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Abstract Male infertility is a prevalent condition, affecting 5–10% of men. So far, few genetic

factors have been described as contributors to spermatogenic failure. Here, we report the first re-

sequencing study of the Y-chromosomal Azoospermia Factor c (AZFc) region, combined with gene

dosage analysis of the multicopy DAZ, BPY2, and CDYgenes and Y-haplogroup determination. In

analysing 2324 Estonian men, we uncovered a novel structural variant as a high-penetrance risk

factor for male infertility. The Y lineage R1a1-M458, reported at >20% frequency in several

European populations, carries a fixed ~1.6 Mb r2/r3 inversion, destabilizing the AZFc region and

predisposing to large recurrent microdeletions. Such complex rearrangements were significantly

enriched among severe oligozoospermia cases. The carrier vs non-carrier risk for spermatogenic

failure was increased 8.6-fold (p=6.0�10�4). This finding contributes to improved molecular

diagnostics and clinical management of infertility. Carrier identification at young age will facilitate

timely counselling and reproductive decision-making.

Introduction
The diagnosis of male factor infertility due to abnormal semen parameters concerns ~10% of men

(Jungwirth et al., 2012; Datta et al., 2016). In today’s andrology workup, ~60% of patients with

spermatogenic failure remain idiopathic (Punab et al., 2017). Among the known causes, the most

widely considered genetic factors are karyotype abnormalities (up to 17% of patients) and recurrent

de novo microdeletions of the Y-chromosomal Azoospermia Factor a (AZFa) (~0.8 Mb), AZFb (~6.2

Mb), and AZFc (~3.5 Mb) regions (2–10%) (Punab et al., 2017; Olesen et al., 2017;

Tüttelmann et al., 2011). For more than 15 years, testing for AZF deletions has been strongly rec-

ommended in the diagnostic workup for infertility patients with sperm concentration of <5 � 106/ml

(ASRM, 2015; Krausz et al., 2014). Most deletion carriers represent patients with either azoosper-

mia (no sperm) or cryptozoospermia (>0–1 million sperm/ejaculate) (Punab et al., 2017; Kohn et al.,

2019; Stahl et al., 2010). The most prevalent deletion type is AZFc (~80%), followed by the loss of

AZFa (0.5–4%), AZFb (1–5%), and AZFbc (1–3%) regions (Figure 1A). Excess of recurrent AZFc
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deletions is promoted by the region’s complex genomic structure comprised of long direct and

inverted amplicons of nearly identical DNA segments that lead to aberrant meiotic rearrangements

in gametogenesis (Kuroda-Kawaguchi et al., 2001; Skaletsky et al., 2003; Figure 1B). The AZFc

full deletions remove all the multicopy DAZ (deleted in azoospermia 1), BPY2 (basic charge Y-linked
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Figure 1. Y-chromosomal AZFc region and its partial deletions in the study group. (A) Schematic representation of the human Y chromosome with the

AZFa, AZFb, and AZFc regions shown as black bars. (B) Magnified structure of the AZFc region with approximate locations of multicopy protein-coding

genes, STS (sY) markers for the detection of AZFc partial deletions and the span of typical gr/gr and b2/b3 deletions (Kuroda-Kawaguchi et al., 2001).

P1–P3 (gray triangles) denote palindromic genomic segments consisting of two ‘arms’ representing highly similar inverted DNA repeats (>99.7%

sequence identity) that flank a relatively short distinct ‘spacer’ sequence. Of note, the occurrence of the b2/b3 deletion requires a preceding inversion

in the AZFc region and therefore its presentation on the reference sequence includes also the retained segment (gray dashed line). Full details about

alternative gr/gr and b2/b3 deletion types are presented in Figure 1—figure supplement 1. (C) Dosage of multicopy genes on human Y chromosomes

with or without AZFc deletions. (D) Prevalence of the gr/gr and b2/b3 deletions detected in the subgroups of this study. Fisher’s exact test was used to

test the statistical significance in the deletion frequencies between the groups. PAR, pseudoautosomal region; MSY, male-specific region of the Y

chromosome; cen, centromere; AZF, azoospermia factor region.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The human Y chromosome and the Azoospermia Factor (AZF) regions.

Hallast et al. eLife 2021;10:e65420. DOI: https://doi.org/10.7554/eLife.65420 2 of 22

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.65420


2), and CDY1 (chromodomain Y-linked 1) genes that are expressed in a testis-enriched manner and

considered important in spermatogenesis (Figure 1C).

The palindromic structure of the AZFc region also facilitates partial deletions that are rather fre-

quently detected in the general population (Repping et al., 2003; Repping et al., 2004;

Rozen et al., 2012; Fernandes et al., 2004). The most prevalent partial deletion types, named after

the involved amplicons as g(reen)-r(ed)/g(reen)-r(ed) (lost segment ~1.6 Mb) and b(lue)2/b(lue)3

(~1.8 Mb) reduce the copy number of DAZ, BPY2, and CDY1 genes by roughly 50% (Figure 1B,C,

Figure 1—figure supplement 1). The published data on the contribution of gr/gr and b2/b3 dele-

tions to spermatogenic failure are inconsistent. In European populations, the carrier status of the gr/

gr deletion increases a risk to low sperm counts ~1.8-fold (Rozen et al., 2012; Bansal et al., 2016a;

Krausz et al., 2009). Its more variable effect on spermatogenesis has been shown in Middle Eastern

and Asian populations, where the gr/gr deletion is completely fixed in some Y lineages, for example

haplogroups D2 and Q1a that are common in Japan and some parts of China (de Carvalho et al.,

2006; Teitz et al., 2018). In contrast, the b2/b3 deletion appears to be a risk factor for spermato-

genic impairment in several East Asian and African, but not in European or South Asian populations

(Bansal et al., 2016b; Colaco and Modi, 2018). Notably, the b2/b3 deletion is completely fixed in Y

haplogroup N3 that has a high frequency (up to 90% in some populations) in Finno-Ugric-, Baltic-,

and some Turkic-speaking people living in Northern Eurasia (Rozen et al., 2012; Fernandes et al.,

2004; Ilumäe et al., 2016). Thus, it is unlikely that the carriership of a gr/gr or b2/b3 deletion per se

has an effect on male fertility potential. It has been proposed that this broad phenotypic variability

may be explained by the diversity of gr/gr and b2/b3 deletion subtypes (Machev, 2004). Y chromo-

somes carrying partial AZFc deletions may differ for the content, dosage, or genetic variability of the

retained genes, the overall genetic composition reflected by phylogenetic haplogroups or the pres-

ence of additional structural variants. Only limited studies have analyzed the subtypes of gr/gr or

b2/b3 deletions, and no straightforward conclusions have been reached for their link to spermato-

genic failure (Krausz et al., 2009; Ghorbel et al., 2016; Krausz and Casamonti, 2017).

The current study represents the largest in-depth investigation of AZFc partial deletions in men

recruited by a single European clinical center. We analysed 1190 Estonian idiopathic patients with

male factor infertility in comparison to 1134 reference men from the same population, including

2000 subjects with sperm parameter data available. Y chromosomes carrying gr/gr or b2/b3 dele-

tions were investigated for additional genomic rearrangements, Y-chromosomal haplogroups,

and dosage and sequence variation of the retained DAZ, BPY2, and CDY genes. The study aimed to

determine the role and contribution of gr/gr and b2/b3 deletion subtypes in spermatogenic failure

and to explore their potential in the clinical perspective.

Results

Enrichment of gr/gr deletions in Estonian idiopathic infertile men with
reduced sperm counts
The study analyzed 1190 Estonian men with idiopathic infertility (sperm counts 0–39 � 106/ejaculate)

and a reference group comprised of 1134 Estonian men with proven fatherhood (n = 635) or repre-

senting healthy young men (n = 499) (Table 1, Supplementary file 1). For all 2324 study subjects,

complete AZFa, AZFb, and AZFc deletions were excluded.

