maxillofacial regions are usually harvested from bone marrow, adipose tissue, and dental
tissue [6–8]. However, their cultivation and expansion are time-consuming, resulting in a
senescent cell population. Other cell lineages, which has been used in in vitro and in vivo
animal studies are embryonal stem cells (ESCs) and induced pluripotent stem cells (iPSCs).
Nevertheless, the use of ESCs is related to serious ethical concerns involving the controver-
sial in vitro human blastocyst destruction. On the other hand, iPSC research promises great
potential for dental tissue regeneration thanks to its similar characteristics to ESCs but with
no ethical issues. Precisely, iPSCs can be generated from several adult somatic cells specific
for the concrete patient. Despite the many advantages of iPSC technology, there are still
several safety challenges, such as teratoma formation or malignant transformation, which
have to be solved before their clinical application [9,10].

2. Osteogenic Potential of Dental Tissue-Derived MSCs

The regenerative process of alveolar bone reconstruction is based on ossification dur-
ing embryonal development, where the osteoblasts differentiated from MSCs produce
osteoid, an unmineralized bone matrix, with bone mineralization following. Moreover,
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MSCs with their paracrine secretion of cytokines and growth factors are also able to en-
hance bone regeneration indirectly. Released factors, such as tumor necrosis factor-α
(TNF-α), platelet-derived growth factor (PDGF), interleukin-1 (IL-1), and IL-6, can initiate
further activation of MSCs and their recruitment in regenerated sites [11,12]. Therefore,
successful bone tissue engineering should involve a combination of abundant MSCs/ os-
teoprogenitor cells, a suitable mixture of biofactors to induce osteogenic differentiation,
and scaffolds based on biomaterials. For dental tissue regeneration, the most eligible are
MSCs derived from various dental sources, such as dental pulp—dental pulp stem cells
(DPSCs) [13]; periodontal ligament—periodontal ligament stem cells (PDLSCs) [14,15];
gingiva—gingival mesenchymal stem cells (GMSCs) [16,17]; dental follicle or bilayered Her-
twig’s epithelial root sheath—dental follicle stem cells (DFSCs) [18]; subepithelial palatal
soft tissue—palatal-derived stem cells (paldSCs) [19,20]; periapical cyst tissue—human
periapical cyst mesenchymal stem cells (hPCy-MSCs) [21,22]; and stem cells from exfoliated
deciduous teeth (SHED cells) and from human root apical papilla (SCAP) [23] (Table 1).

Dental-derived MSCs display the same characteristics as bone marrow-derived MSCs
(BM-MSCs); furthermore, they possess immunomodulatory and anti-inflammatory advan-
tages in the local dental tissue environment [24].

The regenerative activity of MSCs following transplantation can be performed in
several ways. It can be either by the direct engraftment and differentiation of MSCs into
newly formed tissue or by immunomodulatory regulation of direct or indirect secretory
signaling [25]. Bajestan et al. (2017) investigated the effectiveness of stem cell therapy for
reconstructing alveolar cleft and trauma defects in adults. In a randomized controlled
clinical trial, eighteen patients whose therapy was based on conventional autogenous block
grafts or transplantation of autologous BM-MSCs processed by ixmyelocel-t were involved.
Four months after transplantation, the grafting sites were re-entered to evaluate the implant
stability, and in six months, the successfulness of the regenerative process was analyzed.
In general, the results showed the capability of stem cell therapy to safely induce bone
regeneration, nevertheless, with limited capacity in case of large alveolar defects [26].

DPSCs as a subpopulation of MSCs give rise to odontoblasts during tooth devel-
opment. These cell populations have been the most studied dental stem cells for bone
regeneration. The majority of studies reported the osteoinductive potential of DPSCs
in vitro and in vivo [7,27,28]. Moreover, d’Aquino et al. (2007) found out for the first time
that 30% of osteoblasts differentiated from DPSCs expressed not only osteocalcin but also
specific antigens for endothelial cells, such as flk-1, CD54, von-Willebrand factor, CD31
(PECAM-1), and angiotensin-converting enzyme. Therefore, the authors transplanted DP-
SCs placed on bone chips into an in vivo model of immunocompromised rats. Interestingly,
after 60 days, the formation of vascularized bone tissue was observed similar to adult bone,
making them an ideal candidate for bone tissue replacement [29]. Tanikawa et al. (2020)
performed a unique transplantation of deciduous DPSCs associated with hydroxyapatite-
collagen sponges into the unilateral alveolar bone defect of six patients aged 8–12. After
six months, during the post-operative evaluation, bone healing with no ectopic bone
formation and graft loss was observed in all patients. However, the success of this first
clinical trial using deciduous DPSCs was hindered by a small group of participants [30].
Paduano et al., 2021 demonstrated for the first time that the osteogenic capacity of DPSCs
and DFSCs can be increased by their dedifferentiation into stem cell-like state (Dediff-
DPSCs) under physiological conditions. Comparing the osteogenic potential between
redifferentiated Dediff-DPSCs/DFSCs and osteogenic differentiated DPSCs/DFSCs re-
vealed elevated expressions of Runx-2, osteocalcin, and osteonectin in redifferentiated
DPSCs. Moreover, redifferentiated DPSCs/DFSCs exhibited higher formation of calcium
nodules. Therefore, this study offers a new dedifferentiation approach to enhance the
osteogenic potential of DPSCs/DFSCs without gene manipulation [31].

