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ABSTRACT This study reports the whole-genome sequence of Bacillus cereus HRT7.7, an
epiphyte isolated from red sweet pepper fruits that is capable of stimulating plant growth
and development. The genome assembly is 5,109,010 bp in length, with a G1C content
of 35.2%.

Epiphytes are microbes that colonize and multiply nonparasitically on the surfaces
of plant organs (1, 2). They frequently display symbiotic relationships with plants.

Plants provide epiphytes with a medium for growth and survival, and in return some
epiphytes stimulate plant growth and development through functional roles such as
phytohormone production, nitrogen fixation, and solubilization of phosphorus and
iron. In addition, some epiphytes antagonize the activity and proliferation of patho-
genic microbial strains (3–6).

Bacillus cereus HRT7.7 was isolated from the surface of sweet pepper fruit samples. The
samples were sourced from the Agricultural Research Council-Vegetable and Ornamental
Plants (ARC-VOP), Roodeplaat, Pretoria, South Africa (25°599S, 28°359E). Fresh, matured
red sweet pepper samples (treated with fungicides) grown in a hydroponic cropping sys-
tem were aseptically collected in sterile zipper-lock bags, transported to the laboratory,
and stored at 4°C (7). Bacterial biofilms on the surfaces of the pepper fruits were recov-
ered using sterile swabs soaked in a solution containing 0.15 M NaCl and 0.1% (vol/vol)
Tween 20 (8). The swabs were then vortex-mixed in sterile Eppendorf tubes containing
physiological saline solution, the supernatant was serially diluted up to 1022, and 100-mL
aliquots were cultured on Trypticase soy agar (TSA) plates. The plates were incubated for
48 h at 30°C under aerobic conditions. A pure culture was obtained by repeated streaking
on sterile TSA, incubated at 30°C for 48 h, and stored in 50% (vol/vol) glycerol at 280°C
for further use.

Purified B. cereus HRT7.7 in 50% glycerol at280°C was subcultured on TSA and then used
for DNA extraction. Genomic DNA was extracted from an overnight culture by employing a
fungal/bacterial miniprep kit (Zymo Research, Irvine, CA, USA), following the manufacturer's
instructions. The concentration of the extracted DNA was measured using a NanoDrop spec-
trophotometer (Thermo Fisher Scientific, Carlsbad, CA, USA), while the DNA quality was eval-
uated on a 2% agarose gel. The strain was taxonomically identified by analyzing the 16S rRNA
sequence using BLASTn v2.12.0 (9, 10). DNA libraries were generated using a NEBNext Ultra II
FS DNA library preparation kit (New England Biolabs, MA, USA) and sequenced with a paired-
end sequencing strategy (2� 150 bp) using the Illumina NextSeq 550 platform, at a commer-
cial service provider (Inqaba Biotechnical Industries [Pty] Ltd., Pretoria, South Africa). The
sequences were analyzed on the KBase platform (11). The quality of the reads was evaluated
using FastQC v0.11.5 (12), while removal of sequence adaptors and low-quality reads (quality
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scores of ,15) was performed with Trimmomatic v0.36 (parameters, ILLUMINACLIP:TruSeq3-
PE.fa:2:30:10 SLIDINGWINDOW:4:15 MINLEN:75) (13). Reads were assembled with SPAdes
v3.13.0 in the –careful mode (14), and the procedure yielded a total of 219 contigs, with an av-
erage of 280-fold coverage.

HRT7.7 yielded a genome of 5,109,010 bp, with a G1C content of 35.2%. The con-
tigs showed N50 and L50 values of 302,853 bp and 6, respectively. Gene annotation was
performed using the publicly available NCBI Prokaryotic Genome Annotation Pipeline
(PGAP) (15) and predicted a total of 5,368 genes, including 5,167 protein-coding genes,
84 RNA genes, 12 rRNA genes, 67 tRNA genes, 117 pseudogenes, and 5 noncoding
RNA genes. All analyses were performed using default parameters unless otherwise
stated. Secondary metabolites were determined by antiSMASH v6.0.0 (16), and this
strategy identified genes responsible for plant hormone production, transcriptional
regulators, transport proteins, and nitrogen fixation, all of which play a significant role
in symbiosis with the plant and promote plant growth and development (17, 18).

Data availability. This whole-genome shotgun project and associated data have been
deposited in DDBJ/ENA/GenBank under the accession number JAJFEX000000000, BioProject
accession number PRJNA771517, BioSample accession number SAMN22314523, and SRA
accession number SRX12629285. The version described in this paper is JAJFEX000000000.1.
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