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Abstract

Background: Constructing gene coexpression networks is a powerful approach for
analyzing high-throughput gene expression data towards module identification,
gene function prediction, and disease-gene prioritization. While optimal workflows
for constructing coexpression networks, including good choices for data pre-
processing, normalization, and network transformation, have been developed for
microarray-based expression data, such well-tested choices do not exist for RNA-seq
data. Almost all studies that compare data processing and normalization methods for
RNA-seq focus on the end goal of determining differential gene expression.

Results: Here, we present a comprehensive benchmarking and analysis of 36
different workflows, each with a unique set of normalization and network
transformation methods, for constructing coexpression networks from RNA-seq
datasets. We test these workflows on both large, homogenous datasets and small,
heterogeneous datasets from various labs. We analyze the workflows in terms of
aggregate performance, individual method choices, and the impact of multiple
dataset experimental factors. Our results demonstrate that between-sample
normalization has the biggest impact, with counts adjusted by size factors producing
networks that most accurately recapitulate known tissue-naive and tissue-aware gene
functional relationships.

Conclusions: Based on this work, we provide concrete recommendations on robust
procedures for building an accurate coexpression network from an RNA-seq dataset.
In addition, researchers can examine all the results in great detail at https://
krishnanlab.github.io/RNAseq_coexpression to make appropriate choices for
coexpression analysis based on the experimental factors of their RNA-seq dataset.
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Background
Constructing gene coexpression networks is a powerful and widely used approach for

analyzing high-throughput gene expression data from microarray and RNA-seq tech-

nologies [1]. Coexpression networks provide a framework for summarizing multiple

transcriptomes of a particular species, tissue, or condition as a graph where each node
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is a gene and each edge between a pair of genes represents the similarity of their pat-

terns of expression. Coexpressed genes are highly likely to be transcriptionally co-

regulated and are often functionally related to each other by virtue of taking part in the

same biological process or physiological trait [2–5]. Many studies have leveraged these

properties to use coexpression networks in several important applications such as de-

termining co-regulated gene groups [6] and associating genes to functions and pheno-

types [7].

Nevertheless, multiple experimental factors impact the quantification of the expres-

sion of individual genes and the coexpression between pairs of genes, making it neces-

sary to normalize and transform high-throughput gene expression data before

downstream analysis. For RNA-seq data, examples of factors that affect the number of

reads mapped to a gene include gene length, gene sequence, sample RNA population,

and sequencing depth. Some factors have a greater effect on comparisons of gene

counts within a single sample (“within-sample” effects) while others have a greater ef-

fect on comparisons of the same gene’s counts in different samples (“between-sample”

effects) [8]. Many data normalization and transformation techniques have been devel-

oped to explicitly address one or more of these factors. An additional adjustment that

can be considered particularly in coexpression analysis is network transformation,

which is applied after calculating correlation between all gene pairs. Coexpression net-

works are noisy and can indiscriminately capture indirect interactions due to being esti-

mated from noisy, steady-state gene expression data. Hence, previous studies have

proposed methods to modify the raw coexpression network to upweight connections

that are more likely to be real and downweight spurious correlations based on the top-

ology of the network [9, 10]. Together, appropriately normalizing and transforming

RNA-seq data along with adequately transforming the coexpression strengths should

yield more accurate estimates of gene-gene coexpression that best capture functional

relationships between genes.

However, the best practices for normalization when building a coexpression network

from a raw gene-expression dataset have been developed and compared only for data

from microarrays [11, 12]. Over the past decade, coexpression network analysis is being

routinely applied to the exponentially increasing amount of data from RNA-seq, even

though the optimal procedure for network building has not been evaluated and honed

for RNA-seq data, particularly in regard to normalization and transformation. Although

many normalization strategies have been developed for RNA-seq data, they have mostly

been benchmarked only in the context of estimating differential gene expression [13–

17]. Very little work has been done so far to comprehensively compare these strategies

for normalization and network transformation (and their combinations) to construct

the most accurate coexpression networks from RNA-seq data, especially to ensure their

robust application to datasets typically generated by individual research groups [1].

The most relevant prior work focuses on establishing best practices that reduce the

introduction of artifacts in coexpression networks built from RNA-seq data [18]. This

study includes a sequential comparison of a select number of methods for transcript as-

sembly, normalization, and network reconstruction. However, the normalization com-

parison is based on 10 RNA-seq datasets, leaving considerable room for improvement.

First is to increase the number and diversity of datasets studied. This is vital for finding

robust procedures that work across datasets that can vary considerably in many
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respects, including sample size, sample variability, sequencing depth, tissue type, and

other experimental factors. Further, testing on a wide range of datasets is critical both for

the analysis of individual datasets as well as integrative analysis of hundreds/thousands of

datasets. Second, not only do more normalization and network transformation methods

need to be compared but how they might interact in combinations needs to be studied.

Third, the resulting networks need to be evaluated directly on the accuracy of the coex-

pression between gene pairs, instead of performance in a downstream task such as gene

function prediction, to ensure maximal utility of the network regardless of the subsequent

biological application. Finally, the evaluation metric needs to be informative considering

the fact that only a small fraction of all gene pairs in the genome are functionally related.

In this work, we present the most comprehensive benchmarking of commonly used

within- and between-sample normalization strategies and network transformation

methods for constructing accurate coexpression networks from human RNA-seq data.

We tested every possible combination of methods from different normalization and

network transformation stages. Our primary interest is in identifying robust combina-

tions of methods that consistently result in coexpression networks that accurately cap-

ture general and tissue-aware gene relationships across a large variety of datasets. This

will allow us to propose general recommendations useful for experimental research

groups analyzing their own RNA-seq data as well as computational researchers seeking

to build many coexpression networks from publicly available data for the purposes of

data/network integration. Towards this aim, we use hundreds of datasets, generated by

a consortium and by individual laboratories, covering multiple experimental factors.

We then test the resulting networks on both tissue-naive and tissue-aware prior know-

ledge about gene functional relationships. Based on these extensive analyses, we finally

provide concrete recommendations for normalization and network transformation

choices in RNA-seq coexpression analysis.

Results
Expression data, gold standard, and benchmarking summary

To test various within-sample normalization, between-sample normalization, and net-

work transformation methods (and their combinations) on a large data collection, we

started with gene count data from the recount2 database [19]. Recount2 contains data

from both the Genotype-Tissue Expression (GTEx) project [20] and the Sequence Read

Archive (SRA) [21] repository that have been uniformly quality-controlled, aligned, and

quantified to the number of reads per gene in the genome. Datasets from the GTEx

project allowed us to assess method performance on large, relatively homogeneous

datasets with high-sequencing depth and quality. The GTEx data was also critical for

investigating the impact of experimental factors such as sample size, which we per-

formed by doing multiple rounds of random sampling from GTEx datasets. Datasets

from SRA, on the other hand, were representative of heterogeneous, mostly small

experiments (median of 12 samples) that are generated by individual labs, with a

range of sequencing depths and qualities. In total, we used 9657 GTEx samples

and 6301 SRA samples from a total of 287 datasets (Table 1, Additional file 1: Fig.