The osteogenic capacity of paldSCs in alveolar bone regeneration was proved by
Grimm et al. (2014) in their clinical study with 30 patients. The authors combined allogeneic
bone blocks with human adult paldSCs and implanted them into the alveolar bone defect.
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According to the performed analyses, the osteoinductive effect of paldSCs was manifested
by improvement of vertical alveolar bone augmentation [19].

The DFSCs are tooth germ cells originating from the neural crest, which can be isolated
from wisdom teeth. Due to their unique neuroectodermal origin, the DFSCs are direct
precursors of periodontal tissues, such as periodontal ligaments, cementum, alveolar bone,
as well as salivary gland cells [32]. Most in vitro studies proved the osteogenic properties
of DFSCs in an appropriate osteoinductive medium [33–35]. However, there are only a
few in vivo studies using murine or porcine models. Honda et al. (2011) used pellets with
DFSCs to repair critical-sized calvarian defects in immunodeficient rats and observed bone
formation similar to intramembranous ossification. The results of the immunohistological
analyses showed the formation of a new bone matrix surrounded by osteoblasts [36].

GMSCs, quite novel postnatal stem cells, have attracted more attention during the
past few years, thanks to their easy isolation, high proliferation capacity, and stable pheno-
type. Surprisingly, they can maintain telomerase activity in a prolonged culture with no
tumorigenesis. According to the literature, GMSCs have high potential in the regeneration
of alveolar bone defects, periodontium, oral neoplasms, and peri-implantitis [37–39]. To
date, several studies have been published concerning the use of GMSCs in dental tissue re-
generation. An interesting study was authored by Sun et al. (2019), who had systematically
transplanted human GMSCs into a C57BL/6J mice model of severe periodontitis via the
tail vein to observe their possible interaction with periodontal tissue. GFP-stained GMSCs
were inserted in the second maxillary molar by a silk thread ligature. Four weeks post-
transplantation, the histopathological analysis revealed significantly reduced alveolar bone
loss, and the immunohistochemical staining detected GFP+ fibroblast-like cells and GFP+
osteoblasts within the area of newly formed alveolar bone [40]. In another recent study,
Kandalam et al. (2021) investigated the bone regenerative capacity of pre-differentiated
GMSCs combined with self-assembling hydrogel scaffold PuraMatrix™ and bone mor-
phogenic protein (BMP2). The maxillary alveolar bone defect was surgically created in
athymic rodent models and subsequently filled with GMSCs, which were pre-cultivated
in an osteogenic medium for one week. The outcome was evaluated at 4- and 8-weeks
post-implantation using microcomputed tomography and histological methods. In compar-
ison with the control group, bone regeneration was significantly enhanced in groups who
received pre-differentiated GMSCs treated with BMP2 and seeded on PuraMatrix™ [41].

Another promising stem cell derived from dental tissue is PDLSCs. A periodontal
ligament is specialized connective tissue responsible for the regeneration of adjacent
periodontal structures. PDLSCs are multipotent cells with high proliferation activity
and the capability to differentiate into osteoblasts, cementoblasts, chondroblasts, and
adipocytes [42]. Therefore, PDLSCs have also been examined as a possible source for
bone regeneration. An in vivo study by Tour et al. (2012) demonstrated the ability of
allogenic PDLSCs to form alveolar bone, periodontal ligament, and cementum-like tissue
to repair periodontal defects caused by periodontitis [43]. More recently, Iwata et al. (2018)
conducted a single-institute clinical study in which the authors created autologous three-
layered PDLSC sheets combined with β-tricalcium phosphate bone fillers and transplanted
them into the bony defects of 10 patients suffering from chronic periodontitis. The clinical
outcomes were evaluated at 3 and 6 months after transplantation. A significant healing
process of deep periodontal defects was detected in all cases, including an increase in
radiographic bone height and reduction in periodontal probing depth without severe
adverse effects. However, the main constraint of this study was the small number of
patients. Nevertheless, the “Cell sheet engineering technology” developed by the authors is
a promising approach that could be implemented in routine tissue regenerative techniques
in dentistry [44].