The partial AZFc deletions identified using the STS-based polymerase chain reaction (PCR) assays

were gr/gr (n = 46), b2/b3 (n = 756), and b1/b3 (n = 1, reference case) (Table 2). A statistically signif-

icant excess of gr/gr deletions was detected in idiopathic male infertility patients (2.7%; n = 32/

1190) compared to reference cases (1.2%; n = 14/1134) (Fisher’s exact test, p=0.016;

odds ratio [OR] = 2.2 [95% confidence interval (CI) 1.2–4.2]) (Figure 1D, Supplementary file 2). The

highest frequency of gr/gr deletion carriers (6.8%, n = 6/88) was detected in cryptozoospermia cases

(sperm count > 0–1 � 106/ejaculate). However, in the reference group andrological parameters of

men with or without the gr/gr deletion did not differ (Supplementary file 3). All 10 reference men

with the gr/gr deletion and available andrological data were normozoospermic (220.3 [74.2–559.0] �

106 sperm/ejaculate). Also their other andrological parameters were within the normal range, over-

lapping with those of the subjects without a gr/gr deletion.
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The patient and the reference groups exhibited similar prevalence of b2/b3 deletions (388/1190,

32.6% vs 367/1134, 32.4%; Fisher’s exact test, p=0.8). No apparent clinically meaningful genetic

effects on andrological parameters were observed in either of the study groups

(Supplementary files 3 and 4).

Significant overrepresentation of Y lineage R1a1-M458 in gr/gr
deletion carriers
The Y-chromosomal haplogroups determined by typing phylogenetically informative markers in 31

patients and 13 reference men carrying a gr/gr deletion represented 20 different lineages (patients,

17; reference men, 10; Figure 2A, Supplementary file 5). Combining the phylogenetic context with

the data on exact missing DAZ and CDY1 gene copies (see below) revealed that the gr/gr deletion

events in 44 analyzed cases must have independently occurred at least 26 times. About two-thirds of

these Y chromosomes belonged to haplogroup R1, whereas the rest represented A1b, G, I, and J

lineages. Notably, there was a highly significant overrepresentation of Y chromosomes belonging to

lineage R1a1-M458 in the gr/gr deletion carriers compared to the known Estonian population fre-

quency (22.7% vs 5.1%; Fisher’s exact test, p=5.3�10�4, OR = 5.5 [95% CI 2.2–13.7]; Figure 2B,

Supplementary file 5; Underhill et al., 2015).

Nearly all (99.4%) Estonian cases with the b2/b3 deletion belonged to the Y haplogroup N3, in

which this event is fixed (Repping et al., 2004; Fernandes et al., 2004). The most commonly

Table 1. Characteristics of the patients with male factor infertility and reference groups used for comparison.

Idiopathic spermatogenic impairment (n = 1190)* Reference groups (n = 1134)

Parameter Unit
Azoo-/
cryptozoospermia

Severe
oligozoospermia

Moderate
oligozoospermia

Partners of
pregnant women†

Estonian young
men cohort‡

REPROMETA
proven fathers§

n 104/88 319 679 324 499 311

Age Years 33.2
(23.6–51.8)

32.2
(23.9–49.5)

31.7
(23.0–44.6)

31.0
(22.9–45.0)

18.6
(17.2–22.9)

31.0
(21.0–43.0)

BMI kg/m2 26.0
(21.2–34.4)

25.9
(20.2–35.5)

25.8
(20.1–34.6)

24.8
(20.0–32.2)

22.0
(18.7–27.5)

25.9
(20.2–33.1)

Total testis volume ml 33.5
(17.0–49.0)

39.0
(22.0–50.0)

40.0
(26.0–52.0)

46.0
(34.0–62.4)

50.0
(35.0–70.0)

n.d.

Semen volume ml 3.3
(0.8–6.6)

3.3
(1.1–7.0)

3.6
(1.6–6.9)

3.7
(1.7–8.0)

3.2
(1.2–6.4)

n.d.

Sperm
concentration

� 106/ml 0
(0–0.2)

1.4
(0.4–5.2)

6.0
(2.2–15.2)

76.0
(16.7–236.0)

66.8
(8.2–225.1)

n.d.

Total sperm count � 106/
ejaculate

0
(0–0.7)

4.7
(1.3–9.3)

23.1
(11.0–37.5)

295.2
(60.0–980.1)

221.6
(18.4–788.0)

n.d.

Progressive A+B
motility

% 0
(0–37.2)

16.0
(0–47.2)

27.0
(1.0–57.0)

50.0
(30.0–69.0)

57.3
(34.7–75.3)

n.d.

Sperms with normal
morphology

% 0
(0–1.0)

0
(0–6.0)

2.0
(0–9.0)

10.0
(2.0–19.1)

12.0
(4.0–20.0)

n.d.

FSH IU/l 13.7
(2.7–38.2)

6.6
(1.9–22.8)

5.2
(1.8–16.5)

3.6
(1.5–8.3)

2.8
(1.2–6.7)

n.d.

LH IU/l 5.7
(2.1–12.0)

4.6
(1.9–9.9)

4.2
(1.8–8.4)

3.6
(1.5–6.7)

3.8
(1.8–7.2)

n.d.

Total testosterone nmol/l 15.3
(7.7–28.4)

16.6
(7.9–30.0)

16.6
(8.5–30.3)

16.5
(8.8–27.2)

27.7
(15.4–46.3)

n.d.

All study subjects were recruited in Estonia. For each parameter, median and (5th–95th) percentile values are shown. Additional details in

Supplementary file 1.
*Patients were subgrouped based on total sperm counts per ejaculate: azoospermia, no sperm; cryptozoospermia, sperm counts > 0–1 � 106; severe oli-

gozoospermia, >1–10 � 106; moderate oligozoospermia, >10–39 � 106 (Punab et al., 2017).
†Male partners of pregnant women (Punab et al., 2017); eight men had sperm counts < 39 � 106; for four men, sperm analysis was not available.
‡Male cohort without fatherhood data (Grigorova et al., 2008); 47 men had sperm counts < 39 � 106; for nine men, sperm analysis was not available.
§REPROMETA study recruited and sampled couples after delivery of their newborn; details in Kikas et al., 2020; Pilvar et al., 2019.

n.d., not determined.
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detected sub-lineage was N3a3a-L550 (~51% of 436 typed chromosomes) and in total 15 different

haplogroups that had diverged after the b2/b3 deletion event in the common ancestor of N3 were

present in Estonian men (Figure 2C, Supplementary file 6). b2/b3 Y chromosomes representing

non-N3 lineages were detected in two patients and three reference men. Lineage typing was possi-

ble for three of them, who carried either K-M9 (one patient) or R1a1a1b1a1a1c-CTS11962.1 (one

patient and one reference case).

Table 2. Summary of the identified Y-chromosomal AZF deletion subtypes.

