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ABSTRACT | Background: The second heart rate (HR) turn point has been extensively studied, however there are 
few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining 
changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been 
suggested. Objectives: To determine the first turn point by analysis of HR, surface electromyography (sEMG), and 
carbon dioxide output (V• CO2) using two mathematical models and to compare the results to those of the visual method. 
Method: Ten sedentary middle-aged men (53.9±3.2 years old) were submitted to cardiopulmonary exercise testing on 
an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were 
obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of 
parallelism between V• CO2 and oxygen uptake (V• O2); 2) the linear-linear model, based on fitting the curves to the set 
of V• CO2 data (Lin-LinV• CO2); 3) a bi-segmental linear regression of Hinkley’s algorithm applied to HR (HMM-HR), 
V• CO2 (HMM-V• CO2), and sEMG data (HMM-RMS). Results: There were no differences between workload, HR, and 
ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The 
Bland-Altman plot showed an even distribution of the visual analysis method with Lin-LinV• CO2, HMM-HR, HMM-
V• CO2, and HMM-RMS. Conclusion: The proposed mathematical models were effective in determining the first turn 
point since they detected the linear pattern change and the deflection point of V• CO2, HR responses, and sEMG.
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Introduction
Physical exercise requires the interaction of 

different physiological mechanisms that enable the 
cardiorespiratory system to support the increased 
energy demands of contracting muscles. The system’s 
ability to accomplish this task is linked with its ability 
to maintain homeostasis and is a measure of functional 
capacity. Therefore, measuring the responses of 
interactive systems (e.g. cardiorespiratory and 
muscular systems) is extremely important in studies 
about physical exercise1.

A number of studies have considered the concept 
of a three-phase model due to the fact that, with an 
intensity increment, three phases of energy supply 
and two points of intersection are observed2. The 
first phase of energy supply involves greater oxygen 
extraction by tissues, resulting in a lower fraction of 
oxygen in expired air. More carbon dioxide is also 

produced and expired. Therefore, a linear increase in 
oxygen uptake (V• O2), carbon dioxide output (V• CO2) 
and pulmonary ventilation (VE) is found with no 
significant increase in the blood lactate concentration. 
In phase II, the intensity is above the first intersection 
point. The rate of lactate production is greater than 
the metabolic capacity of the muscle cells, which 
results in an increase in blood lactate concentration. 
Nevertheless, the oxidative capacity of the entire 
system is great enough to cope with the incoming 
lactate. Phase III is above the second intersection 
point, where the rate of muscle lactate production 
exceeds the system’s rate of elimination. Increases 
in carbon dioxide production and ventilation become 
nonlinear, and hyperventilation cannot adequately 
compensate for the increase in H+2,3.
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Visual analysis of the disproportionate increase in 
carbon dioxide output (V• CO2) in relation to the linear 
increase in oxygen uptake (V• O2) is a noninvasive 
method that has been widely used to detect the 
first turn point, i.e. the exercise level at which the 
production of energy by aerobic metabolism is 
supplemented by anaerobic metabolism1,4. This 
type of analysis is considered the gold standard 
by some researchers5-8. However, besides its high 
cost, this methodology has also been considered 
controversial due to the subjectivity in determining 
the first turn point, poor reproducibility, and poor 
interobserver/interalgorithm agreement9. Therefore, 
the use of mathematical and statistical models has 
been suggested, primarily due to their low cost, to 
quantify and objectively determine the intensity at 
which loss of linearity or change in the dynamic 
characteristics of physiological variables occurs 
during an incremental cardiopulmonary test.