A relatively newly discovered population of oral stem cells easily collected from
surgically removed periapical cysts are hPCy-MSCs, which exhibit similar characteristics
to other dental tissue-derived MSCs [45]. Tatullo et al. (2015) drew attention to the
advantages of hPCy-MSCs in bone regeneration over the use of DPSCs. According to the
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qRT-PCR analyses performed, the hPCy-MSCs displayed higher potential to differentiate
into osteoblast-like cells, whereas DPSCs tended to give rise to odontoblasts [46]. In
the follow-up study, Tatullo et al. (2019) seeded hPCy-MSCs on PLA-based mineral-
doped scaffolds to observe their proliferation, viability, and osteogenic/odontogenic gene
expression. In all of the investigated parameters, the hPCy-MSCs displayed excellent
results involving a high expression of odontogenic/osteogenic marker DMP-1 [47].

There are also several studies that compared bone healing capacities between various
types of dental stem cells. For example, Nakajima et al. (2018) examined SHED cells’ os-
teoinductive potential and mineralization abilities and compared them with human DPSCs
and human BM-MSCs. The stem cells seeded on a poly(lactic-co-glycolic acid) barrier
membrane were transplanted to an artificial bone defect in the calvaria of an immunod-
eficient mouse. The histological analyses performed after 12 weeks post-transplantation
revealed that SHED formed the largest osteoid area and synthesized more collagen fibers
compared with other stem cell types [48]. Furthermore, according to comprehensive meta-
analyses of preclinical studies focused on the therapeutic potential of five cell lineages
(PDLSCs, BMSCs, DPSCs, GMSCs, and ADSCs) in periodontal tissue regeneration, PDLSCs
and BMSCs were the most effective in new alveolar bone, cementum, and periodontal
ligament formation [49]. Finally, in the most recent study, Qu et al. (2021) compared
the osteogenic potential of four dental-derived MSCs, including DPSCs, PDLSCs, DFSCs,
and alveolar bone-derived MSCs (ABMMSCs). Based on the analyses performed, such
as osteogenic gene expression and alkaline phosphatase activity staining, ABMMSCs and
PDLSCs exhibited higher osteogenic potential in alveolar bone regeneration [28].

Nonetheless, despite the abovementioned auspicious studies, there is undoubtedly
a demand for future investigations focused on a better understanding of the biology of
dental tissue-derived MSCs.

Table 1. Regenerative capacity of various dental tissue-derived mesenchymal stem cells (MSCs).

Type of Dental
Tissue-Derived MSCs

In Vivo
Models/Human Subjects

Site of
Transplantation Outcome References

DPSCs

Immunocompromised mice Dorsal surface
Generation of
dentine/pulp-
like structure

[27]

Immunocompromised rats Subcutaneous site of
dorsal surface

Generation of bone tissue
with an integral

blood supply
[29]

Immunocompromised mice Subcutaneous site of
dorsal surface

Maintenance of MSC
characteristics; higher

stability compared with
PDLSCs in vivo

[7]

6 patients aged 8 to
12 years old

Unilateral alveolar
bone defect

Alveolar bone healing with
no ectopic bone formation [30]

paldSCs 30 patients Alveolar bone defect Improvement in vertical
bone augmentation [19]

DFSCs Immunocompromised rats Critical-sized
calvarial defects New bone formation [35]

GMSCs

C57BL/6J mice Second maxillary molar
Reduction in alveolar bone

loss and new
bone formation

[39]

Athymic rodent models Maxillary alveolar
bone defect

Enhanced bone
regeneration [40]
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Table 1. Cont.

Type of Dental
Tissue-Derived MSCs

In Vivo
Models/Human Subjects

Site of
Transplantation Outcome References

PDLSCs
Immunocompromised rats Calvarial

critical-sized defect
Improvement of

bone repair [42]

10 patients with
chronic periodontitis

Root surface of
defect site

Healing of deep
periodontal defects [43]

SHED cells Immunocompromised mice Calvarial artificial
bone defect Formation of osteoid [47]

SCAP Minipig model
of periodontitis

Local injection in the
site of defects

Increased alveolar bone
and periodontal

tissue regeneration
[23]