Y-chromosomal rearrangements
Idiopathic male infertility patients
(n) Reference men (n)

All analyzed cases 1190 1134

Any AZFc gr/gr deletion 32 (2.7%) 14 (1.2%)

Fisher’s exact test, p=0.016; OR = 2.2 [95% CI 1.2–4.2]

Any AZFc b2/b3 deletion 388 (32.6%) 367 (32.4%)

Other type of AZF deletion Loss of b2/b3 marker sY1191 (one
case)

AZFc b1/b3 del (one case); partial AZFa del (one
case)

No deletion 769 (64.6%) 751 (66.2%)

Simple partial AZFc deletions

Typical gr/gr deletion 19/31 (61.3%) 8/13 (61.5%)

Typical b2/b3 deletion* 300/382 (78.5%) 210/249 (84.3%)

AZFc partial deletion followed by b2/b4 duplication

gr/gr del + b2/b4 dupl† 2/31 (6.5%) 3/13 (23.1%)

Fisher’s exact test, p=0.144; OR = 0.2 [95% CI 0.0–1.6]

b2/b3 del + b2/b4 dupl*,† 78/382 (20.4%) 34/249 (13.7%)

Fisher’s exact test, p=0.026; OR = 1.6 [95% CI 1.0–2.4]

AZFc partial deletion and atypical genomic rearrangements‡

gr/gr del + extra gene copies 1 0

b2/b3 del + extra gene copies 3 4

Complex events on the Y lineage R1a1-M458 with the preceding AZFc r2/r3 inversion

r2/r3 inv + gr/gr del 8 2§

r2/r3 inv + gr/gr del + b2/b4 dupl 1 0

r2/r3 inv + loss of marker sY1191 + secondary gene
duplications¶

1 0

r2/r3 inv + b2/b3 del + b2/b4 dupl 0 1**

Carriers of any AZFc gr/gr deletion type without the preceding r2/r3 inversion

gr/gr del w/o detected r2/r3 inv 23/1190 (1.9 %) 12/1134 (1.1%)

Fisher’s exact test, p=0.090; OR = 1.8 [95% CI 0.9–3.7]

*Deletion subtype analysis was carried out for cases with available sufficient quantities of DNA. REPROMETA subjects were excluded from the b2/b3 dele-

tion subtype analysis and subsequent statistical testing due to missing andrological data.
†One or more amplicons of the retained ‘2xDAZ, 2xBPY2, 1xCDY1’ (gr/gr deletion) or ‘2xDAZ, 1xBPY2, 1xCDY1’ (b2/b3 deletion) genes.
‡Additional copies of DAZ, BPY2, and/or CDY1 genes inconsistent with the full ‘b2/b4’ duplication.
§Including one REPROMETA man without andrological data.
¶Detected gene copy numbers 6xDAZ, 4xBPY2, 3xCDY1; the obligate presence of r2/r3 inversion was defined based on Y-chromosomal phylogeny as the

man carries Y lineage R1a1a1b1a1a1c-CTS11962.1 that was also identified in two cases with the r2/r3 inversion (Supplementary file 12).

**Man from ‘Partners of pregnant women’ cohort with sperm concentration 12 � 106/ml below normozoospermia threshold (15 � 106/ml) and sperm

counts 39.4 � 106/ejaculate at the borderline of the lowest reference value (39.0 � 106/ejaculate).
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Figure 2. Phylogenetic relationships and gene copies in study subjects with partial AZFc deletions. (A) Y-chromosomal lineages indicated with typed

terminal markers (left), deleted (white)/retained (black) DAZ and CDY1 gene copies (middle), and secondary rearrangements in the AZFc region (right)

of idiopathic male factor infertility (n = 31) and reference cases (n = 13) carrying the gr/gr deletion. The human Y-chromosomal reference sequence has

four DAZ and two CDY1 copies; the retained gene copies on each Y chromosome with a gr/gr deletion are shown as filled boxes. Chromosomes

Figure 2 continued on next page
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Increased prevalence of b2/b3 deletion followed by b2/b4 duplication
in infertile men
The expected retained copy number of DAZ, BPY2, and CDY1 genes consistent with the typical gr/

gr deletion, as determined by quantification using Droplet Digital PCR (ddPCR), was found in 37/44

(~84%) cases (Figure 2A, Figure 2—figure supplement 1, Table 2, Supplementary file 7). Three

patients and three reference men carried a secondary b2/b4 duplication adding one or more ampli-

cons of [two DAZ – two BPY2 – one CDY1] genes with no apparent effect on infertility status (Fisher’s

exact test, p=0.34). Notably, four of six samples with secondary b2/b4 duplication events were iden-

tified in haplogroup I. This complex rearrangement has also been reported in the gnomAD SV data-

base (v 2.1) in 114/5528 analyzed men from around the world with the prevalence of 3.5% in East

Asians and 1.2% in Europeans (Supplementary file 8; Collins et al., 2020).

Similarly, 78.5% of patients and 84.3% reference men with the b2/b3 deletion presented gene

dosage consistent with the typical deletion (Figure 2C, Figure 2—figure supplement 1, Table 2,

Supplementary files 7 and 9). Indicative of recurrent secondary events, one or more b2/b4 duplica-

tions of [two DAZ – one BPY2 – one CDY1] genes were identified in 13 haplogroups, including non-

N3 lineages K-M9 and R1a1a1b1a1a1c-CTS11962.1. In the gnomAD, 58/5115 men have been

reported with this duplication, with the prevalence of 2.2% in East Asians and 0.9% in Europeans

(Supplementary file 8). Although secondary b2/b4 duplications were detected with significantly

higher prevalence in patients compared to the reference men (n = 78/382, 20.4% vs n = 35/249,

14.1%; Fisher’s exact test, p=0.026, OR = 1.57 [95% CI 1.02–2.42]), no consistent effect of increased

gene copy number on andrological parameters was observed (Supplementary files

3 and 4). Reference men with b2/b4 duplication compared to subjects with no AZFc rearrangements

showed a trend for lower follicle-stimulating hormone (FSH) (median 2.3 [5–95% range 1.4–7.5] vs

3.2 [1.3–7.1] IU/l; p<0.05) and luteinizing hormone (LH) (3.1 [1.7–5.0] vs 3.8 (1.7–7.2) IU/l; p<0.05).

Additionally, in eight subjects with AZFc partial deletions, further atypical Y-chromosomal genomic

rearrangements were detected, but also with no clear evidence for a phenotypic effect (Table 2,

Supplementary file 7).

The data gathered from this analysis thus suggest that the dosage of DAZ, BPY2, and CDY1

genes does not play a major role in modulating the pathogenic effect of the gr/gr and b2/b3

deletions.

No specific DAZ or CDY1 gene copy is lost in men with spermatogenic
failure
The deletion subtypes for b2/b3 and gr/gr carriers were identified by determining the genotypes of

DAZ and CDY1 gene-specific paralogous sequence variants. The major b2/b3 deletion subtype in

both patients (99.7%) and reference cases (98.1%) was the loss of DAZ3-DAZ4-CDY1a genes,

whereas the most frequent gr/gr subtypes among all the deletion carriers were the loss of DAZ1-

DAZ2-CDY1a (41.9%, 18/43 cases) and DAZ1-DAZ2-CDY1b (25.6%, 11/43 cases) combinations

(Figure 2A, Supplementary files 10 and 11). The observed prevalence of the major gr/gr subtypes

was concordant with the published data on other European populations (42.5% and 25.5%, respec-

tively; Krausz et al., 2009). As these gr/gr deletion subtypes are prevalent in the reference group

Figure 2 continued

carrying atypical gr/gr subtypes with the loss of either the DAZ1/DAZ3 or DAZ2/DAZ4 gene pair due to complex genomic rearrangement combining

the previous r2/r3 inversion with a subsequent gr/gr deletion are highlighted with a dashed gray square. (B) Enrichment of the Y-chromosomal lineage

R1a1-M458 and its sub-lineages in study subjects carrying the gr/gr deletion in comparison to the Estonian general population (data from

Underhill et al., 2015). Fisher’s exact test was used to test the statistical significance between the groups. (C) Y-chromosomal lineages indicated with

typed terminal markers (left) and the copy number of the DAZ, BPY2, and CDY1 gene copies (right) determined for 382 idiopathic male factor infertility

cases carrying the b2/b3 deletion. The light gray box denotes DAZ, BPY2, and CDY1 gene dosage consistent with full b2/b4 duplication(s). The legend

for the deletion subtype is shown in the bottom right corner. Further information on the distribution of Y-chromosomal lineages in the carriers of AZFc

partial deletions are provided in Supplementary files 5 and 6, and the AZFc rearrangement types are detailed in Figure 1—figure supplement 1 and

Supplementary files 7 and 9–12. n, number; n.a., not available; Ref, reference cases.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Histograms of estimated raw copy number values for DAZ, BPY2, and CDY genes by ddPCR.

