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The most frequent internal modification in eukaryotic mRNA is N6-methyladenosine (m6A). However, what we know about the
m6A regulators in Ankylosing spondylitis (AS) is still limited. In our study, eight distinct m6A regulators were selected utilizing
Differentially Expressed Gene (DEG) analysis of the Gene Expression Omnibus GSE73754 dataset for making comparisons
between AS (Ankylosing spondylitis) and non-AS patients. The random forest model and the nomogram model were used to
screen the eight candidate m6A regulators and evaluate their prediction accuracy for the occurrence of AS. Furthermore, based
on the selected m6A regulators, the AS patients were divided into two subgroups, and we applied principal component analysis
algorithms to calculate their m6A score and evaluate the m6A patterns. Our findings revealed that patients in cluster A were
linked to activated CD4 T cell immunity and activated CD8 T cell immunity. With its major contributions in the area of
immunology, our research in m6A patterns may benefit the future diagnosis and treatment strategies of AS.

1. Introduction

Ankylosing spondylitis (AS), also known as radiographic
axial spondyloarthritis (already developed structural damage
in the sacroiliac joints or spine visible on radiographs), is a
chronic inflammatory disease categorized within spondy-
loarthropathies (SpA) and manifested by damage to the axial
skeleton [1]. In the general population, the prevalence of AS
ranges from 9 to 30 per 10,000 in the world [2]. Up to 90%
of patients with AS have the Human Leukocyte Antigen
(HLA)-B27 gene haplotype, while this number in the general
population is less than 10%, which indicates that AS has a
strong association with the HLA-B27 gene [3]. AS tends to

occur in young adults aged 15 to 30. About 80% of its cases
first develop before 30 [4]. Up to 15% of patients with AS
first have symptoms before 16 years old [5]. The clinical
manifestations of AS include arthritis in peripheral joints
or peripheral entheses at some point in the disease course.
Peripheral arthritis, enthesitis, or dactylitis are involved in
the significant clinical manifestation of AS [6]. A single
anteroposterior pelvis X-ray, magnetic resonance imaging,
ultrasonography, laboratory tests (such as erythrocyte sedi-
mentation rate and C-reactive protein), and HLA-B27 in
the patient with clinical features of SpA are beneficial to
the diagnosis of AS [7]. The most crucial factor is the pres-
ence of HLA-B27 [3]. However, HLA-B60, HLA-B61,
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HLA-DR8, HLADRB1, and MICA (MHC class I chain-
related gene A) play an essential role in AS [8–12]. More-
over, non-HLA susceptibility genes (PUM1 and ZFP91) play
a critical role in the development of AS [13]. In addition to
IL23R, several risk genes (TYK2, CARD9, IL12B, IL27,
NKX2, and PTGER4) identified in AS are either directly
involved in the IL-23–IL-17 pathway or interactive with it
[14–18]. The average delay from symptom onset to AS phy-
sician diagnosis is 5-7 years [19]. As a result, early screening
and effective prevention of AS, from the perspective of
genetics, will have a big impact on controlling the number
of AS patients.

More than 100 types of RNA modification have been
described thus far [20], including 1-methyladenosine, 2-
methylthio-N6-isopentenyladenosine, and N6-
methyladenosine (m6A) [21]. The most common and abun-
dant internal modification in eukaryotic mRNA is N6-
methyladenosine (m6A), which methylates the nitrogen-6
position of adenosine in mRNA via various m6A modifica-
tion regulators [22]. The primary role of m6A in AS is
achieved through the regulation of various immune cells
and bone cells [13]. The m6A modification involves three
types of regulators, known as “Writers”, “Erasers”, and
“Readers” [23]. “Writers”, also named m6A methyltransfer-
ases, can be removed by the demethylases or “Erasers”. The
m6A modification is recognized by m6A-binding proteins,
known as “Readers” [24].

However, the roles of m6A regulators in AS remain lim-
ited in scientific and clinical studies. In this study, a microar-
ray dataset from GEO database was used to evaluate the
functions of m6A regulators in the diagnosis and subtype
classification of AS. Furthermore, the current study provides
more insight into how m6A modifications influence
immune infiltration in AS and guide subsequent treatments.

2. Materials and Methods

2.1. Data Collection. The transcriptome profiling datasets of
52 AS patients with active disease and 20 matched controls
were obtained from publicly available datasets (http://www
.ncbi.nlm.nih.gov/geo/) with the accession of GSE73754.
The normalized matrix files for microarray data from the
Illumina platforms were directly downloaded. We extracted
a total of 21 m6A regulators from the dataset for corre-
sponding analysis. These 21 m6A regulators are from a
recently published paper [25], including eight Writers
(METTL3, ZC3H13, METTL14, RBM15B, CBLL1, WTAP,
RBM15, and KIAA1429), two Easers (FTO and ALKBH5), and
11 Readers (YTHDC1, YTHDC2, ELAVL1, YTHDF1, LRPPRC,
YTHDF2, FMR1, YTHDF3, HNRNPC, HNRNPA2B1, and
IGF2BP1).