S1; see the “Methods” section) and processed and evaluated these two collections

separately.
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After preprocessing each dataset using lenient filters in order to keep data for as

many genes and samples as possible (see the “Methods”), we compared methods

commonly used in RNA-seq analysis to effectively construct one coexpression net-

work per dataset (i.e., building 31 GTEx networks and 256 SRA networks). We fo-

cused on three key stages of data processing and network building: (a) within-

sample normalization: counts per million (CPM), transcripts per million (TPM),

and reads per kilobase per million (RPKM); (b) between-sample normalization:

quantile (QNT), trimmed mean of M values (TMM), and upper quartile (UQ); in

addition, we tested two new variations of TMM and UQ—counts adjusted with

TMM factors (CTF); counts adjusted with upper quartile factors (CUF)—that dir-

ectly adjust counts by the size factors but does not correct by library size; and (c)

network transformation: weighted topological overlap (WTO) and context likeli-

hood of relatedness (CLR). To systematically examine these methods and their in-

teractions, we built 36 different workflows covering all possible combinations of

choices (Fig. 1). For clarity, in the rest of the manuscript, we present individual

methods in regular font (e.g., TPM normalization) and italicize workflows (e.g.,

TPM, which is TPM combined with no between-sample normalization and no net-

work transformation, or TPM_CLR, which is TPM paired with just CLR). The

Counts workflow uses no within-sample normalization, between-sample

normalization, or network transformation, but is still transformed with the hyper-

bolic arcsine function.

Since this entire workflow is unsupervised, i.e., not reliant on prior knowledge

about gene relationships, we evaluated the resulting coexpression networks by com-

paring them to gold standards of known gene functional relationships. The gold

standards were built using experimentally verified co-annotations to specific bio-

logical process terms in the Gene Ontology [22]. These comparisons yielded evalu-

ation metrics that summarize how well the patterns of coexpression captured in

the network reflect known gene functional relationships (see Network Evaluation in

the “Methods” section and Supplemental Note). Further, gene activities and interac-

tions vary drastically depending on cell type or tissue. Hence, we also created

tissue-aware gold standards to assess whether the resulting networks were able to

recapitulate tissue-aware coexpression in addition to general “tissue-naive” coex-

pression. Tissue-aware gold standards were created for as many tissues as possible

by subsetting the naive gold standard using genes known to be expressed in a par-

ticular tissue. While area under the receiver operator curve (auROC) is frequently

used to estimate network accuracy, it does not account for the fact that only a

small fraction of gene pairs (out of the total possible) biologically interact. In the

Table 1 Summary of data used in this study. See Figure S1 and the “Methods” section for more
details

Data Source GTEx SRA

Number of samples 9657 samples 6301 samples

Number of datasets 31 datasets 256 datasets

Number of tissues 31 tissues 19 tissues

Median dataset size 197 samples 12 samples

Total 15,958 samples from 37 unique tissues

Johnson and Krishnan Genome Biology            (2022) 23:1 Page 4 of 26



gold standard, this imbalance is reflected by the number of negatives (non-interac-

tions) far outnumbering the positives (interactions) [23]. Therefore, we measured

network accuracy using area under the precision recall curve (auPRC), which em-

phasizes the accuracy of top-ranked coexpression gene pairs [24].

In total, for each of the 287 datasets from GTEx and SRA, we built one coex-

pression network per dataset using each of the 36 workflows, resulting in 8610

coexpression networks. Later on, we created 2430 additional datasets generated

by resampling GTEx that, when run through all the workflows, resulted in an-

other 72,900 networks. Each GTEx network contains 20,418 genes while each

SRA network contains 22,084 genes, and all networks are fully connected with

edges weighted by their strength of correlation. Each of these networks were eval-

uated using the tissue-naive gold-standard and, whenever applicable, the tissue-

aware gold-standard. Finally, we replicated the analysis of the top-performing

workflows using as many matched SRA datasets as possible from another RNA-

Seq repository, refine.bio [25], where read alignment and expression quantifica-

tion were done using different methods than recount2.

Fig. 1 Pipeline for benchmarking the optimal workflow for constructing coexpression networks from RNA-seq
data. The main pipeline was executed for the original GTEx and SRA datasets and a large collection of datasets
of different sizes resampled from the GTEx datasets. Three key stages—within-sample normalization, between-
sample normalization, and network transformation—where we tested method choices are highlighted in
different colors. All the other stages were composed of standard selection, filtering, and data transformation
operations. The coexpression networks resulting from all the workflows were evaluated using two gold-
standards that capture generic (tissue-naive) and tissue-aware gene functional relationships. Finally, all the
evaluation results were used to analyze the impact of various aspects of the workflows, methods, and datasets
on the accuracy of coexpression networks. Abbreviations: CPM (counts per million), RPKM (reads per kilobase
million), TPM (transcripts per million), QNT (quantile), TMM (trimmed mean of M values), UQ (upper quartile),
CTF (counts adjusted with TMM factors), CUF (counts adjusted with upper quartile factors), CLR (context
likelihood of relatedness), and WTO (weighted topological overlap)
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Overall performance of workflows

For all 36 workflows, Fig. 2 shows the overall performance of the networks resulting

from GTEx (left) and SRA (right) recount2 datasets based on evaluation using the

tissue-naive gold standard. Figure S2 shows the performance of these networks based

on the tissue-aware gold standards (when available). Overall, networks built from GTEx

datasets are far more accurate than those built from SRA datasets (Fig. 2, S2). In each

of the four cases—GTEx and SRA networks evaluated using tissue-naive and tissue-

aware gold standards—most of the top-performing workflows contain CTF or CUF

normalization. Further transforming the network with CLR (CTF_CLR and CUF_CLR)

results in top-tier workflows for the GTEx datasets regardless of gold standard. How-

ever, CLR transformation is only among top-performing methods for SRA datasets in

recovering tissue-aware gene relationships. Though CTF_CLR and CUF_CLR still per-

form quite well on the tissue-naive standard for SRA, there is a clear gap from the top

tier. Despite CTF- and CUF-containing workflows resulting in top performances, work-

flows that include other between-sample normalization methods are absent among the

top ten workflows for both GTEx and SRA. Workflows with TMM or UQ seem to be

more comparable to workflows using within-sample normalization methods.

The next noteworthy observation is that the top-tier workflows do not include a

within-sample normalization step. Yet, workflows that do include within-sample

normalization methods (CPM, RPKM, TPM) can perform better than many other

Fig. 2 Overall performance of workflows. The plots show the aggregate accuracy of all coexpression
networks resulting from each individual workflow using a GTEx and b SRA datasets, evaluated based on the
tissue-naive gold standard. The workflows (rows) are described in terms of the specific method used in the
within-sample normalization (blues), between-sample normalization (greens), and network transformation
(oranges) stages. The performance of each workflow is presented as boxplots (without outliers) that
summarizes the log2(auPRC/prior) of each workflow where auPRC is the area under the precision recall
curve (see the “Methods”). The workflows are ordered by their median log2(auPRC/prior) for the GTEx data.
The numbers inside the SRA boxes indicate rank by median log2(auPRC/prior) of the workflows for the SRA
data. Figure S2 contains these plots based on the tissue-aware gold standard
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workflows depending on other choices made in the pipeline, the best choice often is to

be paired with no other method or CLR alone. For GTEx datasets, CLR seems to gener-

ally result in slightly improved performance, while the WTO transformation almost ex-

clusively makes up the bottom tier of workflows. For building networks from SRA

datasets, although workflows including WTO do not exclusively end up in the bottom

tier (as is the case with GTEx data), adding WTO to a particular workflow always hurts

performance. The worst workflows for SRA in either standard are quantile

normalization (QNT) paired with CLR or WTO.