Figure supplement 2. Location of the identified exonic variants in the DAZ genes.
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(total 11 of 13, 84.6%), their major role in spermatogenic impairment can be ruled out. As a novel

insight, a subset of these Y chromosomes showed lineage-specific loss of some exon 7 subtypes of

the retained DAZ4 gene (Figure 2—figure supplement 2; Supplementary file 11). All five exons 7Y

in the DAZ4 gene were missing in the Y chromosomes with the DAZ1-DAZ2-CDY1a deletion that

had occurred in sub-lineages of the R1a1a1b1a2 haplogroup (9/31 patients, 3/13 reference men),

representing 12/18 DAZ1-DAZ2-CDY1a deletion carriers. The exon 7F in DAZ4 was lost in hap-

logroup I1 and its sub-lineages (5/31, 2/13), that is 7/11 individuals carrying the DAZ1-DAZ2-CDY1b

deletion (Supplementary files 10 and 11). There was no evidence that loss of DAZ4 exons 7Y or 7F

has any phenotypic consequences. Most likely, this observation reflects gene conversion events from

DAZ3 to DAZ4 as the former lacks both, exons 7Y and 7F.

Taken together, our findings indicate that neither the loss of the DAZ1-DAZ2 nor the DAZ3-DAZ4

gene pair, combined with either a CDY1a or CDY1b gene, directly causes spermatogenic failure.

Interestingly, no Y chromosomes were observed with fewer than two retained DAZ genes.

Y lineage R1a1-M458 carries a fixed r2/r3 inversion predisposing to
recurrent deletions
Novel atypical gr/gr and b2/b3 deletion subtypes with the loss of an unusual DAZ gene pair were

identified (Figure 2A, Table 2, Supplementary files 10–12). Eight patients and two reference cases

with a gr/gr deletion were missing DAZ2-DAZ4 genes. Loss of DAZ1-DAZ3 genes followed by a sub-

sequent b2/b4 duplication event was identified in one infertile and one reference case with either

gr/gr or b2/b3 deletion, respectively. All but one subject with this atypical pair of lost DAZ genes

belonged to the Y haplogroup R1a1-M458 and its sub-lineages, significantly enriched in gr/gr dele-

tion carriers (Figure 2B, Supplementary file 5). The most parsimonious explanation to explain the

simultaneous deletion of either DAZ1-DAZ3 or DAZ2-DAZ4 genes is a preceding ~1.6 Mb long inver-

sion between the r(ed)two and r(ed)three amplicons (Figure 3A). This new inverted structure might

be more susceptible to recurrent deletions as it has altered the internal palindromic structure of

AZFc region. In r2/r3 inversion chromosomes, the largest palindrome P1 is almost completely lost

and the size of the palindrome P2 is greatly expanded by positioning the homologous g1/g2 seg-

ments in an inverted orientation. The r2/r3 inversion is consequently expected to destabilize the

AZFc region as several long DNA amplicons with highly homologous DNA sequence are positioned

in the same sequence orientation (b2, b3, and b4; g2 and g3; y1 and y3). Therefore, they are prone

to non-allelic homologous recombination mediating recurrent deletions and duplications. Since

these atypical deletion subtypes were identified only in a specific Y-chromosomal haplogroup, the

detected r2/r3 inversion must have occurred only once in the common ancestor of R1a1-M458 sub-

lineages. One patient with the loss of DAZ2-DAZ4 carried haplogroup R1a1a1-M417, an ancestral

lineage to R1a1-M458 (Figure 2A). However, lineage R1a1a1-M417 is not fixed for this inversion

since its other sub-lineage, R1a1a1b1a2, does not carry it and any subsequent inversion restoring

the exact original AZFc structure is not credible. The more parsimonious explanation is that the

inversion occurred in a sub-lineage of R1a1a1-M417 that has to be yet determined.

Based on the Y-chromosomal phylogenetic data, one additional patient was identified as an obli-

gate carrier of the r2/r3 inversion as his Y chromosome represents the lineage R1a1a1b1a1a1c-

CTS11962.1 that was also identified in two cases with the r2/r3 inversion. This patient exhibited signs

of unusual deletion and duplication events in the AZFc region as he carried six DAZ, four BPY2, and

three copies of the CDY1 gene (Figure 2B, Table 2, Supplementary file 9).

Among the analyzed 2324 men, 13 cases with the complex AZFc rearrangement combining r2/r3

inversion with a subsequent deletion (from here on referred to as ’r2/r3 inversion plus deletion’ for

simplicity), represented 0.6% (Table 3). Considering the reported population prevalence of R1a1-

M458 lineage in Estonians (5.1%; Underhill et al., 2015), the estimated number of subjects repre-

senting this Y lineage in the study group was ~119. Thus, approximately one in ten chromosomes

with the r2/r3 inversion had undergone a subsequent deletion event (13/119, 11%).

r2/r3 inversion promotes recurrent deletions that lead to severe
oligoasthenoteratozoospermia
Idiopathic infertility cases carrying the r2/r3 inversion plus deletion in the AZFc region (n = 10) exhib-

ited extremely low sperm counts compared to subjects without any AZFc deletions (median 2.0 vs
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Figure 3. Complex structural variants at the Y-chromosomal lineage R1a1-M458 and their effect on andrological parameters. (A) Schematic

presentation of the Y chromosome with the r2/r3 inversion compared to the reference sequence. The r2/r3 inversion structure nearly destroys the large

palindrome P1 and, consequently, destabilizes the AZFc region since several long DNA amplicons with highly similar DNA sequence (b2, b3, and b4; g2

and g3; y1 and y3) are positioned in the same sequence orientation. This structure promotes non-allelic homologous recombination mediating

Figure 3 continued on next page
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12.5 � 106/ejaculate; Wilcoxon test, nominal p=0.011) (Figure 3B, Figure 3—figure supplements

1–3, Supplementary file 3). Nine of 10 men showed severe spermatogenic failure (total sperm

counts <10 � 106/ejaculate), either azoospermia (n = 1), cryptozoospermia (n = 3), or severe oligo-

zoospermia (n = 5) (Supplementary files 11 and 12). They also showed consistently the poorest

sperm concentration (median 1.0 � 106/ml) and progressive motility (13%), as well as the lowest

semen volume (2.3 ml) compared to the rest of analyzed infertile men. The data suggests that

extreme oligoasthenoteratozoospermia (OAT) observed in these subjects was due to the severely

affected process of spermatogenesis, whereas their testicular volume and hormonal profile were

within the typical range of male factor infertility cases (Figure 3C).

Figure 3 continued

recurrent deletion and duplication events. The approximate regions removed by the identified gr/gr and b2/b3 deletions arising on the r2/r3 inverted Y

chromosome are shown as dashed lines. (B) Distribution of andrological parameters in the idiopathic male factor infertility cases (total sperm counts 0–

39 � 106) subgrouped based on the structure of the AZFc region. The pairwise Wilcoxon rank-sum test was applied to estimate the statistical difference

between groups (Bonferroni threshold for multiple testing correction, p<1.0�10�3). Threshold values (shown in gray) for sperm parameters

corresponding to severe spermatogenic failure are based on international guidelines (World Health Organization, 2010). For reproductive hormones,

reference values of the laboratory service provider are shown. The empirical threshold for the total testis volume was based on routinely applied clinical

criteria at the AC-TUH. For additional details, see Figure 3—figure supplements 1–3, Supplementary files 3 and 12. (C) The majority of idiopathic

infertility cases carrying the r2/r3 inversion plus secondary AZFc partial deletions (total n = 10) exhibit severe oligoasthenoteratozoospermia (OAT)

defined as extremely reduced sperm counts (<5 � 106/ml) and concentration (<10 � 106/ejaculate) combined with low fraction of sperms with normal

morphology (<4% normal forms) and motility (<32% progressive motile spermatozoa). Reference values for andrological parameters have been applied

as referred in (B). As total testis volume is mostly within the expected range, their infertility is not caused by intrinsic congenital testicular damage but

rather due to severe spermatogenic failure per se. Del, deletion; inv, inversion; dupl, duplication; n, number; sec, secondary; mill, million; ej., ejaculate.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distribution of seminal parameters in idiopathic male factor infertility cases with spermatogenic impairment and reference

subjects.