Conconi  et  al.10, in an incremental field test 
for runners, proposed a noninvasive method for 
determining the anaerobic threshold that is equivalent 
to the second lactate turn point: the deflection point of 
HR response (second HR turn point). Hofmann et al.11 
investigated the second HR turn point with computer-
aided linear regression break point analysis of 
the power output/HR relationship. They found no 
significant differences in any measured variables 
regarding the second lactate turn point. Still other 
studies have demonstrated that, although a second 
HR turn point cannot always be detected because 
HR behavior varies from individual to individual 
during tests (due to its association with factors such 
as differences in β1 adrenoreceptor sensitivity), it 
can be used as a parameter for prescribing exercise 
intensity12,13.

Although HRPT2 has been extensively studied in 
the literature, there are few studies determining the 
first heart rate (HR) turn point. Crescêncio et al.7 and 
Higa et al.8 determined the first HR turn point with a 
linear-linear model and a Hinkley bi-segmental linear 
regression model, respectively. Both methods were 
effective and did not present significant differences 
compared to the gold standard adopted in both studies 
(i.e. visual analysis of a disproportionate increase in 
V• CO2 in relation to the linear increase in V• O2).

Moreover, in recent decades it has been 
demonstrated that determining the moment when 
muscular fatigue begins is important for providing 
a better prescription of exercise for those who need 
to improve functional aerobic capacity. To this 
end, some studies14-16 have suggested using surface 
electromyography (sEMG) to determine the first 
turn point for the root mean square (RMS) of the 

myoelectric signal. This method is based on the 
principle that beginning at the first turn point, there 
is a higher blood lactate production rate than removal 
rate, which causes a metabolic imbalance that leads 
to additional motor unit recruitment and an increased 
depolarization frequency in active muscles15,17. 
However, computational models or algorithms that 
enable automated detection of the muscular fatigue 
threshold are still underexplored18.

Based on these considerations, the aims of this 
study were, first, to determine the first turn point for 
HR using a mathematical model and then to compare 
this result with mathematically determined first turn 
point values for the RMS index of sEMG and V• CO2 
as well as with the visual method.

Method

Experimental approach to the problem
Three methods were employed to determine the 

first turn point during cardiopulmonary exercise 
testing. In the first method, three properly trained 
observers evaluated the first V• CO2 turn point with 
visual analysis by identifying a disproportionate 
increase in ventilatory and metabolic variables. The 
criterion adopted was a loss of parallelism between 
V• CO2 and V• O2

7,8. The first V• CO2 turn point identified 
by the visual method will be designated as the standard 
turn point model (STPM) to avoid any nomenclature 
confusion. This point was expressed in terms of 
workload, V• O2 and HR values by the calculated 
mean of the results from the three analyzers. The 
second method involved a semi-automatic technique 
based on the use of a linear-linear model for V• CO2 

(Lin-Lin V• CO2) response in relation to time6. This 
model was applied following Soler  et  al.6 and 
Crescêncio et al.7 based on the fitting of curves to the 
set of V• CO2data (80 to 160 points). The data were 
divided into 2 subsets by an algorithm developed in 
the S-plus statistical package: the V• CO2values at the 
beginning of ramp elevation until an intermediate 
point corresponding to S1, while the V• CO2 values 
from the intermediate point until the final third of 
ramp elevation corresponded to S2. The S1 and S2 
values corresponded to the fitting of two lines and, 
in a subsequent stage, the residual sum of squares 
(RSS) of the tested model was calculated. Figure 1 
illustrates the RSS for fitting the Lin-Lin model. The 
point chosen as the first V•CO2 turn point corresponded 
to the lowest RSS value or to the median value in 
cases of a plateau (5 to 15 points) instead of a single 
RSS minimum point. The third approach involved a 
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bisegmental linear regression model19 applied with an 
algorithm developed in the S-plus statistical package6. 
This model determined a series of data change points 
with the maximum likelihood method and was fitted 
to each study participant, to beat-to-beat collected 
HR data (HMM-HR), and to the RMS of sEMG 
(HMM-RMS; Figure 2).