Dataset-level performance of workflows

Next, we dissected the aggregated results described above for GTEx and SRA as a

whole by examining the accuracy of these workflows on a per-dataset basis. First, we

compared pairs of workflows to each other and determined the proportion of datasets

in which one workflow outperformed the other across all GTEx and all SRA datasets

(Fig. 3, S3–5, heatmap colors). Second, we performed paired statistical tests to estimate

Fig. 3 Dataset-level pairwise comparison of workflow performance. a The heatmap shows the relative
performance of a pair of workflows, corresponding to a row and a column, directly compared to each other
for the GTEx datasets based on the tissue-naive gold standard. The workflows along the rows are depicted
using color swatches similar to Fig. 2. The color in each cell (row, column) represents the proportion of
datasets for which the workflow along the row has a higher log2(auPRC/prior) than the workflow along the
column. Comparisons that are statistically significant (corrected p < 0.01) based on a paired Wilcoxon test
are marked with an asterisk. Figure S3 contains the corresponding heatmap for the SRA datasets. b, c
Barplots show the number of times each workflow was significantly greater than another workflow for GTEx
and SRA datasets. Figures S4 and S5 contain these performance plots based on the tissue-aware gold
standard. d The table shows the most significant workflows across evaluation cases along with the number
of times a given workflow outperformed any other workflow for the GTEx and SRA datasets based on the
tissue-naive and tissue-aware gold standards
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the significance of the difference between the workflows (Fig. 3, S3–5, asterisks on the

heatmap). Finally, we scored each workflow based on the number of other workflows it

significantly outperforms (Fig. 3, S4 barplots). Based on this analysis, in the “GTEx-

naive” setting (i.e., networks from GTEx data evaluated on the tissue-naive gold stand-

ard), we observed that five workflows are all significantly more accurate than 31 other

workflows but not significantly different from one another (paired Wilcoxon rank-sum

test; corrected p value < 0.01; Fig. 3). Within these four workflows, CTF outperforms

CTF_CLR, CUF, and CUF_CLR on 58%, 61%, and 58% of GTEx networks, respectively.

The CTF workflow is also significantly better the most number of times compared to

other workflows in the SRA networks using the naive standard, although Counts and

CUF are only slightly behind CTF (Fig. 3, S3). These workflows tie for first place when

SRA networks are evaluated on the tissue-aware gold standards (Additional file 1: Fig.

S4, S5).

When the GTEx networks are evaluated on tissue-aware standards, there are much

fewer significant differences between workflows overall, with the exception of CTF_

CLR, CUF_CLR, and CLR being significantly greater than 28, 28, and 24 workflows, re-

spectively (Additional file 1: Fig. S4). Here, CTF_CLR performs better than CUF_CLR

on 57% of networks and better than CLR on 76% of networks. Despite having similar

median log2(auPRC/prior) values to CTF_CLR and CUF_CLR (Additional file 1: Fig.

S2), the CUF and CTF workflows only perform significantly better than another work-

flow a handful of times (Additional file 1: Fig. S4). This suggests that including CLR in

the workflow is especially helpful in capturing tissue-aware coexpression in the GTEx

networks.

Again, the impact of within-sample normalization varies depending on the choice of

the other methods in the workflow. TPM_CLR is generally the top-performing work-

flow among those including within-sample normalization across evaluation cases,

though TPM slightly outperforms TPM_CLR for the SRA networks evaluated on the

naive standard (Fig. 3 and S3).

The impact of network transformation is similar between GTEx and SRA data, but

there is disagreement in the very top method. With GTEx, workflows that include CLR

tend to be significant the most number of times, while WTO-containing workflows

tend to be the least. Not a single workflow with WTO significantly outperformed any

workflow without it for GTEx based on the tissue-aware gold standard (Additional file

1: Fig. S4). On the other hand, CLR workflows perform well on the SRA networks, but

do not constitute the workflows that were significantly greater than another the abso-

lute most number of times (Additional file 1: Fig. S3 and S5). WTO hurts performance

in every case even here. Pairing either CLR or WTO with quantile normalization

(QNT) yields particularly poor performance in the SRA networks. All together, these

results suggest that CTF yields the most accurate coexpression network by a very close

margin and CLR can further improve the network in select cases.

Impact of individual methods on performance of workflows

Though the previous analyses shed light on the contributions of individual methods,

we wanted to more explicitly assess how choosing or not choosing a particular within-

sample normalization, between-sample normalization, or network transformation

Johnson and Krishnan Genome Biology            (2022) 23:1 Page 8 of 26



affects general performance of any given workflow. To this end, for each method, we

calculated the proportion of times that workflows that include a particular method per-

formed significantly better than workflows that did not include the method (Fig. 4; see

the “Methods” for details).

This analysis clearly shows that, in all four cases (GTEx and SRA, each with tissue-

naive and tissue-aware standards), utilizing any within-sample normalization method

results in worse overall performance than not using it (Fig. 4 and S6). Among within-

sample normalization methods, TPM usually performs slightly better than CPM and

RPKM. CTF and CUF are the best between-sample normalization methods. Their per-

formances are exactly equal for GTEx data evaluated on either standard and for SRA

data evaluated on the naive standard; CTF is slightly better than CUF for SRA data in

the tissue-aware standards. However, doing no between-sample normalization performs

quite well too, only narrowly worse than CTF or CUF. It is clear in all four cases that

TMM, UQ, and quantile normalization (QNT) are vastly outperformed. Network trans-

formation is the group most obviously different between GTEx and SRA data, with

CLR being the clear winner for GTEx, while not doing any network transformation is

significant many more times for SRA regardless of gold standard (Fig. 4 and S6).

Impact of varying experimental factors on performance of workflows

The reason we included SRA data in this study is that SRA datasets are very represen-

tative of expression datasets typically generated by numerous individual laboratories.

Accordingly, these datasets vary considerably in terms of multiple factors including

sample size, sample similarity, number of mapped reads, and tissue type. Though these

factors impact the quality of coexpression networks derived from the individual data-

sets, it is hard to tease out the effect of each of these factors (controlling for others) on

Fig. 4 Impact of individual methods on performance of workflows. Each bar in the two barplots,
corresponding to a specific method, shows the proportion of times (x-axis) that workflows including that
particular method (y-axis) were significantly better than other workflows. The barplots correspond to
performance for the a GTEx and b SRA datasets evaluated on the tissue-naive gold standard. In order to
make the comparison of between-sample normalization methods fair, workflows also including CPM, RPKM,
or TPM were left out because it is not possible to pair them with CTF/TMM/CUF/UQ normalization. Similarly,
CTF/TMM/CUF/UQ methods are not included for “no within-sample normalization” (NO–WI). Figure S6
contains these barplots based on the tissue-aware gold standard

Johnson and Krishnan Genome Biology            (2022) 23:1 Page 9 of 26



the accuracies that we observed using different workflows on SRA data. Therefore,

using the large GTEx datasets, we created a collection of SRA-like datasets to more

closely examine the impact of each experimental factor. First, we determined the nine

sample sizes (5, 6, 7, 9, 11, 13, 16, 25, and 40) that are representative of SRA datasets.

Then, from each GTEx tissue dataset with at least 70 samples, we randomly selected

samples to create ten datasets for each sample size (see the “Methods” section). We

then applied all 36 workflows to construct coexpression networks from each one of

these datasets. The resulting 72,900 networks were used to investigate the effects of

varying each experimental factor by counting the number of times a given workflow

significantly outperformed any other workflow (Fig. 5). In addition to this analysis with

these resampled data, we also examined the effect of sample similarity and number of

mapped reads (see Experimental factor analysis in the “Methods” section) directly in

the SRA data by splitting the datasets into five equal size bins based on each of these

factors and determining the number of times a given workflow was significantly better

than another within each bin (Additional file 1: Fig. S7).