3. Osteogenic Potential of iPSCs in Dental Tissue Regeneration

iPSCs represent a significant breakthrough in the field of regenerative medicine as well
as a rising option for cell-based therapy in dentistry involving alveolar bone regeneration.
iPSCs are derived from patient’s somatic cells preventing immune rejection and can differ-
entiate into several different cell lineages. Thanks to the abovementioned advantages, iPSC
technology may be implemented as an alternative to autologous grafting, by which the
patient-specific somatic cells are reprogramed into MSCs/osteoprogenitor cells, and seeded
on an appropriate scaffold, and treated with bioactive molecules [50]. It is assumed that, in
the case of dental tissue regeneration, the generation of iPSCs from dental tissue may be
more beneficial than other tissue sources because of probable epigenetic memory mainte-
nance of the source tissue [9,51]. In comparison with dental tissue-derived stem cells, dental
tissue-derived iPSCs are more proliferative in vitro and its regenerative ability can be more
easily reproduced [52]. Numerous studies have reported the successful generation of iPSCs
from various types of dental tissues, such as exfoliated deciduous teeth [53–55], extracted
wisdom teeth [56], oral mucosa fibroblasts [57–59], gingival tissue [60–64], periodontal
ligament [65], and the dental pulp [66–68].

It has been shown that iPSCs could be easily differentiated into MSCs (iPSC-MSCs)
with conspicuous benefits over direct differentiation of iPSCs into osteoblasts, involving
reduced risk of tumor formation and higher predisposition of iPSC-MSCs to osteogenic
differentiation. iPSC-MSCs retain almost the same osteogenic potential as MSCs derived
from other sources, such as bone marrow, umbilical cord, adipose tissue, etc. [69]. Moreover,
obtaining iPSC-MSCs from dental tissue is a much less invasive and cost-effective method
requiring fewer steps during cultivation. Several studies showed that iPSC-MSCs could
promote the repair of periodontal defects by increasing bone tissue regeneration and
mineralization of newly formed bone [70–73].

4. Osteogenic Differentiation of iPSCs

For the osteogenic differentiation of iPSCs, several protocols based on differentia-
tion protocols for MSCs have been developed. A more detailed insight into osteogenic
differentiation strategies is discussed in our previous work [74]. In general, the gener-
ation of osteoprogenitor cells from iPSCs can be achieved by the direct differentiation
of iPSCs through embryoid body (EB) formation into bone progenitors or through the
differentiation of iPSCs into iPSC-MSCs followed by their final osteogenic differentia-
tion [9]. Apart from traditional methods, Zhong et al. (2019) highlighted the role of
conditioned media obtained from osteoblast cultures in inducing the differentiation of
iPSC-MSCs into osteogenic lineages [69]. Furthermore, the osteogenic differentiation pro-
cess involves the application of osteoinductive cultivation media with bioactive molecules
such as ascorbic acid, b-glycerophosphate, dexamethasone, bone morphogenetic proteins
(BMPs), insulin-like growth factor 1 (IGF-1), fibroblast growth factor -2 (FGF-2) retinoic
acid, and vitamin D3 [75–77].
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BMPs (BMP-2 and BMP-6) play main roles in the differentiation process thanks to
their ability to enhance the proliferation and differentiation of MSCs or osteoprogenitor
cells by activating the expression of genes involved in bone formation [72,78,79]. The first
evidence of antibody-mediated osseous regeneration (AMOR) using anti-BMP2 antibodies
(Abs) for the osteogenic differentiation of iPSC-MSCs was reported by Wu et al. (2018).
This concept is based on capturing endogenous osteogenic BMPs in situ; therefore, it bears
several advantages over direct exogenous BMP2 administration, such as higher safety,
better efficacy, and faster endogenous regeneration [80]. More recently, Song et al. (2021)
investigated the osteoinductive effect of the synthetic inorganic molecule SB431542, which
enhances the differentiation of iPSCs into MSCs followed by further activation of BMP sig-
naling of the TGF superfamily. This study demonstrated that the combination of SB431542
with calcium phosphate cement scaffold greatly enhanced proliferation, osteogenic dif-
ferentiation, and bone mineral synthesis of iPSC-MSCs. More than that, the authors did
not observe any cytotoxic effect of SB431542, making this compound a possible alternative
to the quite expensive BMP-2. Nonetheless, there is a necessity for further research on
in vivo models [81].

A combination of small molecules as osteogenic inducers incorporated into a xeno-free
(E8/VTN) strategy was authored by Zujur et al. (2020). iPSCs were gradually cultivated in
media with different types of small molecules, including CHIR99021, cyclopamine, heliox-
anthin derivative TH, smoothened agonist SAG, FGF2, and additional supplements. After
21 days of cultivation, mature osteoblasts were detected. Furthermore, the osteoinductive
effect of this protocol was refined by its combination with a 3D scaffold to establish a
xeno-free 3D osteogenic system [82].