Subjects
In this cross-sectional study, 10 sedentary middle-

aged men (53.9±3.2 years old, 72.5±8.8 kg, 166±5 
cm, 26±2.6 kg.m–2) were investigated. Ethical 
approval was obtained from the Research Ethics 
Committee of Universidade Federal de São Carlos 
(UFSCar), São Carlos, SP, Brazil (protocol number: 
065/2002), and all participants gave written informed 
consent. All subjects were in good health and were 
not on any medication.

Participants underwent a physical evaluation 
(muscles and joints), resting HR and blood pressure 
measurement, heart and lung auscultation, a standard 
electrocardiogram (ECG), laboratory screening tests 
(glucose, triglycerides, total cholesterol and fractions, 
type 1 urinalysis), and a continuous dynamic 
cardiopulmonary exercise test on a cycle ergometer. 
Clinical examination and laboratory tests showed 
no evidence of any cardiorespiratory abnormalities 
in the group.

Procedures
The included subjects also underwent maximal 

cardiopulmonary exercise testing. All experiments 
were carried out between 2 and 4 p.m. to avoid 
response variation due to circadian changes. The 
room temperature and relative air humidity of the 
testing laboratory were kept at 23°C and between 
40% and 60%, respectively. The subjects were 
acquainted with the experimental protocol and 
instructed to abstain from stimulants (coffee, tea, soft 
drinks) and alcoholic beverages, avoid exhausting 
physical activity in the 24 h prior to the exam, and to 
have a light meal at least 2 h before testing.

Cardiopulmonary exercise testing was performed 
on a cycle ergometer with electromagnetic braking 
(Quinton Corival 400, Seattle, WA, USA) and seat 
adjusted to allow approximately 5 to 10 degrees of 
knee flexion. The protocol consisted of 1 minute pre-
testing while seated in a resting position on the cycle 
ergometer followed by a 4 minute warm-up period at 
4 W. The workload was then increased continuously 
by 16.71±1.30 W/min until physical exhaustion, i.e. 
the moment at which the subject could no longer 
maintain 60 rpm or the occurrence of a limiting 

Figure 1. Illustration of the residual sum of squares (RSS) of the 
linear-linear mathematical model applied to the carbon dioxide 
output data from one of the subjects studied. The vertical straight 
line identifies the moment of ventilatory anaerobic threshold (VAT) 
detected by this method.

Figure 2. Hinkley’s mathematical model fitted to carbon dioxide 

output (V• CO2) obtained on a breath-by-breath basis (A), to heart 
rate data collected on a beat-to-beat basis (B), and to the RMS of 
surface electromyography (C) of one of the study volunteers. The 
vertical dotted line determines the change point in each variable’s 
response. The vertical solid lines represent the lower and the upper 
limits of the region of interest for the mathematical determination 
of turn points. The time shown at the top of each graph was 
considered the first turn point time detected by this method.
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symptom or respiratory fatigue. Workload increments 
were determined for each subject according to the 
formula proposed by Wasserman et al.1 (Workload 
increase (W) = [(height – age) x 20] – [150 + (6 x 
body mass)]/100.

During the test, ECG and HR were recorded 
beat-to-beat with a one-channel heart monitor 
(MINISCOPE II Instramed, Porto Alegre, RS, 
Brazil) and processed with a Lab PC + analog-to-
digital converter (National Instruments Co., Austin, 
TX, USA), which acted as an interface between 
the heart monitor and a computer. The ECG signal 
was recorded in real time after analog-to-digital 
conversion at a sampling rate of 500 Hz20.

For sEMG data acquisition, a 16-channel surface 
electromyography machine (Lynx Tecnologia 
Eletrônica Ltda, São Paulo, SP, Brazil) and signal 
acquisition software (AqDados5) were used. The 
machine features 16 independent-channel analog 
signal conditioning modules (MCS 1000V2) and an 
analog/digital transformer card (CAD 12/32, 12-bit 
resolution with amplifier), which interfaces with a 
desktop computer. sEMG signals were digitized at 
a sampling frequency of 1000 Hz with a frequency 
band ranging from 20 to 500 Hz.