Fig. 5 Impact of various dataset-related experimental factors on performance of workflows. Each heatmap
shows the number of times (cell color) each workflow (row) outperforms other workflows as a particular
experimental factor pertaining to the input datasets is varied (columns), when the resulting coexpression
networks are evaluated based on the tissue-naive gold standard. The darkest colors indicate workflows that
are significantly better than the most other workflows. In addition, the top 5 workflows in each column are
marked with their rank, with ties given minimum rank. The heatmaps on the top (a–d) correspond to
datasets from GTEx resampling and those on the bottom (e–h) correspond to SRA datasets. The heatmaps
from left to right show workflow performance by sample size (a, e; number of samples used to make the
coexpression network), sample similarity (b, f; median spearman correlation of 50% most variable genes
between samples), read count diversity by counts (c, f; standard deviation of counts sums across samples),
and tissue of origin (d, h). Figure S7 contains these heatmaps based on the tissue-aware gold standard
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In the GTEx-resampled data, CTF was significantly better than all other workflows

for sample sizes 5 through 40 when using the naive standard for assessment (Fig. 5).

CUF is a close second, performing significantly better than all workflows other than

CTF at sample sizes 7 through 40. Using only Counts (no normalization) is surprisingly

effective, especially at lower sample sizes, while CTF_CLR and CUF_CLR improve per-

formance with increasing sample size. In fact, when all samples from a given GTEx tis-

sue are used (≥70 samples), there is no significant difference between CTF, CUF, CTF_

CLR, and CUF_CLR. CLR is the next best workflow after those top four. The only other

workflows that are ever ranked in the top five are CTF_WTO and CUF_WTO and that

too only at low sample sizes (5–7). Based on the tissue-aware standards, CTF_CLR is

the most effective workflow on all sample sizes except 5, where CTF and CUF are the

top workflows (Additional file 1: Fig. S7). For the highest two sample sizes (25 and 40),

CTF_CLR is substantially better than all other workflows. The only workflows ranked

in the top five in sample sizes 5 through 40 are CTF_CLR, CUF_CLR, CLR, CUF, CTF,

and TPM_CLR. CTF and CUF also perform well on the SRA data evaluated on the

naive standard, being the top workflows in all five sample size groups (Fig. 5). Perform-

ance on the tissue-aware standards is slightly more variable, with Counts, CTF, and

CUF being top ranked in lower sample size groups and CLR, CUF_CLR, and CTF_CLR

performing better in the highest sample size group (Additional file 1: Fig. S7). Again, it

is clear that CTF and CUF are superior methods, with CLR improving performance in

select cases.

Sample similarity and read count diversity analyses show similar results to those from

sample size analysis. When evaluating the GTEx-resampled data on the naive standard,

CTF is almost always significantly better than every other workflow across all groups,

while evaluating on the tissue-aware gold standards ranks CTF_CLR as the top work-

flow most consistently (Fig. 5, Additional file 1: Fig. S7). In both standards, CTF, CUF,

CLR, CTF_CLR, CUF_CLR, and Counts are the workflows consistently showing up in

the top five ranks. The SRA networks evaluated on either standard have CTF, CUF,

and Counts showing up in the top three ranks across most groups, with CLR, CTF_

CLR, and CUF_CLR making up most of the other workflows in the top five ranks (Fig.

5, Additional file 1: Fig. S7).

Tissue is the factor that shows the most variability in terms of what makes up the top

workflows, especially when evaluating on tissue-aware gold standards. This is due in

part to the fact that splitting experiments by tissue results in the smallest groups, mak-

ing significance more difficult to detect. Nevertheless, the top workflows from the ana-

lyses of other factors still have the best overall performance across all tissues. In the

GTEx-resampled data, CTF is the top-ranked workflow most often based on the naive

gold standard. CUF and Counts are almost always in the top five most significant work-

flows, while CTF_CLR, CUF_CLR, and CLR show up often. When evaluated on tissue-

aware gold standards, CTF, CLR, and CTF_CLR are ranked number one more fre-

quently than any other workflow, but they are not as consistent as CTF in the naive

standard. CUF and CUF_CLR are the other top-performing workflows, but a handful of

other workflows enter the top five ranks in at least a few tissues. For SRA, only tissues

that had more than fifteen separate experiments were used in the significance analysis

(Additional file 1: Fig. S1). On the naive standard, CUF, CTF, or Counts were always

the most significant workflow in any given tissue and CLR, CTF_CLR, and CUF_CLR
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were usually in the top five. A similar if less consistent pattern can be observed from

the tissue-aware evaluations. Taken together, these results suggest that the top-

performing methods are largely robust to common experimental factors that vary from

experiment to experiment. This property is critical because, to be practically beneficial,

the best workflow for constructing coexpression networks should result in accurate

coexpression networks irrespective of variations in these experimental factors.

Impact of varying alignment and counts quantification performance of workflows

So far, our analysis has considered datasets from the recount2 database. This has

allowed us to evaluate the performance of each workflow on a large, diverse set of

datasets which have been uniformly aligned and transformed into gene counts.

However, this begs the question of whether the observed results—especially the top

performance of CTF, CUF, and Counts—would hold when different methods for

read alignment and counts quantitation are used. To determine whether this is the

case, we matched as many of our recount2 SRA datasets as possible to those from

refine.bio [25], another RNA-seq repository that uses completely different methods

for alignment and quantification. This turned out to be 186 datasets in the naive

evaluation and 163 of those could be evaluated with a tissue-aware standard. Un-

fortunately, GTEx data is not available from refine.bio. In this new analysis, we left

out the worst performing methods in each tested category, i.e., RPKM, QNT, and

WTO for within-sample normalization, between-sample normalization, and network

transformation, respectively. This leaves us with 14 workflows to evaluate on the

refine.bio datasets.

In the naive evaluation, CTF, CUF, and Counts are once again the top-tier workflows.

However, the CUF workflow significantly outperforms the other two across all datasets

(Fig. 6). The second tier consists of CTF_CLR, CUF_CLR, and CLR, though it is not

quite as well separated from the remaining workflows. The tissue-aware evaluation

shows much less separation between CUF, CTF, Counts, CTF_CLR, CUF_CLR, and

CLR in terms of overall performance measured by log2(auPRC/prior), but CTF and

CUF significantly outperform more workflows than any other (Additional file 1: Fig.

S8). In summary, we replicated the ranking of coexpression workflows using RNA-seq

data processed with an entirely different pipeline for alignment and quantification.