Another recent study published by Li et al. (2021) evaluated the effect of distal-less
homeobox 3 (DLX3) on the proliferation and osteogenic differentiation of iPSC-MSCs.
iPSC-MSCs were transfected with DLX3 overexpression plasmids, and the expression of
osteogenesis-related markers and proteins was analyzed and compared with the control
group. After seven days post-transfection, the RT-qPCR results showed an evident increase
in alkaline phosphatase (Alp), osteopontin, osteocalcin, and collagen type 1 (Col-1) expres-
sion. Besides that, Alp staining and mineralized nodule counting revealed a significantly
higher number of mineralized nodules in iPSC-MSC-DLX3 over the control group. Taken
together, this study demonstrated the positive effect of DLX3 on osteogenic differentiation;
however, the exact mechanisms of its action have not been fully understood yet [83]. An-
other recently found enhancer of osteogenic differentiation is menaquinone-7 (MK-7), in
which a positive effect was proven on iPSC-MSCs, exhibiting a notable increase in Runx-2
expression, Alp activity, and collagen deposition [84].

In summary, the osteogenic induction of iPSCs is a complex process. Its success
depends on the origin of iPSCs, reprogramming method, type of scaffold, differentiation
method, and composition of cultivation media. On account of the mentioned criteria, more
research has yet to be conducted to find an ideal way to differentiate iPSCs into a safe and
viable osteogenic cell population.

5. Scaffolds Suitable for Alveolar Bone Regeneration

The fundamental component of bone tissue engineering, which significantly improves
available treatment options, is the establishment of 3D stem cell culture on a “cell-friendly”
biodegradable scaffold enriched by bone-forming factors. Nowadays, several types of
stem cells (MSCs/iPSCs/bone progenitor cells) are already being used in combination
with biomaterials that guide them in osteogenic differentiation, resulting in final bone
graft generation.

The composition of a scaffold material is critical for proper bone tissue regeneration;
thus, it needs to meet the following criteria: appropriate ability to retain cells, biocompati-
bility, safety, non-toxicity, osteoinduction, osteoconduction, and biodegradation. In other
words, the most suitable material should be osteoinductive, should hold its content placed
at the site of the bone defect, and should break down safely without any toxicity. Moreover,
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the scaffold must be shapable into different forms with optimal porosity to fill the bone
defect. Some materials with the abovementioned properties include the combinations of
bioceramics (hydroxyapatite, calcium-phosphates, bioactive glasses, and calcium sulfate),
natural polymers (collagen, coralline, chitosan, pectin, silk, hyaluronic acid, and alginate),
and synthetic polymers (polylactic acid (PLA), polyglycolic acid (PGA), polylactic-co-
glycolic acid (PLGA), polyamide polycaprolactone (PCL), and decellularized extracellular
matrix (dECM)) [4,85,86]. Equally important is the accurate fabrication of the scaffold,
which can now be easily achieved through novel 3D bioprinting technologies. Moreover,
the combination of 3D-bioprinted scaffolds with cell-based therapy allows biocompatible
materials and cells to be placed in the exact position in 3D space and enables the precise
delivery of bioactive molecules with osteoinductive effects, such as BMP4, FGF2, IGF1,
and PDGF [87].

The following paragraph mentions several interesting studies concerning the gener-
ation of novel scaffold materials combined with stem cells to reach maximal osteogenic
properties suitable for alveolar bone regeneration (Table 2).

Duan et al. (2011) investigated for the first time the benefits of iPSCs and enamel
matrix derivatives (EMDs) in periodontal tissue regeneration. First, the RT-PCR analyses
showed that the combination of apatite-coated silk scaffolds, EMD gel, and iPSCs signifi-
cantly increased the mRNA expression of Runx-2, which is the main transcription factor of
osteogenic differentiation promoting the differentiation of MSCs into preosteoblasts. Sec-
ond, the iPSCs combined with EMDs were transplanted into the periodontal fenestration
defect of nude mice models and examined 24 days post-surgery. According to histological
and micro-CT analyses, a new bone tissue, which filled almost the whole area of bone
injury, was observed [70].

A scaffold with high osteoinductive properties is macroporous calcium phosphate
cement (CPC), which is a nano-mineral bone cement with load-bearing ability, bioactivity,
and better affinity for cell seeding. Liu et al. (2013) used a CPC scaffold biofunctionalized
with Arg–Gly–Asp (RGD-CPC), in which BMP2 gene-modified iPSC-MSCs were seeded.
The RT-PCR analyses and histological analyses performed on days 14 and 21 showed higher
efficacy of osteogenic differentiation followed by bone matrix mineralization compared
with the control group, indicating that the use of RGD-CPC material in bone engineering
is beneficial [88].