Figure supplement 2. Distribution of hormonal and testicular parameters in idiopathic male factor infertility cases with spermatogenic impairment and

reference individuals.

Figure supplement 3. Distribution of andrological parameters in the idiopathic male factor infertility cases (total sperm counts 0–39 � 106) subgrouped

based on the structure of the AZFc region.

Table 3. Enrichment of the AZFc r2/r3 inversion followed by a partial AZFc deletion in men with severe spermatogenic failure.

AZFc r2/r3 inversion + AZFc partial deletion

Group All (n) Estimated non-carriers (n) Detected carriers (n) % of carriers in the (sub)group

a. Full study group

All analyzed study subjects 2324 2311 13 0.6%

Study subjects with sperm counts 2000 1988 12 0.6%

Subjects stratified based on total sperm counts per ejaculate

Sperm counts 0–10 � 106 524 515 9 1.7%

Sperm counts > 10 � 106 1476 1473 3 0.2%

Fisher’s exact test, p=6.0�10�4, OR = 8.6 [95% CI 2.3–31.8]

b. Carriers of the Y lineage R1a1a-M458*

In all analyzed study subjects 119 106 13 11.0%

In study subjects with sperm counts 102 90 12 11.8%

Subjects stratified based on total sperm counts per ejaculate

Sperm counts 0–10 � 106 27 18 9 33.7%

Sperm counts > 10 � 106 75 72 3 4.0%

Fisher’s exact test, p=3.0�10�4, OR = 12.0 [95% CI 2.9–48.9]

*Expected number of Y lineage R1a1-M458 in each subgroup was estimated using the known Estonian population prevalence 5.1% (Underhill et al.,

2015).
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When all the men with andrological data (n = 2000) were stratified based on sperm counts, there

was a highly significant enrichment of r2/r3 inversion plus deletion in men with severe spermatogenic

failure (sperm counts 0–10 � 106) compared to the rest (1.7% vs 0.2%, Fisher’s exact test,

p=6.0�10�4, OR = 8.6 [95% CI 2.3–31.8]; Table 3). The estimated number of phenotyped subjects

representing the Y haplogroup R1a1-M458 with the fixed r2/r3 inversion was 102 (based on popula-

tion prevalence 5.1%; Underhill et al., 2015). Among carriers of this Y lineage, 33.7% of men with

sperm counts 0–10 � 106 (9/27), but only 4.0% with sperm counts of >10 � 106 (3/72) had under-

gone a subsequent AZFc partial deletion (Fisher’s exact test, p=3.0�10�4, OR = 12.0 [95% CI 2.9–

48.9]).

Only three reference cases carried a Y chromosome with the r2/r3 inversion plus deletion. At the

time of phenotyping, all three subjects were younger (aged 18, 21, and 23 years) than the variant

carriers in the idiopathic infertility group (median 32.4, range 26–51 years) (Supplementary file 12).

The only reference subject with this complex AZFc rearrangement, but unaffected sperm analysis

was the youngest (18 years). Notably, another reference man (23 years) with andrological data would

actually be classified, based on WHO guidelines (World Health Organization, 2010), as an oligo-

zoospermia case (sperm concentration 12 � 106/ml vs threshold 15 � 106/ml). Also, his total sperm

counts (39.4 � 106/ejaculate) represented a borderline value.

Sequence diversity of the retained DAZ, BPY2, and CDY genes is
extremely low and has no detectable effect on sperm parameters
The re-sequenced retained DAZ1-4, BPY2, and CDY1-2 genes were characterized by extremely low

nucleotide variability in all Y-chromosomal lineages and deletion subtypes (Supplementary file 13).

For 476 samples (gr/gr, n = 40; b2/b3, n = 436), re-sequenced for the >94 kb region using Illumina

MiSeq, a total of 42 variants were identified with median 0.8 variants/kb and maximum two variants

per individual. Most of them were previously undescribed (Giachini et al., 2008), singletons

(Jobling and Tyler-Smith, 2017), and/or non-coding SNVs/short indels (Lu et al., 2011;

Supplementary file 14). The CDY2a-CDY2b genes harbored only one variable site, whereas DAZ1-

DAZ2 carried 24 or 26 SNVs/indels. Most variants appeared paralogous as both the reference and

alternative alleles were identified. Among the four detected missense variants, CDY1b p.T419N was

fixed in all three CDY1b copies present on the Y chromosome with the b2/b3 deletion plus b2/b4

duplications that represented an oligozoospermia case. However, the effect of this conservative sub-

stitution is unclear.

There was thus no evidence that the sequence variation in DAZ, BPY2, and CDY genes has any

effect on infertility related parameters in the subjects examined.

Discussion
We conducted a comprehensive investigation of partial deletion subtypes of the Y-chromosomal

AZFc region in 2324 Estonian men, approximately half with idiopathic spermatogenic impairment

(n = 1190) in comparison to the reference group (n = 1134). Importantly, 2000 men had undergone

full and uniformly conducted andrological workup at a single clinical center, facilitating fine-scale

genotype–phenotype analysis. Previously, no study had undertaken re-sequencing of the retained

DAZ, BPY2, and CDY genes along with the assessment of the Y haplogroup, dosage, and retained/

deleted genes in the gr/gr or b2/b3-deleted chromosomes in both infertile men and controls. Con-

cordant with the reports from other European populations, the gr/gr, but not the b2/b3 deletion, is

a risk factor for spermatogenic impairment in Estonian men with >2-fold increased susceptibility to

infertility (Figure 1D). However, the gathered data on the large group of reference men in the cur-

rent study demonstrated the existence of Y chromosomes carrying a gr/gr deletion without any

documented effect on andrological parameters (Supplementary file 3). As a novel finding, the study

uncovered complex AZFc rearrangements within a specific Y haplogroup, R1a1-M458 and its sub-lin-

eages, causing severe spermatogenic failure in the majority of carriers (Figure 3, Table 3). This Y

lineage has undergone a ~1.6 Mb r2/r3 inversion in the AZFc region that has disrupted the structure

of the palindromes P1 and P2, promoting subsequent recurrent deletions and consequently, severely

impaired the process of spermatogenesis.