The general trends presented above are all based on network accuracy measured

using a metric based on the area under the precision-recall curve (log2(auPRC/

prior)). These trends also hold when network accuracy is measured using precision

at low recall, which focuses on maximizing the number of functional gene pairs

among the high-scoring gene pairs instead of focusing on recovering all functional

gene pairs. Put another way, the trends described above hold even when a thresh-

old is applied to the coexpression network to retain just the high-scoring gene

pairs for subsequent analysis. For the sake of completion, we have also evaluated

all networks using the area under the ROC curve (auROC). All these results based

on three different evaluation metrics (log2(auPRC/prior), precision at 20% recall,

and auROC) are available as a consolidated webpage at https://krishnanlab.github.

io/RNAseq_coexpression that researchers can explore to easily examine the per-

formance of various workflows based on the properties of their RNA-seq dataset.
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Discussion
Despite the utility and growing popularity of coexpression analysis of RNA-seq data,

relatively little focus has been devoted to identifying the optimal data normalization

and network transformation methods that result in accurate RNA-seq-based coexpres-

sion networks. Here, we present the most comprehensive analysis of the effects of com-

monly used techniques for RNA-seq data normalizations and network transformation

on gene coexpression network accuracy (Fig. 1). We implemented 36 network-building

workflows—one for every combination of within-sample normalization, between-

sample normalization, and network transformation methods—and we ran each work-

flow on hundreds of RNA-seq datasets from GTEx and SRA. The resulting coexpres-

sion networks were evaluated using both known tissue-naive and tissue-aware gene

functional relationships to ensure that the networks were tested for capturing not just

generic gene interactions but also interactions relevant to the tissue under consider-

ation (Additional file 1: Fig. S9, Fig. S10). The evaluations shed light on several key as-

pects of the impact of within-sample normalization, between-sample normalization,

and network transformation methods (and their interplay) on the accuracy of the

resulting coexpression networks.

Impact of within-sample normalization

Within-sample normalization—commonly executed by converting gene counts to

CPM, RPKM, or TPM—corrects for factors such as library size and gene length. As

gene length biases both gene counts and their downstream analysis [26], it is not very

surprising that TPM usually outperforms CPM, as CPM only corrects for library size

and not gene length. However, the order in which gene-length and library-size correc-

tion are combined appears to be important. For example, studies have shown that

Fig. 6 Overall performance of workflows and pairwise-comparison using refine.bio datasets. The boxplots
show the aggregate accuracy of all coexpression networks resulting from each individual workflow using
SRA datasets in refine.bio, evaluated based on the tissue-naive gold standard. The performance of each
workflow is presented as boxplots (without outliers) that summarizes the log2(auPRC/prior) of each
workflow, where auPRC is the area under the precision recall curve (see the “Methods”). The workflows are
ordered by their median log2(auPRC/prior). The heatmap shows the relative performance of pairs of
workflows (rows and columns) compared to each other for the refine.bio SRA datasets based on the tissue-
naive gold standard. The color in each cell (row, column) represents the proportion of datasets for which
the workflow along the row has a higher log2(auPRC/prior) than the workflow along the column.
Comparisons that are statistically significant (corrected p < 0.01) based on a paired Wilcoxon test are
marked with an asterisk. Figure S8 contains these plots based on the tissue-aware gold standard
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RPKM, which first corrects for library size and then for gene length, is inferior to other

methods in differential expression analysis and is not recommended [13–15]. Some

studies have also noted that using RPKM does not necessarily take away the length bias

in gene expression and can be unduly influenced by relatively few transcripts [13, 27].

TPM was proposed as an improvement over RPKM by first correcting for length and

then by library size. Thus, the resulting expression values more accurately reflect the

“relative molar concentration” of an RNA transcript in the sample [28]. TPM

normalization scales every sample to the same total RNA abundance (i.e., the same

total sum of TPM values). Thus, gene expression across samples becomes more com-

parable when TPM normalized than when RPKM normalized. Consistent with these

previous studies, we find that RPKM generally results in lower-performing coexpression

networks and that TPM consistently outperforms CPM and RPKM, and can even occa-

sionally perform better than the general top-performers CTF and CUF. Finally, since a

number of technical and biological factors affect the size and makeup of the sample li-

brary, TPM has been found to be most effective when comparing samples from the

same tissue type and experiment [29]. This observation could explain the good per-

formance of TPM in our work wherein only samples within a dataset are compared

and analyzed together to construct a coexpression network.

Impact of between-sample normalization

Next, our results reinforce the expectation that between-sample normalization (using

techniques such as CTF and CUF) leads to the largest improvement in coexpression ac-

curacy. These methods are designed to make expression values across samples more

comparable to one another, an aspect critical for coexpression analysis. However, QNT,

a between-sample normalization method that is most commonly used with microarray

data, performs very poorly for RNA-seq data. This is likely because QNT forces the dis-

tribution of samples to be exactly the same, meaning that each gene value is forced to

be a particular quantile value. Consequently, it does not suit situations where there

truly are different numbers of genes that are expressed outside of the typical ranges

across samples [8, 30], an effect that is further exacerbated in RNA-seq data because it

has a larger dynamic range than microarray data. Genes with extreme values would not

influence CTF or CUF normalization because they are explicitly excluded from the cal-

culation of adjustment factors. CTF specifically finds a subset of genes that are probably

not differentially expressed between samples to make gene values comparable across

the entire group, while CUF uses only the upper quartile gene values to adjust samples.

This makes both normalizations robust to a number of highly or lowly expressed genes.

However, large-scale changes in gene expression or high amounts of asymmetry, e.g., a

large difference in the number of genes expressed above the typical range versus

expressed below the typical range, violate these assumptions [8]. In our test cases, CTF

and CUF performed the best, but it is possible that violation of their base assumptions

may occur in specific disease conditions or external perturbations, leading to a signifi-

cant decrease in their performances. The relatively lower performance of TMM and

UQ, which are essentially CTF and CUF with library size correction, implies that library

size correction is not the most helpful normalization strategy for building coexpression

networks based on linear correlation measures. As noted below, measures such as
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Pearson correlation automatically include a standardization of gene expression across

samples, which could explain why additional library size correction may not be needed.

This implication is also supported by the Counts workflow outperforming within-

sample normalization workflows.

Impact of network transformation

Network transformation is where there is most disagreement between GTEx and SRA

data. CLR was the best network transformation method for GTEx data, while doing no

transformation of the coexpression values gave the best results for SRA data. The most

pronounced factor that explains this difference is sample size. The median sample size

of SRA datasets is 12, while that of GTEx datasets is 197. Only four GTEx datasets have

less than 70 samples (Additional file 1: Fig. S1). Furthermore, GTEx resampling analysis

showed that CTF_CLR and CUF_CLR improve with increasing sample size on the naive

standard (Fig. 5) and to a lesser extent on the tissue-aware standards (Additional file 1:

Fig. S7) since CLR tended to already have better performance in general on tissue-

aware standards than on the naive gold standard. For each gene pair, CLR adjusts the

edge weight based on its value in relation to the distribution of edge weights for the in-

dividual genes in that pair to all other genes in the network. So, our hypothesis is that

having a larger sample size results in a better estimate of each edge weight as well as

the distribution of edge weights for each gene, which in turn increases CLR’s accuracy.

Supporting this hypothesis, other studies have noted an association between larger

sample size and more accurate coexpression networks [18, 27] and subsequent network

transformation with CLR [31]. WTO, on the other hand, performs poorly for both

GTEx and SRA data. WTO adjusts the edge weight between gene pairs based on

whether they share strong connections to the same set of genes in the network. There-

fore, while CLR relies on summary statistics (mean and standard deviation) of edge dis-

tributions to adjust the edge weight between each gene pair, WTO relies on the actual,

likely noisy, coexpression values, which may contribute to its inferior performance. It is

also possible that CLR’s strategy more effectively deals with the mean-correlation rela-

tionship bias, or the observation that highly expressed genes tend to be more highly

coexpressed, by capturing them as summary statistics, without relying on the fact that

each of the correlation estimates are correct [32, 33]. This may, in turn, explain why

CLR tends to perform better on tissue-aware gold standards than on our naive gold

standards, since genes that are ubiquitously expressed (and therefore involved in gen-

eral, tissue-naive interactions) tend to be more highly expressed [34].