2.2. Establishment of Random Forest Model and Support
Vector Machine Model. Both random forest (RF) and sup-
port vector machine (SVM) are models for predicting the
occurrence of AS. We evaluated the two models by using
“Reverse Cumulative Distribution of Remainder”, “Boxplots
of Remainder”, and the receiver operating characteristic
(ROC) curve. Random forest as an integration and supervi-

sion model based on decision trees can be used for classifica-
tion and regression. The RF model was established among
the 21 m6A regulators by R statistical software with the
package of “RandomForest” to predict the occurrence of
AS. In our research, we first set the ntree and mtry values
to 500 and 2, respectively. Then, we analyzed the point with
the smallest cross-validation error in the RF model and
selected the important disease-related m6A regulators. The
SVM model can minimize a loss function to predict vari-
ables that are arranged between lower and upper estimated
error bounds. The RF and SVM models were constructed
by the R statistical software with the packages “RandomFor-
est” and “KernLab”.

2.3. Nomogram Model of Significant m6A Regulators. We
then used R to build a nomogram model to predict the risk
of AS via significant candidate m6A regulators, paying atten-
tion to the calibration of the model. We also performed
DCA and clinical impact curves to figure out whether the
decisions based on the model were helpful to the patients.
Moreover, ROC curves were built using the R package
“pROC”.

2.4. AS Classification Based on Significant m6A Regulators.
To explore the connection between the expression of 21
m6A regulators and AS subtypes, we applied unsupervised
clustering with the R package “Consensus Cluster Plus” to
discover distinct m6A modification patterns based on the
expression of 21 m6A regulators; we raised the number of
cluster k values from 2 to 9. The optimal number of clusters
was estimated according to the consensus clustering algo-
rithm, and the Pheatmap R package was used to build a heat
map corresponding to consistent clustering and m6A
expression.

2.5. Identification of Differentially Expressed Genes between
Distinct m6A Subtypes and Classification of Subtypes Based
on the DEGs. The “Limma” package in R was used to deter-
mine the Differentially Expressed Genes (DEGs) between
different clusters in AS. A p value <0.05 was selected as the
screening criterion. A consensus clustering method was used
to classify AS into different genomic subtypes based on
m6A-related DEGs.

2.6. Functional Enrichment Analysis of Differentially
Expressed m6A-Related Genes. Along with the databases of
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG), the enrichment function of the
m6A-related genes was analyzed and visualized by using
the “Cluster Profiler” in R software. These analyses were per-
formed based on these DEGs.

2.7. Generation of the m6A Gene Signature. To further
explore the m6A patterns, we used principal component
analysis (PCA) to calculate the m6A score for each sample.
The process consists of two steps: the first step is to distin-
guish the m6A patterns; the second step is to calculate the
m6A score according to the following formula [26, 27]: m6
Ascore =∑ðPC1i + PC2iÞ, where “i” represents DEG
expression.
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Figure 1: Continued.
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Figure 1: Landscape of the 21 RNA N6-methyladenosine (m6A) regulators in AS. (a) Differential expression histogram of the 21 m6A
regulators identified between non-AS and AS patients. (b) Expression heat map of the 21 m6A regulators between non-AS and AS
patients. (c) Chromosomal positions of the 21 m6A regulators. (d) Spearman’s correlation analysis of the 21 m6A RNA methylation
modulators in AS patients ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 2: Continued.
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2.8. Evaluation of Immune Cell Infiltration. To evaluate the
abundance of immune cells in AS, we used single-sample
gene set enrichment analysis (ssGSEA) to calculate the
scores of infiltrating immune cells and evaluate the correla-
tion between the significant m6A regulators and the immune
cells. The “GSVA” package was utilized to conduct the

ssGSEA, and the “Pheatmap” package in R was used to plot
the heat map between the infiltrating immune cells and the
significant RNA N6-methyladenosine regulators.

2.9. Statistical Analysis. Pearson’s chi-square test was used to
analyze the correlations between Readers, Writers, and
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Figure 2: Correlation between Writers, Readers, and Erasers in AS patients (a–l). Writer genes: WAP1, RBM15, RBM15B, METTL14,
METTL3, KIAA1429, CBLL1, and ZC3H1; Eraser genes: ALKBH5 and FTO; Reader genes: YTHDC1, YTHDC2, ELAVL1, YTHDF1,
LRPPRC, YTHDF2, FMR1, YTHDF3, HNRNPC, HNRNPA2B1, and IGF2BP1.
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Figure 3: Establishment of random forest model and support vector machine model. (a) The RF and support vector machine (SVM)
residual distributions are plotted using the reverse cumulative distribution of residuals. (b) The residual distribution of the RF and SVM
models is depicted using boxplots. (c) ROC curves demonstrate the accuracy of the RF model and the SVM model.
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Erasers. “ConsensusClusterPlus” package in R was used to
identify m6A subtypes and gene clusters. Kruskal-Wallis
tests were adopted to compare the differences between clus-
ters. All parametric analyses were based on two-tailed tests
and p < 0:05 was set as the significance threshold. All data
analyses were carried out using R software (version 4.1.2).