The research group of Lin et al. (2019) reviewed different combinations of seeded
cells (bi-culture and tri-culture) on macroporous RGD-CPC scaffolds. According to the
investigation, the seeding of the tri-culture composed of iPSC-MSCs, endothelial cells,
and pericytes accomplished increased pre-vascularization of scaffolds in vitro and new
bone formation accompanied by vascularization in vivo compared with a monoculture [73].
However, according to another review, using small animal models such as rats or mice is
not sufficient for in vivo experiments; therefore, to prove such a high osteoinductive effect
of this construct, further investigation of osteogenesis and angiogenesis on larger animals
is inevitable [89].

It is important to mention the significant role of bioactive glasses (BGs) in hard
tissue reconstruction such as bone and teeth. BGs have an outstanding ability to form
direct bonds to bone, and their ionic products dissolved in body fluid stimulate osteoblast
proliferation and angiogenesis. In addition, a combination of BGs with trace elements,
such as silver, lithium, copper, cobalt, and zinc enhances their positive effect on bone
regeneration [90,91]. For instance, 3D copper-containing mesoporous BGs are considered
multifunctional biomaterials used in bone reconstruction [92]. Zhang et al. (2018), in their
recent study, constructed novel 3D-printed BG block/chitosan nanoparticle composites
loaded with BM-MSCs to study their osteogenic activity in bone defect reconstruction.
The tissue-engineered bone composites were implanted into alveolar defects of rhesus
monkeys. After 12 weeks post-transplantation, various analyses revealed the formation
of new alveolar bone tissue, which was remarkably close to the normal bone in mass,
structure, and density [93].
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To find suitable scaffold materials for alveolar bone regeneration, Trivedi et al. (2020)
examined the abilities of hydroxyapatite-collagen (HA-Col) scaffolds to enhance prolifera-
tion and osteogenic differentiation of DPSCs. According to the results of a sulforhodamine
colorimetric assay, an alkaline phosphatase assay, and scanning electron microscopy (SEM),
the HA-Col scaffold supported DPSC attachment and created a microenvironment that
augmented the differentiation of DPSCs into osteogenic cells. Therefore, the researchers
suggested that the HA-Col scaffold may represent an optimal material for alveolar bone
defect reconstruction [94].

Three-dimensional collagen matrices have also proved to be a reliable scaffold ma-
terial for rebuilding lost tissue within alveolar bone defects. A short time ago, the bene-
ficial effect of such scaffold constructs in future periodontal surgery was investigated by
Lin et al. (2021). The authors focused on the adhesive, migratory, proliferative, and differ-
entiation potentials of MSCs and pre-osteoblastic cells seeded on four 3D collagen-based
matrices: dried acellular dermal matrix, hydrated acellular dermal matrix, non-crosslinked
collagen matrix, and crosslinked collagen matrix. As expected, the results showed magni-
fied motility of the osteoprogenitor cells in all matrices, though the best outcomes in terms
of growth and osteogenic differentiation of progenitor cells was observed in a hydrated
acellular dermal matrix and crosslinked collagen matrix, demonstrated by the significant
expression of osteogenic differentiation markers (Runx-2, Alpl, Dlx5, Ibsp, Bglap2, and
Phex). In addition, 3D collagen scaffolds were pre-coated with EMD and recombinant
BMP-2 to enhance osteogenic differentiation. Further steps should focus on the in vivo
investigation of this indisputable positive outcome [95].

A new approach was published by Chien et al. (2018), who developed a 3D iPSC-BMP-
6-hydrogel complex with thermosensitive properties and injected it into murine models of
maxillary-molar defects. Micro-CT analyses performed within six weeks post-implantation
revealed an extensive amount of newly formed bone tissue within periodontal defects,
proving the high osteogenic capability of iPSCs combined with BMP-6 [72].