Impact of data transformation

RNA-seq data analyses typically benefit from a data transformation that stabilizes the

variance across mean values, i.e., renders the data more homoskedastic, because, in its

untransformed form, the expected variance grows with the mean for gene counts [35].

A standard procedure when working with RNA-seq (or even microarray) data for either

differential expression analysis or coexpression analysis is to log transform gene counts.

Since gene counts for several genes can be zero, the typical manner in which log

transformation is applied to RNA-seq data is to add a pseudocount (of 1, for ex-

ample) to every gene’s count (say, “x”) before taking the log (i.e., log(x + 1)).
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However, adding a constant pseudocount to all genes is disadvantageous because

low gene counts are disproportionately increased compared to high gene counts

before log transformation (e.g., 1 + 1 is a 100% increase for a gene count of 1, but

941 + 1 is almost a negligible increase). The hyperbolic arcsine (asinh) transform-

ation—log( x + √(x2 + 1))—mitigates this effect [36]. The asinh function is defined

along the entire real number line and circumvents the need for predefining a con-

stant pseudocount and instead calculates a pseudocount for each gene that is pro-

portional to that gene’s original count. Therefore, it has a compression effect like

the natural log function but much less so for small values of x [37]. Due to this

advantage, each of our workflows uses the asinh transformation. However, since

asinh has not been explicitly tested before (to the best of our knowledge), we ana-

lyzed the impact of this transformation on the coexpression network accuracy. We

find that the asinh transformation yields an improvement in performance over no

data transformation for our top ten workflows in GTEx and SRA datasets (Add-

itional file 1: Fig. S11). It is worth noting that the Counts workflow performs well

despite not incorporating any within- or between-sample normalization but only an

asinh transformation. We speculate that this good performance is due to the vari-

ance stabilization provided by the asinh transformation along with the across-

sample normalization of gene expression vectors inherent within the calculation of

the Pearson correlation coefficient.

The popular R package for differential expression analysis, DESeq2 [35], offers two

other data transformations for gene counts: variance stabilizing transformation (VST)

[38] and regularized logarithm transformation (rlog) [35]. Both transformations are

similar to the log transformation of adjusted counts along with a pseudocount param-

eter that is chosen in a data-driven manner. These transformations consider between-

sample effects like library size and are designed to only be used on counts data as part

of calculating differential gene expression. Nevertheless, these transformations could in

theory be applied to coexpression analysis. Hence, we compared asinh, VST, and rlog

along with their combinations with network transformation methods and found that

asinh is the best transformation for coexpression analysis in our all evaluations (Add-

itional file 1: Fig. S12–15). The VST and rlog may perform better when supplied with

sample group information. Therefore, we do not recommend the use of either trans-

formation in DESeq2 for large-scale application to publicly available RNA-seq datasets

for coexpression analysis.

Recommendations for building coexpression networks from RNA-seq data

By constructing coexpression networks for diverse datasets from both GTEx and SRA,

we were able to evaluate workflows on large, homogeneous datasets as well as smaller,

heterogeneous datasets to identify methods that are robust to differing technical and

biological factors. Although there is some variation in performance between GTEx and

SRA data, and slightly more variation introduced by tissue-aware gold standards, many

trends are consistent across datasets and evaluations. Based on all our results, we make

the following recommendations for building coexpression networks from RNA-seq data

using Pearson or Spearman correlation:
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� If gene counts are available, use CTF or CUF to normalize the data. They

consistently give the best performance regardless of various factors. Between the

two, CTF seems to be slightly more consistent in yielding top performance. Even

though no normalization (Counts) leads to good performance in our study, applying

the additional normalization step is prudent to ensure robustness against

variabilities specific to a new dataset.

� If data is only available after within-sample normalization, use TPM for coexpres-

sion analysis. Data in CPM and RPKM units can be easily converted to TPM. TPM

outperforms CPM and RPKM and yields consistently reasonable performance.

� After normalization, perform log transformation (using asinh) and calculate

coexpression using Pearson correlation coefficient.

� If the dataset has greater than 40 samples, use CLR to transform the pairwise gene

correlations. CLR may also help certain cases where the main interest is

interactions that are specific to a given tissue.

� QNT and WTO hurt performance in combination with every other method, in all

cases, and should not be used.

To enable researchers to explore all our analyses in a streamlined manner and find

the results most relevant to their own RNA-seq datasets of interest, we have made

them available as a rich webpage written with R Markdown: https://krishnanlab.github.

io/RNAseq_coexpression.

Potential future applications and extensions

Going forward, we can leverage this comprehensive benchmarking framework for coex-

pression analysis to answer newer and subtler questions about data quality and sample

composition. For example, many studies have found that removing unwanted variation,

i.e., noise caused by technical rather than biological factors, in the RNA-seq data has

led to improvements in downstream analysis including the calculation of coexpression

networks [39, 40]. Such corrections are often done using SVD-based methods, includ-

ing removing the first (or the first few) principal components. However, caution must

be taken when using these methods as they may easily remove biological signals from

the data [41], especially in typical small-to-medium-sized datasets produced by most re-

search labs (e.g., represented in SRA). Future work using our framework could help

learn the guidelines for deciding which and how many factors to remove while carefully

considering the various properties of the data and the biological objective of the ana-

lysis. For instance, one could explore if different tissues might be sensitive to different

technical factors; signal from blood is often heavily influenced by the large variation in

cell type composition but the brain is much more greatly affected by the post-mortem-

interval [42]. Another related and open question is how cell type composition influ-

ences gene coexpression calculated from bulk tissue data. Some studies have concluded

that gene coexpression networks are heavily confounded by this factor [43, 44], while

others have shown that coexpression derived from single-cell data is very similar to

bulk coexpression [45, 46]. Finally, a similar framework could also be used to explore

the best procedure for building coexpression networks from single-cell RNA-seq data,
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which has an entirely different set of challenges [47] that call for an entirely separate

benchmarking effort.

Conclusions
We have performed an extensive benchmarking and analysis of how data normalization

and network transformation impact the accuracy of coexpression networks built from

RNA-seq datasets. Based on this work, we have arrived at concrete recommendations

on robust procedures that will generally lead to best coexpression networks. Specific-

ally, using Counts adjustment with TMM Factors (CTF) and Counts adjustment with

Upper quartile Factors (CUF) normalizations to construct coexpression networks re-

sults in the most consistently high accuracy networks, and using CLR to transform the

network can further increase accuracy in select cases. All the results from this study—

for GTEx, SRA, and GTEx resampling datasets, based on tissue-naive and tissue-aware

gold standard, using three different evaluation metrics—are available as a consolidated

webpage at https://krishnanlab.github.io/RNAseq_coexpression. Researchers can use

this website to easily examine the performance of various workflows and make appro-

priate choices for coexpression analysis based on the properties of their RNA-seq data-

set of interest. All the scripts to reproduce our results are available at https://github.

com/krishnanlab/RNAseq_coexpression [48], along with scripts that researchers can

use to create coexpression networks from their datasets of interest. Finally, all the coex-

pression networks constructed in this study are available at https://doi.org/10.5281/

zenodo.5510567 [49].