Consistent with key early observations (Rozen et al., 2012; Krausz et al., 2009; Machev, 2004),

this study supports the recurrent nature and high subtype diversity of the AZFc partial losses that
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are currently considered jointly under the umbrella term ‘gr/gr deletions’. The 44 detected gr/gr

deletions in our study sample were estimated to have originated independently at least 26 times

across the Y phylogenetic tree and include seven different combinations of DAZ and CDY1 gene

losses. Apparently, there is a substantial undescribed heterogeneity in the spread and structure of

gr/gr deletions that in turn contributes to the phenotypic variability of the genetic effects. Unexpect-

edly, one in four Estonian gr/gr deletion carriers belonged to the Y-chromosomal haplogroup R1a1-

M458 (and its sub-lineages) (Figure 2A,B; 22.7% vs 5.1% reported as the Estonian population fre-

quency; Underhill et al., 2015). Notably, a previous study has reported a significant enrichment of

the haplogroup R1a (ancestral lineage to the R1a1-M458) among gr/gr-deleted chromosomes in the

Polish population (Rozen et al., 2012), which has a high prevalence, 25%, of R1a1-M458

(Underhill et al., 2015; Figure 4A, Supplementary file 15). All the Estonian gr/gr cases and also

additional b2/b3 deletion chromosomes representing this Y lineage carried unusual retained DAZ

gene pairs (DAZ1-DAZ3 or DAZ2-DAZ4) in combination with either CDY1a or CDY1b gene copy

(Figure 2). These complex AZFc rearrangements were best explained by a preceding (and appar-

ently fixed in R1a1-M458) ~1.6 Mb inversion between the homologous r2 and r3 amplicons, followed

by recurrent secondary partial AZFc deletions (Figure 3A). The latter are facilitated by large ampli-

conic segments positioned in the same orientation. Inversions in the AZFc region are not uncommon,

but none of the previously described inversions is expected to substantially disrupt the core palin-

dromic structure of the AZFc region (Figure 1—figure supplement 1; Repping et al., 2004;

Machev, 2004). In contrast, the r2/r3 inversion disrupts the structure of palindrome P1 and expands

the size of the P2 palindrome more than twofold (Figure 3A). The critical role of intact P1–P2 palin-

dromes in the AZFc structure is supported by the observation that no Y chromosomes have been

described with a single DAZ gene copy, whereas the inverted DAZ gene pairs form the ‘heart’ of

both P1 and P2. In future studies, long-read sequencing technologies should be applied to deter-

mine the detailed genomic structure of the AZFc region in the R1a1-M458 chromosomes and the

exact chromosomal breakpoints of the identified r2/r3 inversion and secondary deletion events in oli-

gozoospermia patients.

As a likely scenario, the r2/r3 inversion plus deletion may predispose to spermatogenic

impairment through substantial destabilization of the intra-chromosomal structure affecting meiotic
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recombination and chromosomal segregation. The removal of some specific genetic factor(s) being

responsible for the phenotypic outcome seems a less likely explanation as the gr/gr deletion loca-

tions are variable, and so far, no reproducible associations with the exact deleted regions or specific

gene copies have been identified. However, recent reports have uncovered an abundance of Y-chro-

mosomal non-coding RNAs and their potential functional involvement in spermatogenesis

(Johansson et al., 2019). The AZFc region contains at least one multicopy family of non-coding RNA

genes, TTTY4 (Testis-Specific Transcript, Y-Linked 4) with testis-enriched expression. These genes

are located in the three g1–g3 duplicons flanking the P1 and P2 palindromic ‘hearts’. The phenotypic

consequences of TTTY4 copy number changes are still to be studied. Among 12 Estonian subjects

carrying the AZFc r2/r3 inversion plus deletions and with available data for sperm counts, nine cases

exhibited severe spermatogenic failure, two cases had moderate oligozoospermia, and only one

case (aged 18 years) was normozoospermic (Figure 3B,C). This represented ~8- to 9-fold enrichment

of this complex rearrangement among men with severely reduced sperm counts (0–10 � 106;

Table 3). This genetic effect was observed specifically on the effectiveness of spermatogenesis,

whereas the measurements of bitesticular volume and reproductive hormone levels did not stand

out among the rest of analyzed infertile men. Unfortunately, none of the patients carrying the r2/r3

inversion plus deletion had undergone a testicular biopsy during their infertility workup. The histo-

pathological pattern of germ cell abnormalities among these cases remains to be investigated in fol-

low-up studies. This knowledge would facilitate understanding of the consequences this

Y-chromosomal rearrangement on spermatogenesis and so maximize the benefit of molecular diag-

nostics in evidence-based clinical management decisions.

To our knowledge, no other Y-lineage-specific risk variants for spermatogenic impairment have

been reported so far. Previously, the DAZ2–DAZ4 deletion had been shown as a high-risk factor for

male infertility in the Tunisian population, but the Y haplogroups of those subjects were not investi-

gated (Ghorbel et al., 2016). The survival of such a high-risk lineage in the population seems at first

sight surprising, but may be accounted for by its possible age-specific effects on spermatogenesis,

which may be exacerbated by the recent general decline in sperm count (Andersson et al., 2008).

In the past, this lineage may not have been disadvantageous. The possible age-related progressive

worsening of the reproductive phenotype among r2/r3 inversion plus deletion carriers should be

investigated in follow-up, ideally longitudinal, studies of sufficiently large numbers of patients to

make robust conclusions.

This study outcome has notable clinical implications for the improvement of molecular diagnostics

and reducing the proportion of idiopathic male factor infertility cases. In Northern and Central

Europe, the prevalence of R1a1-M458 haplogroup carrying the r2/r3 inversion ranges from ~1% in

the Netherlands and Denmark to ~2–5% in Austria, Hungary, Germany, Baltics, and most Balkan

countries, whereas it is widespread in Slavic populations and carried by 12–26% of men (Figure 4A,

Supplementary file 15; Underhill et al., 2015). In non-European populations, the R1a1-M458 Y

chromosomes are virtually non-existent (for details, see Underhill et al., 2015). However, in some

European populations, recurrent secondary AZFc partial deletions on Y chromosomes representing

the R1a1-M458 haplogroup (and its sub-lineages) may potentially explain from 0.3% up to ~9% of

cases presenting severe spermatogenic impairment (sperm counts < 10 million per ejaculate)

(Figure 4B). Further studies in other populations and large samples of patients and normozoosper-

mic controls are required to fully establish the value of extending the current recommended testing

of Y-chromosomal deletions by including the analysis of this novel Y-lineage-specific pathogenic

AZFc rearrangement.

The evidence from the literature has shown that the increased prevalence of either gr/gr or b2/b3

deletions in infertility cases appears to be population-dependent (Bansal et al., 2016a;

Bansal et al., 2016b). It can be speculated that also in other populations some specific Y lineages

may carry AZFc structural variants that in combination with partial deletions (or other rearrange-

ments) predispose to chromosomal instability in the complex process of spermatogenesis involving

multiple well-coordinated cell divisions. So far, the largest study of the Y-chromosomal phylogeny of

gr/gr deletion carriers included 152 infertile subjects representing seven countries with different

population genetic structures (Krausz et al., 2009). However, the number of cases per population

was low and the study included only 17 fertile men. Also, the study did not include fine-scale analysis

of Y sub-lineages and the retained gene content. Long-range re-sequencing of the whole AZFc

region in large numbers of men would be the preferred approach to uncover its structural
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complexity. Additional pathogenic AZFc rearrangements may also exist among Estonian infertile

men. Even after omitting the cases carrying a gr/gr deletion at the r2/r3 inversion background, a

non-significant enrichment of the remaining gr/gr deletion chromosomes can be observed in

patients compared to reference men (1.9 vs 1.1%, p<0.1; Table 2).

In addition to the main finding, our deep re-sequencing dataset revealed that neither the dosage,

sequence variation, nor exact copy of the retained DAZ, BPY2, and CDY1 gene showed any detect-

able effect on spermatogenic parameters. All chromosomes with AZFc partial deletions exhibit

extremely low overall sequence variation of the retained DAZ, BPY2, and CDY genes. This observa-

tion is consistent with previous reports showing low levels of genetic diversity of the human Y chro-

mosome (Jobling and Tyler-Smith, 2017) and suggesting that novel variants may be rapidly

removed by active gene conversion among Y-chromosomal duplicate genes or selective constraint

(Hallast et al., 2013; Rozen et al., 2003; Trombetta and Cruciani, 2017). Among the re-sequenced

382 chromosomes with b2/b3 deletions, no pathogenic mutations were detected in the single

retained BPY2 and CDY1 gene copies. At the same time, the high rates of large structural rearrange-

ments and copy number variation in the Y chromosome are well established, contrasting with low

levels of sequence variation (Teitz et al., 2018; Shi et al., 2019). One in five or six Estonian Y chro-

mosomes with gr/gr and b2/b3 deletions had undergone secondary rearrangements with no appar-

ent effect on tested andrological parameters and fertility potential (Table 2). In the literature, the

data about the effects of secondary duplications after an initial AZFc partial deletion on sperm

parameters are inconclusive. Some studies have suggested increased pathogenicity (Lu et al., 2011;

Yang et al., 2010; Lin et al., 2007; Ye et al., 2013; Yang et al., 2015), whereas others have

reported neutral or even positive effects on spermatogenesis (Krausz et al., 2009; Giachini et al.,

2008; Lo Giacco et al., 2014; Noordam et al., 2011). However, further copy number reductions in

this genomic region appear to be very rare – none of the 44 gr/gr or 631 b2/b3 deletion carriers

were identified with further reductions beyond what is expected from the initial deletion.