Graphene-based nanomaterials also belong to the increasingly used types of scaffold
materials in dental tissue engineering. Concerning osteogenesis, it was found out that
graphene-coated scaffolds support the proliferation of MSCs and enhance osteogenic
differentiation [96]. Park et al. (2021) came up with an innovative approach using the
3D bioprinting method for PCL scaffold fabrication. Such 3D-printed scaffolds were
additionally treated with oxygen plasma and coated with graphene oxide (GO). The
authors decided to use GO because of its osteoinductive properties and hydrophilicity
since the PCL itself possesses strong hydrophobicity impeding cellular adherence. The
treatment with oxygen plasma was performed to further improve the coating efficacy.
The cell cultures seeded on scaffolds were PDLSCs, which have favorable capabilities to
induce the repair of alveolar bone defects. The results from various analyses focused on
osteoinductivity, and osteogenic differentiation proved the great potential of GO-coated
3D-printed PCL scaffolds for alveolar bone regeneration [97].

Table 2. Selection of novel studies using innovative biomaterials combined with stem cells for bone tissue engineering.

Scaffold Material Seeded Cells Outcome References

Apatite-coated silk scaffolds +
EMD gel iPSCs Significant expression of Runx2; new

bone tissue formation in vivo [70]

RGD-CPC iPSC-MSCs
Higher efficacy of osteogenic

differentiation and bone
matrix mineralization

[88]

RGD-CPC iPSC-MSCs; + endothelial
cells + pericytes

Increased scaffold pre-vascularization
in vitro; new bone formation and

vascularization in vivo
[73]
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Table 2. Cont.

Scaffold Material Seeded Cells Outcome References

3D-printed BG block/chitosan
nanoparticles composites BM-MSCs New alveolar bone tissue formation

in vivo [93]

HA-Col DPSCs
Supported attachment of DPSCs and
formation of microenvironment for
osteogenic differentiation in vitro

[94]

3D collagen-based matrices +
EDM + BMP-2 MSCs

Significant expression of osteogenic
markers; enhanced osteogenic

differentiation in vitro
[95]

3D BMP-6-hydrogel complex iPSCs new bone tissue formation in vivo [72]

Graphene oxide-coated
3D-printed PCL scaffold PDLSCs Enhanced osteoinductivity and

osteogenic differentiation in vitro [97]

6. Extracellular Vesicles—New Therapeutic Agents in Bone Regeneration

It is well known that extracellular vesicles (EV) such as exosomes and microvesicles
are key paracrine effectors that participate in maintaining cell or tissue homeostasis through
cell-to-cell communication. Exosomes—nanosized (30–150 nm) membrane-bound EVs—
are secreted into the extracellular fluid by most cells through fusion with the cytoplasmic
membrane; afterwards, to deliver their content to a target cell, they bind to its surface
directly or via specific ligands [98]. The cargo carried by exosomes influences crucial
cellular processes of targeted cells, including apoptosis, proliferation, migration, and
specific differentiation. Concretely, exosomes contain proteins, lipids, mRNA, miRNAs,
and lncRNAs, while the most abundant components are miRNAs, which regulate gene
expression of target cells. It was further demonstrated that the miRNA content is highly
specific to the donor cell type and cell conditions. Importantly, it was found out that miR-
21 promotes angiogenesis both in vivo and in vitro. Some of the most common proteins
include a group of scaffolding membrane proteins, including CD63, CD81, and CD9, which
serve as surface-specific markers [99–101]. The standard method for exosome isolation is
differential ultracentrifugation, which is usually performed in conjunction with iodixanol
or sucrose cushions to reach higher purity. Other methods for exosome purification are
immunoaffinity chromatography or size exclusion chromatography [98,102].

In the field of dentistry, the MSCs derived from oral tissue represent the most favorable
cell type for exosome harvesting. Thanks to the high content of bioactive molecules, exo-
somes display similar activity to MSCs; moreover, they reduce the inherent safety risk, thus
representing a cell-free alternative in bone tissue engineering and regeneration [103,104].
Furthermore, the therapeutic use of exosomes eliminates the risk of tumor formation be-
cause they do not mutate, do not duplicate, and cannot initiate metastasis. Recently, it
was demonstrated that their immunosuppressive, immunomodulatory, and regenerative
properties could be further increased by preconditioning MSCs [105].

The osteoinductive influence of exosomes derived from MSCs (MSC-Exos) has been
published in several studies, while in most of them, the transplantation of MSC-Exos
enhanced osteogenesis, angiogenesis, and bone regeneration [100,101,106–111]. Similarly,
with the description of iPSCs, protocols focused on bone regeneration based on exosomes
obtained from iPSCs (iPSC-Exos) have taken the stage [112–114] (Table 3).
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Table 3. MSC-/induced pluripotent stem cell (iPSC)-derived exosomes (Exos) in bone regeneration.