Methods
Data collection

Read counts for both SRA and GTEx datasets were downloaded from the recount2

database [19] and processed separately. Recount2 aligns all sequenced reads using Rail-

RNA, which eliminates the effect of using different alignment software on separate ex-

periments. We obtained SRA data for any tissue with at least five separate experiments

that each had at least five samples. The set of samples from each experiment (project)

was considered as an individual dataset from which coexpression networks are inferred

(one network per dataset). If a given experiment had samples from multiple tissues, the

samples were divided into multiple datasets that each contain samples from the same

tissue to yield 543 candidate SRA datasets. We downloaded all available GTEx data,

which was a total of 9657 samples from 31 tissues.

Preprocessing

As a form of quality control, we excluded experiments that recount2 identified as hav-

ing a misreported paired-end status. Experiments that contained “cell line,” “celll line,”

“passage,” “cultured cells,” or “cell culture” in the characteristics metadata were also re-

moved so as to retain primary tissue samples, which left 341 SRA datasets. Next, we

discarded low-coverage samples that had zero expression (counts) in at least half of all

genes of interest (lncRNA, antisense RNA, and protein-coding genes) and subsequently

excluded entire datasets that no longer contained five or more samples. Any dataset

that had a sample removed under these criteria was not retained due to dropping below
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five samples. Retaining only tissues that still had at least 5 separate experiments left

256 datasets. Finally, we removed genes with very low expression across the board by

filtering out those that did not have at least one read per million sample reads in at

least 20% of the samples in at least one dataset. This resulted in 22,084 genes in the

SRA networks and 20,418 genes in the GTEx networks. Our filtering steps are

intentionally relaxed, to retain as much data as possible without keeping large amounts

of completely uninformative data.

Calculating gene counts

Recount2 stores quantified expression as base pair counts per gene. We converted

these values into gene counts by dividing these base pair per gene counts by the aver-

age read length in the sample and accounted for paired-end read samples by further

dividing by a factor of two.

Refine.bio data collection and processing

To evaluate the workflows on RNA-Seq data processed with different read alignment

and counts quantification methods, we matched as many SRA datasets in our final re-

count2 data corpus as possible to data in refine.bio. In some cases, not every sample in

a recount2 dataset was available in the refine.bio database. If the number of missing

samples dropped the dataset to less than 5 samples, we did not use that dataset to con-

struct a network. This procedure brought the total number of usable refine.bio datasets

to 188, most of which (120/188) contained all of the samples that were used in the re-

count2 datasets. These datasets were downloaded from refine.bio as unnormalized tran-

script counts. Because some data in refine.bio was aligned using Ensembl release 93

and the rest was aligned using Ensembl release 96, we first subsetted all refine.bio tran-

scripts to only the common transcripts between releases. The transcript counts were

summed to gene counts (using Ensembl release 96 and the biomaRt R package [25],

then subset to genes present in the recount2 data. Once gene counts are calculated, the

rest of each workflow was run exactly the same as it was on the recount2 datasets.

Within-sample normalization

Within-sample normalization is designed to transform the expression levels of genes

within the same sample so that they can be compared to each other. Here, we consid-

ered counts per million (CPM), transcripts per million (TPM), and reads per kilobase

million (RPKM) for performing within-sample normalization of the original raw gene

counts [28, 50]. Note that RPKM is almost the same as fragments per kilobase million

(FPKM), except FPKM was introduced to accommodate paired-end RNA-seq so it ac-

counts for the fact that two reads can map back to a single fragment. We account for

paired-end samples with FPKM, but use the term “RPKM” throughout the manuscript.

These three ways of normalizing counts are very commonly used in RNA-seq analysis

and account for library size and gene/transcript length in different ways. CPM corrects

for library size (expressed in million counts) so that each count is expressed as a pro-

portion of the total number reads in the sample. TPM and RPKM are similar methods

that correct for both library size and gene length. Each gene count is divided by both

the length of the gene and the sum of counts in the sample, but these operations are
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done in a different order. TPM divides counts by gene length (in kb) first to get tran-

script counts and then by total number of transcripts in the sample, resulting in each

normalized sample having the same number of total counts. This is not guaranteed for

RPKM since it corrects each gene count for the total number of reads in the sample be-

fore correcting for gene length.

Between-sample normalization

Between-sample normalization transforms the expression levels of genes across a

group of samples so that gene counts from the same gene in different samples

can be more accurately compared to each other. We tested quantile (QNT),

trimmed mean of M values (TMM) [51], and upper quartile (UQ) normalizations

[13]. In addition, we tested simple counts adjustment methods we call Counts ad-

justed with TMM Factors (CTF) and Counts adjusted with Upper quartile Factors

(CUF). Quantile normalization is an extremely popular between-sample

normalization for microarray samples. Applied to RNA-seq data, QNT forces the

distribution of all gene expression values to be exactly the same in each sample.

We performed quantile normalization on counts, CPM, TPM, and RPKM using

the preprocessCore package available from Bioconductor, which implements the

quantile normalization described in Bolstad et al. [52]. TMM normalizes across

samples by finding a subset of genes whose variation is mostly due to technical

rather than biological factors, i.e., not differentially expressed, then using this

subset to calculate a scaling factor to adjust each sample. In brief, each sample is

compared to a chosen reference sample. A certain upper and lower percentage of

data based on absolute intensity and log-fold-change relative to the reference

sample is removed (by default, 5% for absolute intensity and 30% for log-fold-

change) and the log-fold-changes of the remaining set of genes are used to calcu-

late a single scaling factor for the non-reference samples. UQ normalization first

removes all zero-count genes and calculates a scaling factor for each sample to

match the 75% quantile of the counts in all the samples. In both TMM and UQ,

the scaling factors are made to multiply to one before they are used to adjust the

library sizes of each sample. These adjusted library sizes are then used in place

of the original library size for a calculation otherwise identical to CPM. We used

the edgeR package [53] to calculate TMM and UQ scaling factors. These factors

were also used for CTF and CUF, respectively, where they served as a divisor for

each gene count in the proper sample.

Gene type filtering

We chose to keep only long RNA gene types (mRNA (protein-coding), lncRNA, anti-

sense RNA) as those are the most common gene types used in coexpression analysis

and shorter reads make mapping and identification more difficult [54, 55]. The ex-

cluded gene types (mostly short RNAs) are also unlikely to show up in our functional

gold standard as there is very little functional information about these gene types.

Therefore, relationships between genes of these types are harder to evaluate.
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Data transformation

A log transformation is standard procedure when working with RNA-seq data, as the

expected variance grows with the mean for gene counts [35]. A pseudocount is added

to the gene count before taking the log. We use the hyperbolic arcsine (asinh) trans-

formation, which is defined along the entire real number line and circumvents the need

for predefining a constant pseudocount and instead calculates a “pseudocount” that is

proportional to the original gene count. The asinh function compresses smaller values

of x less than a function like the natural logarithm [36, 37].

We also compared asinh to variance stabilizing transformation (VST) [38] and regu-

larized logarithm transformation (rlog) [35] implemented in the DESeq2 R package.

These were tested on the GTEx and SRA datasets, except for the six largest GTEx data-

sets due to the prohibitively long running time of the rlog transformation.

Network construction

A coexpression network was constructed for each individual dataset by calculating the

Pearson correlation coefficient between every pair of genes in that dati ‘aset using the

Distancer tool in the Sleipnir C++ library [56]. These correlations were treated as the

edge weight between gene pairs. We chose Pearson correlation as it has been repeatedly

shown to provide a robust measure of gene-gene correlations, especially in small-to-

medium-sized datasets that are produced by individual laboratories [7, 48]. Since Spear-

man correlation is also popular in coexpression analysis, we compared these two correl-

ation metrics on our top ten workflows and found that Pearson correlation results in

more accurate coexpression networks than Spearman correlation in both GTEx and

SRA datasets, particularly in ensuring the accuracy of the top-scoring edges (Additional

file 1: Fig. S16).

