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A B S T R A C T   

Cancer registries collect multisource data and provide valuable information that can lead to unique research opportunities. In the Netherlands, a registry and model- 
based approach (MBA) are used for the selection of patients that are eligible for proton therapy. We collected baseline characteristics including demographic, clinical, 
tumour and treatment information. These data were transformed into a machine readable format using the FAIR (Findable, Accessible, Interoperable, Reusable) data 
principles and resulted in a knowledge graph with baseline characteristics of proton therapy patients. With this approach, we enable the possibility of linking external 
data sources and optimal flexibility to easily adapt the data structure of the existing knowledge graph to the needs of the clinic.   

Introduction 

Proton therapy has emerged as a novel treatment modality that has 
the potential to reduce toxicity rates and further improve tumour control 
due to the depth-dose characteristics of the proton particle [1]. Because 
of scarcity and costs, the Netherlands has initiated the development of a 
model-based approach (MBA) to select those patients for proton therapy 
that will benefit the most [2]. By comparing the dose difference in the 
organs at risk (OARs) in delta Normal Tissue Complication Probability 
(ΔNTCP) models for photon and proton plans and the resulting 3D ra
diation dose, the MBA estimates the potential benefit for an individual 
patient. 

To ensure the MBA remains valid, one needs to continuously update 
and validate these ΔNTCP models. In the Netherlands, the ProTRAIT 
(PROton Therapy ReseArch regIsTry) initiative has set up a national 
registry that collects real world data from patients previously treated 
with proton or photon radiotherapy. The initiative’s aim is to system
atically and automatically register these data and its ultimate goals are 
to minimise radiation-induced toxicities in the healthy tissues, to 
improve quality of life, and to escalate the dose to target (tumor) cells. 

In order to fulfill the ProTRAIT initiative’s aim, it is important to 
develop an architecture that can handle the semi-structured nature of 
radiotherapy data and adheres to the FAIR (Findable, Accessible, 
Interoperable, Reusable) principles. The authors who first published the 
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principles point out the need to improve infrastructures to support the 
reuse of (scholarly) data and created guidelines to facilitate this [3]. 
Taking into account the semi-structured and multisource nature of 
radiotherapy data (imaging, biological and clinical data), as well as the 
heterogeneous clinical workflows and data analysis pipelines between 
individual centres, the implementation of the FAIR principles can enable 
a standardised framework for data management and processing. 
Furthermore, the accessibility, interoperability and reusability aspect of 
FAIR will enable a quicker external and independent validation of 
research findings [3]. 

FAIR data are often collected in a semantic data model and repre
sented in a knowledge graph [4]. Literature defines a (biomedical) 
knowledge graph as “a resource that integrates one or more expert- 
derived sources of information into a graph where nodes represent 
biomedical entities and edges represent relationships between those 
entities” [5]. In biomedical science, knowledge graphs are often built 
based upon an existing database. In our case, the ProTRAIT data registry 
graph had to be built manually, however inspired by previous work on 
the Radiation Oncology Ontology [6]. 

Up until this moment the data needed for the ProTRAIT registry are 
manually collected in each individual centre and then entered to a 
centralised electronic data capture (EDC) system.An alternative 
approach was suggested by Zapletal et al. automating the integration of 
radiotherapy related data items such as the prescribed dose and the Dose 
Volume Histogram (DVH) parameters [7] using an i2b2-based clinical 
data warehouse. Although the automatic registration of this approach 
based on the i2b2 standard has the same goal as our approach, the 
proton therapy data items and the data model of our case are not fully 
compliant with the i2b2 standard for instance the i2b2 data model lack 
many items needed in the ProTRAIT registry. Furthermore, the approach 
of Zapletal et al. is based on a relational data model, where our approach 
is based on a graph-based data model, which enforces standardized 
terminologies and is flexible in addition of concepts and structures and is 
preferable over a relational model as mentioned by the review of Gamal 
et al. [8]. A vital part of the upload infrastructure is choosing an inter
operable data model; this means choosing a data structure. In this paper 
we present our choice for a domain specific knowledge graph that stores 
relevant observational patient data into an interoperable, machine 
readable format. The knowledge graph specification is publicly avail
able (10.5281/zenodo.5060069 [9]) but the data itself is not due to 
privacy and legal requirements associated with patient data; access to 
these data will be formalized in the near future by the ProTRAIT 
consortium. 

Methods and results 

The clinical items listed in the registry and graph were selected by 
domain experts based on established clinical workflows and were sub
sequently reviewed by the relevant national expert community: part of 
the “Nederlandse Vereniging voor Radiotherapie en Oncologie.” - the 
Dutch national association for radiotherapy and oncology. This resulted 
in a flat data model, a list of items with little to no relation between the 
individual elements. The structure of this flat data model will be dis
cussed in depth in the next paragraphs. The items in this list and others 
can be found on the Github repository, including the definition and 
required data element type (integer, string, date etc.) in .xlsx format. 