The current study is the largest and most detailed to date in terms of both the number of patients

with spermatogenic impairment and reference samples with available andrological data from a single

population, and detailed characterization of the genetic diversity of the AZFc region and phyloge-

netic background of the Y chromosomes. Yet, the total number of identified cases with the r2/r3

inversion followed by a deletion was relatively small and also inadequate to reach the statistical

power in association testing with andrological parameters. Follow-up replication studies utilizing

sample cohorts from populations with high(er) R1a1-M458 frequency (e.g. Polish, Czech) should be

undertaken to confirm the prevalence and significance of the identified risk variant. The biggest chal-

lenge of such studies is the availability of sufficiently large sample collections of both patients and

reference cases with andrological data. The identification of men with R1a1-M458 Y chromosomes

and characterization of subsequent deletion subtypes only require standard inexpensive laboratory

techniques such as PCR, restriction fragment length polymorphism (RFLP) analysis, and Sanger

sequencing.

In summary, we have undertaken a comprehensive study of the carriers of AZFc partial gr/gr and

b2/b3 deletions and uncovered high levels of structural variation in the AZFc locus, but low

sequence diversity of the coding genes within the region. As a major finding, we discovered a large

inversion specific to the Y lineage R1a1-M458 that represents a hotspot for subsequent AZFc partial

deletions. Men carrying Y chromosomes with this complex rearrangement have >10 fold increased

risk of severe spermatogenic failure, but the consequences of this risk could potentially be alleviated

by early identification of the variant carriers and facilitating the storage of their sperm samples. Our

study results thus have the potential to improve clinical diagnostics and management of idiopathic

impaired spermatogenesis in a significant fraction of men originating from Northern and Central

European populations.

Materials and methods

Study subjects
Patients with idiopathic spermatogenic impairment (n = 1190) were recruited at the Andrology Cen-

tre at Tartu University Hospital (AC-TUH) in 2003–2015 (PI: M. Punab). Included cases showed

reduced sperm counts (<39 � 106/ejaculate) in at least two consecutive semen analyses
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(World Health Organization, 2010). Recruitment and sampling, semen analyses, hormone assays,

and definition of idiopathic cases have previously been described in detail (Punab et al., 2017). Men

with known causes of male infertility detected during routine diagnostic workup were excluded,

for example cryptorchidism, testicular cancer, orchitis/epididymitis, mumps orchitis, testis trauma,

karyotype abnormalities, and complete Y-chromosomal microdeletions. The final idiopathic infertility

group included 104 azoospermia (no sperm), 88 cryptozoospermia (sperm counts > 0–1 � 106/ejacu-

late), 319 severe oligozoospermia (1–10 � 106), and 679 moderate oligozoospermia (10–38 � 106)

cases (Table 1, Supplementary file 1).

The reference sample of Estonian men (n = 1134) comprised healthy young men (n = 499) and

subjects with proven fatherhood (n = 635) (Table 1, Supplementary file 1). The cohort of ‘Estonian

young men’ (n = 499) was recruited at the AC-TUH in 2003–2004 (PI: M. Punab), representing a

healthy male group with median age 18.6 (17.2–22.9) years at the time of recruitment

(Grigorova et al., 2008). The subgroup of ‘Partners of pregnant women’ (n = 324) includes male

partners of pregnant women, recruited in 2010–2014 at the Tartu University Hospital and the West

Tallinn Central Hospital (Punab et al., 2017). Eight hundered and ten men (of 823) in these sub-

groups underwent sperm analysis.

The subgroup of ‘REPROMETA proven fathers’ (n = 311) was recruited in 2006–2011 at the Wom-

en’s Clinic at Tartu University Hospital during the REPROMETA study (PI: M. Laan), originally

designed to collect mother–father–placenta trios at delivery to investigate genetics of pregnancy

complications (Kikas et al., 2020; Pilvar et al., 2019). In this study, the REPROMETA fathers repre-

sented reference men with proven fertility. Only self-reported age and body mass index (BMI) data

were available for this subgroup.

All men, who had turned to Andrology Centre, Tartu University Hospital (AC-TUH) due to idio-

pathic infertility (n = 1190), as well as the participants of the ’Estonian young men’ cohort (n = 499)

and the subgroup ‘Partners of pregnant women’ (n = 324) were offered complete routine andrologi-

cal workup. The subjects were examined by specialist andrologists at the AC-TUH, who had received

respective training in clinical assessment and standardized andrological workup, locally and in collab-

oration with other European Andrology Academy (EAA)-accredited centers. Also, anthropometric

parameters were documented during clinical examination. Details are described in Punab et al.,

2017.

Physical examination for the assessment of genital pathology and testicular size (orchidometer;

made of birch wood, Pharmacia and Upjohn, Denmark) was performed with the patients in standing

position. The total testis volume is the sum of right and left testicles. The position of the testicles in

the scrotum, pathologies of the genital ducts (epididymitis and ductus deference), and the penis,

urethra, presence, and, if applicable, grade of varicocele were registered for each subject.

For 2000 study subjects, sperm analysis was performed, whereas 13 reference cases did not agree

with this procedure. Semen samples were obtained by patient masturbation, and semen analysis was

performed in accordance with the World Health Organization (WHO) recommendations. In brief,

after ejaculation, the semen was incubated at 37˚C for 30–40 min for liquefaction. Semen volume

was estimated by weighing the collection tube with the semen sample and subsequently subtracting

the predetermined weight of the empty tube assuming 1 g = 1 ml. For assessment of the spermato-

zoa concentration, the samples were diluted in a solution of 0.6 mol/l NaHCO3% and 0.4% (v/v)

formaldehyde in distilled water. The spermatozoa concentration was assessed using the improved

Neubauer haemocytometers.

Genomic DNA was extracted from EDTA-blood. After blood draw in the morning, serum and

plasma fractions were separated immediately for hormone measurements (FSH, LH, testosterone).

All laboratory analyses and routine genetic testing (karyotyping, Y-chromosomal microdeletions)

were performed at the United Laboratories of Tartu University Hospital according to the established

clinical laboratory guidelines. Detailed methodology and reference values for hormonal levels are

available by the service provider: https://www.kliinikum.ee/yhendlabor/analueueside-taehestikuline-

register.

Genotyping Y-chromosomal microdeletions
All study subjects (n = 2324) were typed for complete AZFa (loss of markers sY84 and sY86), AZFb

(sY127 and sY134), AZFc (sY254 and sY255), and partial AZFc deletions gr/gr (sY1291), b2/b3

(sY1191), and b1/b3 (sY1161, sY1191, and sY1291) following established PCR primers (Krausz et al.,
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2014; Lin et al., 2006; Supplementary file 16). The multiplex PCR contained the final concentra-

tions of 1� PCR buffer B1 (Solis Biodyne, Estonia), 2.5 mM MgCl2, 2.5 mM dNTP, 2 mM PCR primers

for STS markers sY1291 and sY1201, 3 mM PCR primers for STS markers sY1191, sY1206, and

sY1161 (Supplementary file 16), 1U FIREPol DNA polymerase (Solis Biodyne), and 10 ng of tem-

plate genomic DNA per reaction. The following PCR conditions were used: for 5 min at 95˚C, fol-

lowed by 32 cycles of 30 s at 95˚C, 30 s at 63˚C and 1 min at 72˚C, final extension of 10 min at 72˚C

and a 4˚C hold. The presence/absence of PCR products in a reaction were checked on 2% agarose

gel. Lack of amplification of STS marker sY1291 (but presence of all others) was used to determine

the gr/gr deletion and lack of sY1191 the b2/b3 deletion.