Exosome Source Isolation Method Outcome References

BM-MSCs Ultracentrifugation of
BM-MSC-conditioned media

MSC-Exos facilitated femur fracture
healing in mice [105]

iPSC-MSCs Ultracentrifugation of
iPSC-MSC-conditioned media

iPSC-MSC-Exos efficaciously
stimulated bone regeneration and

angiogenesis in critical-sized calvarial
defects in rats

[111]

iPSC-MSCs Ultracentrifugation of
iPSC-MSC-conditioned media

iPSC-MSC-Exos significantly
prevented osteonecrosis and

increased microvessel density in
femoral head

[113]

ADSCs Ultracentrifugation of
ADSC-conditioned media

ADSC-Exos increased bone formation
in critical-sized mice calvarial defects [107]

Umbilical MSCs treated under
hypoxic condition

Ultracentrifugation of media with
sucrose/D2O cushion conjunction

Hypo-exosomes promoted femoral
fracture healing by transferring

miR-126 in mice
[99]

BM-MSCs Ultracentrifugation of
BM-MSC-conditioned media

Osteogenesis, angiogenesis, and bone
healing in a fracture model of rat

femoral nonunion
[107]

hDPSCs Ultracentrifugation of
hDPSC-conditioned media

hDPSC-Exos facilitated osteogenic
differentiation of BM-MSCs; mice

calvarial defect repair by hDPSC-Exo
loaded constructs

[108]

BM-MSCs Ultracentrifugation of
BM-MSC-conditioned media

MSC-Exos promoted angiogenesis
and osteogenesis in vitro; restoration

of bone formation and mechanical
quality in vivo

[109]

Umbilical MSCs Ultracentrifugation of umbilical
MSC-conditioned media

MSC-Exos seeded on 3D hydrogel
scaffold promoted the repair of

cranial defects in rats
[100]

It is necessary to point out that one of the crucial components for the successful out-
come of exosome-derived bone regeneration is the selection of proper carrier material to
load exosomes and to release them in the target cell site of injury. It is assumed that hydro-
gels could meet these criteria considering their ability to stabilize and retain exosomes while
maintaining the stability of exosomal cargo [115]. The task of constructing an “exosome-
friendly” material was accomplished by Zhang et al. (2021), who encapsulated MSC-Exos
in hyaluronic acid hydrogel and incorporated them with nanohydroxyapatite/poly-ε-
caprolactone (nHP) 3D-printed scaffolds. In vitro as well as in vivo analyses of this com-
posite revealed accelerated osteogenesis and angiogenesis with the ability to repair large
cranial bone defects in rats [101].

All in all, according to recent studies, the role of exosomes in bone tissue regeneration
is indisputable, offering a cell-free alternative to conventional strategies. However, the use
of “Exo-therapy” in a clinical setting is still restricted due to the lack of generally accepted
procedures for their isolation, separation, delivery, storage, and standardization of the most
favorable therapeutic dose.

7. Conclusions and Future Perspectives

Bone tissue engineering techniques together with cell-based therapy have considerably
progressed during the past few years and represent a remarkable opportunity for hard
dental tissue reconstruction to avoid more invasive and less predictable procedures such
as autologous bone grafts. To achieve a successful outcome in alveolar bone regeneration,
an ideal synergy between the source of stem cells, osteoinductive molecules, and scaffold
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materials is inevitable. However, as concluded by Kargozar et al. in their comprehensive
review, the main question regarding the ideal cell source for bone tissue engineering has
not been solved yet. The mentioned cell lines with osteoinductive properties possess more
or less issues such as restricted availability, prolonged handling time, and safety risks [116].

Some suitable cell lineages that can be effectively differentiated into osteogenic cells in-
clude dental tissue-derived stem cells and iPSCs. Particularly, iPSCs represent an unlimited
patient-specific source of stem cells, providing high biocompatibility with almost no risk of
immune rejection. The same importance is placed on selecting 3D biocompatible scaffold
materials that can mimic the bone composition and microstructural organization as closely
as possible. This goal could be achieved by the development of novel technologies based
on 3D bioprinting of nanomaterials, such as graphene-based nanomaterials [96]. Finally,
yet importantly, incorporating bioactive molecules, such as growth factors, has a significant
impact on bone regeneration efficacy.

Exosomes, the new players in the field of regenerative medicine, have garnered much
attention as possible cell-free therapeutic agents minimizing safety risks related to cell
transplantation. However, there is a need to establish standards for their purification and
quality control to accelerate their clinical applications in oral regenerative therapy.

It is undeniable that research in bone regenerative medicine holds great potential
for translation into clinical practice, which has been already proved by numerous clinical
studies. However, it is necessary to develop more efficient and safe protocols for cell
reprogramming, osteogenic differentiation, precise cell purification, scaffold fabrication,
and final transplantation.
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