In our case the construction of the graph and ontology classes was a 
coordinated effort by medical physicists, physicians and computer sci
entists. Their combined expertise was used to define nodes and edges in 
the graph. The knowledge graph was modeled using the Resource 
Description Framework (RDF), a World Wide Web Consortium data 
standard (W3C). It is originally designed for metadata but also used for 
knowledge management applications [5]. The RDF format is based on 
the representation of the data in triples format (Subject-Predicate-Ob
ject, eg. Patient-has Disease-Neoplasm). The structure of the knowledge 
graph was constructed with the patient class at the centre with 

connections to different sections of clinical information, such as the age 
and biological sex, and information regarding the baseline treatment 
(eg. date of first radiotherapy course). 

The list of clinical items were represented in the R2RML mapping 
language [10] to describe the graph structure, and to facilitate the data 
conversion process. In this graph structure, several publicly available 
ontologies related to the radiation oncology field, bundled in the Radi
ation Oncology Ontology (ROO) [6], were reused. The importance of 
ontologies specific to the radiotherapy domain has been highlighted by 
several studies such as the publications of Phillips et al. [11] and Bibault 
et al. [12]. The use of ontologies enhances the data interoperability and 
reusability with a clear definition of the different data classes including 
knowledge representation. 

Fig. 1 shows the baseline characteristics in our knowledge graph with 
all the nodes and edges designed by domain experts. Moreover, Table 1 
presents an overview of the data items used for the creation of the 
knowledge graph with their definition and description. The different 
data classes can be grouped in three different categories; (I) baseline 
characteristics and demographic information, (II) baseline tumour, and 
(III) radiotherapy planning information. In this visualisation of the 
graph, we present the relation between variables connected to a patient 
that all together make up our generic list. Furthermore, we would like to 
underline that additional data can be linked to this graph easily. The 
structure of the knowledge graph is open source and the R2RML map
ping files can be found on http://www.protrait.nl (licence: CC-BY). 

Discussion 

In this study, we developed a knowledge graph to store clinical pa
tient characteristics for the proton therapy registry. We chose this data 
model because of the specific characteristics of the ProTRAIT project. 
Our knowledge graph was based on the RDF [13] data model using the 
R2RML [10] mapping language and publicly available ontologies 
[6,11,14] as it facilitates the interoperability and reusability of data. 

Proton therapy is a relatively new treatment and its indications and 

Fig. 1. Visualisation of the knowledge graph created with the baseline char
acteristics (green) tumour specific variables (orange) and treatment variables 
(blue) of the patients eligible for proton radiotherapy. For readability purposes 
we have excluded the predicates between the different instances and classes. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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application are likely to change when new insights develop. Hence, the 
data model and structure must be designed with flexibility and a tran
sient practical application in mind: as proton therapy gains salience in 
The Netherlands, new clinical applications will appear and there will be 
a shift in the threshold of which patients can undergo treatment because 
of the limited treatment capacity. New models are developed to tackle 
this shift and for this reason, our architecture must be able to easily 
adapt to new data elements and model transformations. The semantic 
data model is flexible because we can define and add ontology classes 
and their definitions are shared and accessible to others in line with the 
FAIR principles, which gained traction in the radiotherapy world [15], 
while still keeping them backward compatible. The semantic data model 
was developed with machine readability and thus exchange and inter
operability in mind. The flexibility further shows in adding new vari
ables to the data model and the cardinality limitations that relational 
databases have. There is no need to create new tables to tackle {one/ 
many}-to-many relations; for instance, additional treatments can exist in 
the same graph as additional instances of the treatment class. Finally, 
the ease to which multiple datasets/data sources can be queried (eg. 
third parties datasets) in a single unified query is an additional point that 
makes the knowledge graph an advantageous data format over a rela
tional database [6]. 

Knowledge graphs are not mainstream in clinical data capture sys
tems. Indeed, relational databases still are widely used for clinical data 
storage. However, knowledge graphs have significant advantages over 
relational databases, such as flexibility and the ease with which se
mantic data may be enriched. Most important, perhaps, is that the 

ProTRAIT data model stands out in interoperability. As hospitals 
generally use local syntaxes for data registration, their relational data
bases are not interoperable. 