Bipolar (2 cm center-to-center distance) 
NORAXON (Ag/AgCl) dual surface electrodes 
were placed over the vastus lateralis of the right leg, 
following Basmajian and De Luca21, at approximately 
the midpoint between the head of the greater 
trochanter and the lateral condyle of the femur22. 
The RMS of sEMG of each muscle contraction was 
calculated throughout the protocol.

Ventilatory and metabolic variables were collected 
and stored on a breath-by-breath basis using a 
metabolic analyzer (CPXD, Medical Graphics, St. 
Paul, MN, USA). The system consisted of a desktop 
computer with a Pentium III 1100 MHz processor and 
an analog/digital transformer card set at a sampling 
frequency of 250 values per second (MedGraphics 
Service Manual); Breeze Suite 5.3.007 software 
was used to process and print the ventilatory and 
metabolic data in different formats.

For all methods of determining the first turn point, 
a ramp interval was selected in which ventilatory 
variables began to respond to workload increases 
until the respiratory compensation point (RCP) was 
reached or, in cases where the RCP could not be 
observed, until the end of the exercise. This procedure 
was adopted because determining the first turn point 
is based on response changes by ventilatory variables 
due to the imbalance between the production and 
elimination of lactic acid in muscle tissues during 

exercise and not on occasional changes in these 
responses resulting from other metabolic mechanisms 
that occur later, i.e. in the final third of the ramp 
workload1. Furthermore, for proper adjustment, 
the mathematical models used in the present study 
require that the responses of the chosen variables 
to the respective adjustments involve only one 
inclination change between the lines.

Statistical analysis

The data are presented as mean±standard deviation 

(SD). All data showed a normal distribution in the 

Shapiro-Wilk test. One-way ANOVA was applied, 

followed by Tukey’s post-hoc test for multiple 

comparisons. Pearson’s correlation test was used 

to verify the relationship between data. Bland and 

Altman23 plots were used to analyze the limits of 

agreement between the STPM and Lin-LinV• CO2, 

HMM-HR, HMM-V• CO2, and HMM-RMS. The 

significance level was set at 5%. The data were 

analyzed in SPSS version 17.0. The sample size 

was determined using G*Power 3.1.3 for Windows 

based on a pilot study comparing values for V• O2 (ml.

kg.min–1) at the ventilatory anaerobic threshold in the 

five proposed parameters: graphic visual analysis, 

Lin-Lin V• CO2, MMH-V• CO2, MMH-HR, and MMH-

RMS. For an alpha error of 0.05 and test power of 

80%, the recommended number of participants was 9.

Results
In the five studied parameters, there were no 

significant differences between workload, HR and 
the values of each ventilatory variable at the first 
turn point (p>0.05). The values of these variables are 
expressed in Table 1 as mean±SD.

Significant correlations were observed between 
power, V• O2 and HR, and the STPM in the different 
mathematical models used (Table  2). Significant 
correlations were also found between the first HR 
turn point and the other methods used in this study 
(Table  2). The Bland-Altman plot shows an even 
distribution of the STPM with Lin-LinV• CO2, HMM-
V•CO2, HMM-RMS, and HMM-HR without deviation 
from the mean value of the ventilatory anaerobic 
threshold (Figure 3A-D). This was also observed in 
Bland-Altman plots for HMM-HR distribution in the 
other methods used (Figure 3E-G).
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Table 1. The values at the first turn point determined by the standard turn point method (STPM), Lin-LinV• CO2 model, HMM-V• CO2, 
HMM-RMS, and HMM-HR. The region of interest for analysis comprises the beginning of the ventilatory responses to increasing load 
until the point of respiratory compensation, or until the end of the exercise. Data are mean±SD. 