Network transformation

We tested two common methods of network transformation, weighted topological

overlap (WTO) [9] and context likelihood of relatedness (CLR) [10], that use different

aspects of network topology to correct the raw coexpression network. The general idea

of WTO is to increase the edge weight between gene pairs that share a high number of

network neighbors while diminishing edge weight between gene pairs that are tightly

connected to very different sets of genes in the network. All edges in the resulting net-

work will have normalized weighted between zero and one. CLR reweights the edge for

each gene pair (i, j) based on how different the original weight of that edge is relative

to all of the connections to gene i and all connections to gene j (to the rest of the genes

in the network). For instance, CLR will upweight an edge between two genes if the edge

weight is high compared to all of the other connections of both genes. WTO was im-

plemented using the wTO function with the “sign” method in the wTO package [49],

and CLR was implemented using the Dat2Dab function in the Sleipnir C++ library.

Network evaluation

The goal of coexpression networks is to capture true functional relationships between

genes in the cellular context of the original dataset. Therefore, we evaluated the accur-

acy of each coexpression network by comparing it to two gold standards, one
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representing known generic (tissue-naive) functional relationships and the other repre-

senting known tissue-aware gene functional relationships. We assembled these gold

standards by beginning with a set of manually-selected Gene Ontology Biological

Process (GOBP) terms [48, 57] that were deemed to be specific enough to be confident

that any genes co-annotated to them could be considered functionally related via ex-

perimental follow-up (see Supplemental Note). Specifically, curators were considering

the question “if unknown gene/protein G were predicted to be annotated to GOBP

term T, would that be enough to consider experimentally testing this relationship be-

tween G and T?” Then, any pair of genes that were co-annotated to the same specific

GOBP term was set as a positive edge in the gold standard. We only used annotations

based on experimental (GO evidence codes: EXP, IDA, IPI, IMP, IGI, TAS) or curated

evidence (IC). We explicitly ignored gene-term annotations made based on expression

(GO evidence code: IEP) to avoid circularity when comparing coexpression-derived in-

teractions to this gold-standard. We next had to determine which pairs of genes among

the ones with at least one positive edge could be declared as negative edges, i.e., gene

pairs that are unlikely to be functionally related based on prior knowledge. To be clear,

“positive” and “negative” are used here based on machine learning parlance to indicate

interactions and non-interactions, respectively, and do not correspond to the sign of

the relationship. This way, the terms are consistent with how we refer to true/false

positive/negative edges. Following previous work, we ignored gene pairs not co-

annotated to any specific term but still interact with many of the same genes in the

gold standard (determined based on each being annotated to two different terms that

contained very similar sets of genes; hypergeometric test; p value <0.05). We also ig-

nored gene pairs that were not co-annotated to any specific term but were co-

annotated to certain general GOBP terms, thus introducing ambiguity in whether they

are functionally related or not. All remaining gene pairs were considered negatives. We

built the naive gold standard using the Answerer function in the Sleipnir C++ library.

We created the tissue-aware gold standards for as many tissues as possible by subset-

ting the naive gold standard based on genes known to be specifically expressed in a

particular tissue. We obtained tissue-aware genes from the TISSUES 2.0 database

Knowledge channel [58]. The knowledge channel contains curated manual annotations

of tissue expression provided by UniProtKB. For a given tissue, a positive edge from

the naive gold standard was kept in its tissue-aware standard if both genes were

expressed in that tissue. Negative edges were kept if both genes were expressed in that

tissue, or if one gene is expressed in the tissue and the other gene is expressed in one

of the other tissues considered. Only standards containing at least 50 positive edges

were used for evaluation, resulting in 24 tissue-aware gold-standards. We specifically

excluded epithelium from consideration for a tissue-aware standard, as there is no

straightforward way to determine the body site each sample was taken from.

We used the DChecker function in the Sleipnir C++ library to compare each coex-

pression network to each gold-standard and return the number of true positives, false

positives, true negatives, and false negatives at various edge weight thresholds. These

numbers were used to calculate the area under the precision-recall curve (auPRC) using

the trapz function in the pracma package. Since gene functional relationship gold-

standards of different tissues have different proportions of positives to negatives, the

original auPRC scores are not directly comparable to each other. Therefore, we divided
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each auPRC by its “prior”—the auPRC of a random predictor, equal to the fraction of

positives among all positive and negative edges—and expressed the performance as the

logarithm of this ratio to enable tissue-to-tissue comparisons.

The Supplemental Note contains more details on the (i) gene functional relationship

gold standard, (ii) additional gold standards that we explored (including spike-ins [59,

60]) and their limitations, and (iii) calculation of the evaluation metrics.

Workflow comparison and analysis by parts

To assess whether two workflows resulted in coexpression networks that were signifi-

cantly different in quality, we used a paired Wilcoxon rank sum test to compare the

auPRC scores across all coexpression networks generated by those two workflows.

After calculating p values, we performed a correction for multiple testing with the

Benjamini-Hochberg procedure and declared workflows with FDR ≤ 0.01 as being sig-

nificantly different. Further, each workflow is a combination of method choices at mul-

tiple stages. So, to determine the impact of including a particular method in a

workflow, we across aggregated workflows to calculate the proportion of times that in-

cluding a particular method in a workflow resulted in the workflow being significantly

greater than one that did not include the method. As it is not possible to do within-

sample normalization and then do TMM, UQ, CTF, or CUF, any workflow including

CPM, TPM, or RPKM was excluded when assessing between-sample normalization

methods so that method being compared to each other based on the same number of

aggregated workflows. For similar reasons, workflows involving TMM, UQ, CTF, or

CUF were not considered for the analysis of within-sample normalization methods.

GTEx resampling

To simulate uniformly processed datasets that have sample sizes similar to datasets

from SRA, we chose nine sample sizes (5, 6, 7, 9, 11, 13, 16, 25, and 40) based on the

distribution of SRA dataset sample sizes. Then, from each GTEx dataset with at least

70 samples, we randomly sampled a “dataset” of each sample size, repeating this sam-

pling ten times to create 10 datasets per sample size from each GTEx dataset. One

coexpression network was constructed and evaluated from each of these GTEX-

resampled datasets in the same manner outlined above.

Experimental factor analysis

In addition to dataset size (i.e., number of samples), the quality of the coexpression net-

work reconstructed from a dataset could also depend on the similarity between the

samples in that dataset as well as the total number of mapped reads. We performed an

analysis to determine this impact using the GTEx-resampled datasets and the original

SRA datasets. Since SRA datasets are not large enough to do resampling for sample size

analysis, we split them into five groups with equal number of datasets, with datasets in

each group having similar sample sizes. We define sample similarity for a given dataset

as the median spearman correlation between all samples using the 50% most variable

genes in the GTEx tissue they came from for the resampled GTEx datasets, or the me-

dian spearman correlation between all samples using the 50% most variable genes in

each individual dataset in the case of the SRA networks. Read count diversity is
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calculated by summing the gene counts of each sample in a given dataset and taking

their standard deviation. Based on each of these measures—sample similarity and read

count diversity—we divided the datasets into five groups of equal size while taking care

to check that each group contained datasets with similar sample sizes. For the tissue

analysis, we could only determine significance in SRA tissues that had at least 15

datasets.
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