An alternative to our RDF based ProTRAIT approach could have been 
the Observational Medical Outcomes Partnership (OMOP) [16]. OMOP 
is a common data model and technical architecture, which works in a 
similar manner to our FAIR approach initiative to collect observational 
data using relational databases. OMOP supports population exchange, 
but not with the flexibility that FAIR or RDF representations have. Se
mantic integration adds context, uncertainty and detail to the data 
annotation on a level that OMOP cannot [4]. Furthermore, OMOP is not 
designed for handling detailed procedural information in a structured 
and standardized manner. Health Level 7 (HL7) is the clinical standard 
that describes data formats and elements is a relevant standardisation 
initiative; the latest version, Fast Healthcare Interoperability Resources 
(FHIR) [17], focuses on communication and information exchange [13]. 
FHIR is designed for electronic health record (EHR) based sharing of 
data from individual patients between institutions and is broadly sup
ported [14]. However, since FHIR has limited functionality in 
exchanging population level data we opted for the semantic data model. 

If the field of radiation oncology wants to make a quick translation 
from technological advancements to patient care improvements it needs 
a flexible data system. A system that can incorporate standardised 
structured data and common data elements as easily as new input. 
Standardising takes up a lot of time and effort; for the identification of a 
set of clinical and genomic data elements the OSIRIS group needed a 
year of weekly multidisciplinary meetings [18]. For this reason stand
ardising will always lag behind innovation and research. Thus a flexible 
system that combines both is needed especially in technology heavy 
disciplines like radiation oncology. 

The metadata that ontologies add to the knowledge graph not only 
make the data adhere to the FAIR principles but also enrich the data and 
serve another practical purpose. By using domain specific ontologies in 
our knowledge graph, the original real world data can co-exist in the 
same graph together with the project specific categories and numerical 
values. In the analysis there is the potential to allow algorithms to infer 
indirect knowledge from the graph, which is not possible in a flat rela
tional database. In other words, the clinical expertise in the creation of 
the ontology and knowledge graph means that the metadata is 
enhancing the instance data, and that inferencing could potentially 
improve AI/ML analysis of the data. For example, identification of 
similar patient groups, depending on their characteristics, may enable a 
personalised approach for prognostic studies. 

In the future the central registry may become substituted by a 
federated/distributed analysis of data using the Personal Health Train 
(PHT) [19]. The requirements set by the Semantic Web technologies 
allows machines to understand and interpret the data element classes. 
Furthermore, ML applications can be implemented, such as the valida
tion and exchange of prediction models using the privacy preserving 
PHT infrastructure. Moreover, the knowledge graph format may effi
ciently serve data handling and storage of (distributed) large-scale 
datasets (“big data”). 

Conclusion 

With this study we present our knowledge graph; a database solution 
for a clinical and research repository that ensures a high degree of 
flexibility which is needed in a new and advancing field. Our research 
repository promotes adherence to the FAIR principles. This will facilitate 
re-use of the data for instance by linking the data to other data sets or 
incorporating the PHT infrastructure for federated learning analysis. 
Lastly, the knowledge graph enhances the data and creates opportunities 
for improved Machine Learning (ML)/Artificial Intelligence (AI) anal
ysis. Future plans are to link sets of tumour specific items that contain 
data elements related to the treatment, patient reported outcome mea
sures and radiotherapy dose information in order to allow for the design 

Table 1 
Overview of the different data items used in the knowledge graph with their 
definition and description.  

Generic list data items Definition-description 

Patient Patient that has been diagnosed with cancer 
Identifier Patient identifier 
Age at diagnosis Age at diagnosis of the patient 
Birthyear Birth year of the patient 
Treating centre Particle treating centre 
Referring centre Referring centre 
Date of registration Date of registration (first visit in the radiotherapy 

department) 
Neoplasm Neoplasm 
Tumour site Tumour site 
Previous cancer Previous cancer 
Re-irradiation Re-irradiation in the case of a previous cancer 
Date of diagnosis Date of first diagnosis (first pathology) 
Radiotherapy Radiotherapy 
Planning comparison Planning comparison performed 
Date of comparison Date of planning comparison (if it was performed) 
Outcome Outcome of the planning comparison 
Version Version planning comparison (version LIPP* protocol) 
Proton beam radiation 

therapy 
Proton radiotherapy 

Alcohol use Current alcohol use 
Alcohol units Alcohol units 
Days If the patient is a current alcohol user, number of days per 

month where ≥1 alcohol unit is consumed 
Marital status Marital status 
Sex Biological sex 
Body weight Body weight 
Kilogram Body weight in Kilograms 
Stature Height 
Centimeter Height in Centimeters 
Smoking status Smoking status 
Former smoker Former smoker 
Pack year If patient is a current/former smoker, number of pack 

years 
Current smoker Current smoker 
Former smoker Former smoker 
Time stopped If patient is a past smoker, number of stopped months 
Months Months(unit of Time stopped) 

*LIPP = landelijk indicatie protocol protonen. 

M. Sloep et al.                                                                                                                                                                                                                                   



Clinical and Translational Radiation Oncology 31 (2021) 93–96

96

and validation of ΔNTCP models needed in the MBA proton patients’ 
selection. 
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