Variables
Exercise  

peak

First Turn Point Determination Methods

STPM Lin-Lin V• CO2 HMM-V• CO2
HMM-RMS HMM-HR

Workload (Watts) 142.6±17.0 65.1±11.1 64.3±12.5 62.5±10.8 68.9±15.1 65.0±11.9

HR (bpm) 148.3±15.2 97.4±12.7 97.8±13.1 96.9±11.3 98.9±10.6 95.4±11.5

V• O2
 

(mlO2
.kg–1.min–1) 21.3±1.4 10.9±1.9 10.8±1.8 10.6±1.5 11.5±1.7 11.0±1.8

V• O2
 

(L/min) 1.5±0.3 0.8±0.1 0.8±0.1 0.8±0.1 0.8±0.2 0.8±0.1

V• CO2
 

(L/min) 1.9±0.3 0.8±0.1 0.8±0.1 0.7±0.1 0.8±0.2 0.8±0.1

V• E (L/min) 64.5±14.0 24.8±4.9 24.5±4.9 23.9±4.4 26.2±5.3 25.1±4.9

RER 1.2±0.1 0.98±0.03 0.98±0.04 0.98±0.04 0.99±0.05 0.97±0.04

Lin-LinV
•
CO2= Linear linear bi-segmental model fitted to dioxide carbon output, HMM-V

•
CO2= Hinkley’s mathematical model fitted to dioxide 

carbon output, HMM-RMS = Hinkley’s mathematical model fitted to RMS index of myoelectric signal, HMM-HR = Hinkley’s mathematical 
model fitted to heart rate, V

•
O2= oxygen uptake, HR = heart rate, V

•
E= ventilation, RER = respiratory exchange ratio.

Table 2. Pearson’s Correlation Coefficients considering the standard turn point method (STPM) and the first HR turn point as dependent 
variables.

STPM Mathematical Models r p=

Workload (Watts) Lin-LinV• CO2
0.90 0.0004

HMM-V• CO2
0.88 0.0007

HMM-RMS 0.70 0.03

V• O2(mlO2
.kg–1.min–1) Lin-LinV• CO2

0.90 0.0003

HMM-V• CO2
0.92 0.0001

HMM-RMS 0.72 0.02

HR (bpm) Lin-LinV• CO2
0.94 <0.0001

HMM-V• CO2
0.95 <0.0001

HMM-RMS 0.97 <0.0001

HMM-HR First turn point methods r p=

Workload (Watts) STPM 0.90 0.0005

Lin-LinV• CO2
0.81 0.004

HMM-V• CO2
0.74 0.01

HMM-RMS 0.70 0.02

V• O2(mlO2
.kg–1.min–1) STPM 0.93 0.0001

Lin-LinV• CO2
0.86 0.001

HMM-V• CO2
0.80 0.005

HMM-RMS 0.77 0.009

HR (bpm) STPM 0.94 <0.0001

Lin-LinV• CO2
0.88 0.0007

HMM-V• CO2
0.90 0.0004

HMM-RMS 0.77 0.009

V
•
O2 = oxygen uptake, HR  =  heart rate, Lin-LinV

•
CO2 = Linear linear bi-segmental model fitted to dioxide carbon output, HMM-V

•
CO2 

= Hinkley’s mathematical model fitted to dioxide carbon output, HMM-HR  =  Hinkley’s mathematical model fitted to heart rate, HMM-
RMS = Hinkley’s mathematical model fitted to RMS index of myoelectric signal.

 618 Braz J Phys Ther. 2013 Nov-Dec; 17(6):614-622



Anaerobic threshold determination

Discussion
The main finding of our study was the good 

agreement between the first HR turn point determined 
by the bisegmental linear regression of Hinkley’s 
algorithm and the STPM. Moreover, the good 
agreement and strong correlation found between 
the mathematical models used to determine the first 
turn point regardless of the outcome variable (i.e. 
HR, V• CO2, and sEMG) and the standard turn point 
method should also be mentioned.