Re-sequencing of retained DAZ, BPY2, and CDY genes using Illumina
MiSeq
Re-sequencing of the exonic regions of the retained AZFc genes (according to Ensembl release 84,

RRID:SCR_002344) in 476 cases with either gr/gr or b2/b3 deletions targeted in total 94,188 bp per

subject. CDY, BPY2, and DAZ genes were amplified using 8, 10, or 26 PCR primer pairs, respectively

(Supplementary files 17 and 18). The presence of all amplicons was confirmed using gel electro-

phoresis. Amplicons were pooled in equimolar concentrations, barcoded per sample, and

sequenced (250 bp reads, paired-end) on Illumina MiSeq (RRID:SCR_016379) with at least 40� cov-

erage. BWA (v0.7.15, RRID:SCR_010910) (Li and Durbin, 2009) was implemented to map the

sequencing reads to a modified human genome reference (GRChg38), where CDY1a, CDY2a, BPY2a

and either DAZ3-DAZ4 (gr/gr carriers) or DAZ1-DAZ2 (b2/b3 carriers) remained unchanged, but the

sequences of other CDY, BPY2, and DAZ gene copies were replaced with ’Ns’. SNVs and indels

were identified using GATK HaplotypeCaller (v3.7, RRID:SCR_001876), with a minimum base quality

20 and outputting all sites (McKenna et al., 2010). Y-chromosomal phylogenetic markers were

called using bcftools (v1.8, RRID:SCR_005227), with minimum base quality 20, mapping quality 20

and defining ploidy as 1.

Re-sequencing included 31 patients and nine reference men with AZFc gr/gr deletions. Six men

carrying gr/gr deletions were not analyzed due to DNA limitations (two cases) or unavailable andro-

logical data (four cases). The analysis of b2/b3 deletion carriers included 382 patients (haplogroup

N3: n = 380; non-N3, n = 2) and 54 ’Partners of pregnant women’ (N3: n = 53; non-N3, n = 1).

Analysis of variant effects from the illumina MiSeq dataset
Variant effect prediction was performed using the Variant Effect Predictor tool (VEP, https://www.

ensembl.org/Tools/VEP, Ensembl release 99, RRID:SCR_007931) (McLaren et al., 2016). The Com-

bined Annotation Dependent Depletion (CADD) score � 20, that is, including variants among the

top 1% of deleterious variants in the human genome, was considered indicative of potential func-

tional importance of identified SNVs in the coding regions (Rentzsch et al., 2019).

Y-chromosomal haplogroup typing
Y lineages of the gr/gr samples were defined using 14 markers included in the re-sequencing, plus

34 additional markers determined by Sanger sequencing or restriction fragment length polymor-

phism (RFLP) analysis (Supplementary files 18 and 19). The b2/b3-deletion carriers were typed for

Y marker N3-M46 (Tat) (Zerjal et al., 1997). The sub-lineages of the re-sequenced haplogroup N3

samples were defined in more detail using 16 phylogenetic markers from the Illumina MiSeq dataset,

following established nomenclature (Ilumäe et al., 2016; Karmin et al., 2015). For the other hap-

logroups, nomenclature according to the International Society of Genetic Genealogy (ISOGG, ver-

sion 14.14) was followed.

The R1a1a1b1a1a-lineage-specific phylogenetic marker M458 (rs375323198, A > G polymor-

phism, GRCh38 genomic coordinate: chrY: 22220317), indicating the carrier status of r2/r3 inverted

Y chromosome was amplified using the following conditions: PCR contained the final concentrations

of 1� PCR buffer B1 (Solis Biodyne), 2.5 mM MgCl2, 2.5 mM dNTP, 10 mM forward and reverse PCR

primers for M458 (see Supplementary file 19 for primer sequences), 1U FIREPol DNA polymerase

(Solis Biodyne OÜ), and 10 ng of template genomic DNA per reaction. The following PCR conditions

were used: for 5 min at 95˚C, followed by 32 cycles of 30 s at 95˚C, 30 s at 52˚C and 1 min at 72˚C,

final extension of 10 min at 72˚C and a 4˚C hold. The presence of the M458 marker in derived state
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(instead of the ancestral allele ‘A’ presence of allele ‘G’ at position 147) was determined using

Sanger sequencing.

Determination of DAZ, BPY2, and CDY gene dosage and gene types
The Bio-Rad QX 200 Droplet Digital PCR system (RRID:SCR_019707) was used to quantify the copy

numbers of the retained DAZ, BPY2, and CDY genes for 44 gr/gr deletion carriers (31 cases, 13 ref-

erence men with sperm analysis data) and 631 b2/b3 carriers (382 cases/249 reference men) (Fig-

ure 2—figure supplement 1). The PCR primers and probes were designed using Primer3plus

(version 2.4.2, RRID:SCR_003081), PCR were performed according to the recommendations in the

Droplet Digital PCR Application Guide (Bio-Rad, U.S.) (Supplementary file 20) and described in

Shi et al., 2019. A XQ200 Droplet Reader was used to measure the fluorescence of each droplet

and QuantaSoft software (v1.6.6.0320; Bio-Rad) to cluster droplets into distinct fluorescent groups.

The copy number of each gene was determined by calculating the ratio of target (unknown – DAZ,

BPY2, or CDY) and reference (single-copy SRY gene) concentration. ddPCR for each gene were per-

formed once for every sample. For samples carrying the gr/gr deletion, if the copy number obtained

differed from the expected (two copies of DAZ and BPY2, three copies of CDY), then the ddPCR

reaction was repeated. For b2/b3 carriers, typing was repeated for all samples not carrying the two

most typical copy numbers (2-1-3 or 4-2-4 copies of DAZ, BPY2, and CDY genes, respectively). Addi-

tionally, a total of 5% of random samples were replicated. If the copy number estimates between

replicates differed by 0.8 or more, then a third replicate was performed, and the final copy number

was calculated as average of the two closest replicates.

The re-sequencing data of the DAZ genes covered nine paralogous sequence variants that were

used to determine the retained gene copies in the gr/gr and b2/b3 deletion carriers

(Supplementary file 21). For the validation of the DAZ gene copy mapping approach, at least five

gr/gr carriers were additionally typed for published SNV combinations differentiating the DAZ gene

copies (Machev, 2004; Fernandes et al., 2002). The retained CDY1 gene was identified according

to Machev, 2004.

Genetic association testing with andrological parameters
Statistical testing for the associations between AZFc gr/gr or b2/b3 deletions and andrological

parameters was conducted using RStudio (version 1.2.1335, RRID:SCR_000432), and data were

visualised using ggplot2 (version 3.2.1, RRID:SCR_014601) (Wickham, 2009). Differences in continu-

ous clinical variables between groups were compared using the non-parametric pairwise Wilcoxon

rank-sum test.

Genetic association with the carrier status of b2/b3 deletion and its subtypes was also tested

using linear regression analyses adjusted for age. For sperm parameters abstinence time and for

total testosterone levels, BMI estimates were additionally used as cofactors. Natural log transforma-

tion was used to achieve an approximately normal distribution of values. In all cases (except total

sperm counts), the applied transformation resulted in a close-to-normal distribution of values. For

the linear regression analyses, statistical significance threshold after correction for multiple testing

was estimated p<1.0�10�3 (six tests � eight independent parameters).
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