The physical exercise level at which the production 
of energy by aerobic metabolism is supplemented 

by anaerobic metabolism has been intensely 
studied in different aspects, both physiological and 
methodological. The mechanisms responsible for 
these changes in the dynamics of the physiological 
variables during incremental exercise, as well as 
the different techniques for detecting these changes 
are objects of interest for researchers in the field of 
exercise physiology.

Scientists of different fields have always 
demonstrated interest in characterizing real 
phenomena, whether physical, chemical or biological, 
by means of mathematical tools4,7,8. In the field of 

Figure 3. Bland-Altman plots showing differences between first turn point determined by the standard turn point method (STPM) versus: 

A) the Hinkley mathematical model fitted to heart rate (HMM-HR), B) carbon dioxide output (HMM-V• CO2), C) the RMS of surface 
electromyography (HMM-RMS), D) the linear-linear model based on fitting the curves to the set of carbon dioxide output data (Lin-

LinV• CO2), and the differences between the first HR turn point determined by HMM-HR versus: E) Lin-LinV• CO2, F) HMM-V• CO2, 

and G) HMM-RMS. Values in V• O2 (mlO2
.kg–1.min–1).

619 Braz J Phys Ther. 2013 Nov-Dec; 17(6):614-622



Zamunér AR, Catai AM, Martins LEB, Sakabe DI, Da Silva E

exercise physiology, the use of mathematical models 
is an attempt to represent certain types of dynamic 
behavior of biological systems and their interactions 
during physical exercise practice24.

According to Rosic  et  al.25, the application of 
proper mathematical functions can contribute to a 
qualitative improvement in the analysis of dynamic 
physiological variable responses to stimuli such as the 
incremental stress test, thus making the identification 
of changes in the steady state more objective. In the 
present study, Lin-Lin mathematical models were 
applied to V• CO2 data and Hinkley’s algorithm was 
applied to HR, V• CO2 and the RMS of sEMG signals.

A significant correlation was observed between 
Lin-LinV• CO2and STPM with respect to workload 
values, HR, and V• O2 at the first turn point. These data 
corroborate the findings of Crescêncio et al.7, who 
found high correlation coefficients between workload 
and V• O2 at the first turn point, indicating that the 
performance of Lin-LinV• CO2 was satisfactory 
compared to STPM. However, Crescêncio  et  al.7 
reported a systematic error in the Lin-LinV• CO2 model 
for determining the first turn point of ventilatory 
variables. They found that, compared to STPM, the 
mathematical model has a tendency to underestimate 
workload and V• O2, which was not observed in the 
present study.

This difference could be related to the characteristics 
of the study participants, since Crescêncio  et  al.7 
evaluated active and sedentary 18 to 55 year olds, 
whereas a more homogenous sample of sedentary 
middle-aged men was used in the present study. 
Nevertheless, the results obtained in both studies, 
especially the strong correlation and good agreement 
in the Bland-Altman analysis, suggest that the use of 
Lin-LinV• CO2 is a promising quantification tool for 
objectively determining the first V• CO2 turn point.

Even though ventilatory and metabolic variable 
analysis is a standard reference for determining the 
first turn point, the use of ergospirometry equipment 
is generally restricted to research laboratories and is 
limited by high acquisition and maintenance costs and 
by the complex handling involved. Therefore, simpler 
and lower-cost resources, such as the data acquisition 
of HR, have been suggested as evaluation methods of 
functional capacity in individuals undergoing daily 
physical training programs in outpatient clinics, 
medical clinics and gyms, since these methods can 
properly represent the responses of their respective 
systems during physical exercise. For this reason, 
Hinkley’s19 algorithm was used to determine the 
first HR turn point in the present study. Hinkley’s19 
mathematical model is based on the maximum 

likelihood method for detecting a change point in the 
behavior pattern of a series of data collected during 
an incremental dynamic exercise test.

The changes  in  response  pa t te rns  of 
cardiorespiratory variables have been well 
established in the literature1,11,26, as have the muscular 
variables27-29. Hinkley’s19 algorithm seeks to identify 
the moment at which these changes occur in each 
variable. It should be emphasized that the response of 
each variable, regardless of the system, breaks from 
linearity at some point during the test.

V• O2 values at the first turn point in HMM-HR and 
STPM were strongly correlated. These results are 
supported by other studies that have used linear7,8,11 or 
curvilinear28 mathematical models for fitting HR data 
collected during an incremental dynamic exercise test 
and detected a point at which the HR response lost 
its linearity in relation to the workload increment.

Nevertheless, the majority of mathematical 
modeling studies in this area have dealt with 
determining the second HR turn point, which is 
strongly correlated with the second abrupt increase 
in blood lactate that occurs around 4 mmol/l10-12,26. 
Although there are few studies dealing with the 
first HR turn point in the literature, they should be 
valued for their potential use in clinical practice. 
Such research could provide effective parameters 
for prescribing exercise intensity for the elderly, 
heart patients or other types of patients who do not 
need incremental exercise tests to exhaustion. As for 
HMM-RMS, our results showed that this method was 
not significantly different from the standard first turn 
point method expressed as workload, V• O2, and HR.

The results of the present investigation corroborate 
the findings of Lucía et al.27, who used a bisegmented 
linear method that detected the breakpoint between 
vastus lateralis myoelectric signal and workload 
increment. These authors reported that this point 
coincides with an increase in the oxygen ventilatory 
equivalent, i.e. the first turn point for ventilatory 
variables.

However, other studies have found conflicting 
results when using visual methods to identify change 
points in myoelectric signal response patterns. 
Glass  et  al.28 found no break point in the vastus 
lateralis signal for half of their volunteers during 
an incremental dynamic exercise test. Bearden and 
Moffatt29 found two break points in the sEMG data 
and in ventilatory and metabolic variables. The 
authors reported that the break points of the RMS/
workload ratio coincided with the first and second 
ventilatory turn points (i.e. first and second V• O2  
thresholds, respectively).
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An important aspect to be discussed in the 
present investigation is that changes in the response 
patterns of the cardiorespiratory and muscular 
variables were interlinked and interdependent. 
Therefore, quantification of the first turn point can 
be achieved by dynamic analysis of these variables, 
whose disproportionate increases are relative to the 
cardiorespiratory adjustments necessary to supply the 
growing metabolic demand from increased motor unit 
recruitment. This increase in the recruitment of motor 
units is reflected by an accentuated elevation in the 
RMS of the sEMG, which occurs near the exercise 
intensity of the first ventilatory turn point.

This study has important practical implications, 
since quantification of the first turn point provides 
useful information about aerobic training by 
determining an important means of prescribing 
exercise intensity for different individuals. Therefore, 
considering that this study showed good agreement 
between the tested methods, simpler variables that 
are also less expensive to monitor, such as HR, can 
be used to determine the anaerobic threshold by 
applying mathematical models. Such methods can 
help to determine the anaerobic threshold and to 
give more objectivity to the prescription of physical 
exercise as well as reevaluation of cardiorespiratory 
and metabolic variables after a certain period of 
training.

Furthermore, it should be noted that beat-to-beat 
HR collection and analysis equipment is becoming 
increasingly accessible, making this approach a 
feasible tool for coaches, athletes, and gym users, as 
well as for rehabilitation programs in medical and 
physical therapy clinics.

In conclusion, the mathematical models proposed 
in the present investigation were effective for 
detecting pattern changes in V• CO2, HR, and 
sEMG responses. The results of the present study 
are encouraging for those who prescribe physical 
exercise and evaluate functional aerobic capacity 
in that they allow adequate quantification of the 
anaerobic threshold with simpler tools for use with 
acquired biological signals, such as HR.
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