3. Results

3.1. The Landscape of the 21 m6A Regulators in AS. In the
research, 21 m6A regulators were analyzed via the “Limma”
package in R to find the differential expression levels
between non-AS patients and AS patients. Eight significant
m6A regulators (WTAP, YTHDC1, CBLL1, HNRNPA2B1,
METTL14, RBMX, ALKBH5, and IGFBP1) were screened
and visualized using a heat map and histogram. We found
that WTAP and YTHDC1 were over-expressed in AS
patients, while the other significant m6A regulators dis-
played decreased expression in AS patients compared to
non-AS patients (Figures 1(a) and 1(b)). The “RCircos”
package in R was utilized to visualize the chromosomal posi-
tions of the 21 m6A regulators (Figure 1(c)). Spearman’s
correlation analysis of the 21 m6A RNA methylation modu-
lators is shown in Figure 1(d).

3.2. Correlation between Writers, Readers, and Erasers in AS.
To explore the gene expression levels among Writers,
Readers, and Erasers, linear regression analyses were
employed to analyze the correlation. p < 0:05 was set as the
significance threshold and the correlation coefficient was
set at 0.4. The expression levels of Writers and Readers,
Erasers and Readers, and Writers and Readers could be

found in (Figures 2(a)–2(l)). We found that the expression
levels of RBM15B, HNRNPA2B1, IGFBP1, RBMX, and
YTHDC2 in AS patients had a significant positive correlation
with FTO. Meanwhile, the expression levels of LRPPRC,
RBMX, and ELAVL1 displayed a positive correlation with
ALKBH5. Furthermore, the results and analyses demon-
strated positive correlations between Writers and Readers.

3.3. Establishment of Random Forest Model and Support
Vector Machine Model. Eight candidate m6A regulators were
chosen among a total of twenty m6A regulators. Then, we
developed regression and support vector machine models
to predict the occurrence of AS. Both the “Reverse Cumula-
tive Distribution of residuals” and the “Boxplots of resid-
uals” (Figures 3(a) and 3(b)) revealed that the RF model
had minimal residuals. Following that, we further evaluated
the model. The evaluation of receiver operating characteris-
tic curve (ROC curve) (Figure 3(c)) and the AUC value of
the ROC curve also indicated that the RF model was more
appropriate than the SVM model (Figure 3(c)). Thus, we
built a RF model based on the differentially expressed
m6A-related genes between non-AS patients and AS
patients (Figure 4(a)). We visualized these DEGs after classi-
fying them according to their biological significance
(Figure 4(b)). Eight candidate genes (WTAP, YTHDC1,
CBLL1, HNRNPA2B1, METTL14, RBMX, ALKBH5, and
IGFBP1) were selected based on the RF model with a score
of greater than 2.

3.4. Establishment of the Nomogram Model. The “rms” in R
package was used to establish a nomogram model based on
the eight candidate m6A regulators for the purpose of
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Figure 4: Random Forest (RF) Model construction. (a) The RF model is established among the 21 m6A regulators. (b) The importance of
the eight RNA N6-methyladenosine regulators based on the RF model.
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forecasting the prevalence of AS patients (Figure 5(a)). It can
be found from the calibration curves (Figure 5(b)) that the
predictability of the nomogram model was accurate. The
DCA curve showed that the red line (model line) remained
above the gray line from 0 to 1, revealing that nomogram-
based selections may benefit AS patients (Figure 5(c)). Fur-
thermore, the clinical impact curve also indicated that the
nomogram model had a significant predictive ability
(Figure 5(d)). Additionally, ROC curve illustrated that our
m6A regulators model got a better diagnostic power com-
pared to other gene models (Figure (6)).

3.5. Significant m6A Pattern Recognition Regulators for Two
Distinct m6A Patterns. The consensus clustering method
was used to identify distinct m6A patterns with eight signif-
icant candidate m6A regulators. We identified two m6A pat-
terns using the R tool “Consensus Cluster Plus” (cluster A
and cluster B) (Figures 7(a)–7(d)). The histogram and heat
map were then generated to illustrate the differential expres-
sion of the eight distinct m6A regulators between the two
clusters (Figure 7(e)). YTHDC1, HNRNPA2B1, and IGFBP1
all had significantly higher expression levels in cluster A
than those in cluster B. There were no significant differences
in WTAP, METTL14, CBLL1, RBMX, or ALKBH5 between
cluster A and cluster B (Figure 7(f)). PCA clearly revealed
that eight significant m6A regulators could distinguish the
two m6A patterns (Figure 7(g)).

3.6. Classification of Subtypes Based on the DEGs and
Evaluation of the m6A Gene Signature. In addition, we used
the “Limma” package in R to analyze two m6A patterns. A
total of 104 m6A-related DEGs were selected. To further
explore the m6A patterns, AS patients were divided into dif-
ferent genomic subtypes based on the 104 m6A-related
DEGs by using the “Consensus Cluster Plus”. Consistent
with the m6A patterns, the gene patterns were also divided
into two clusters (gene cluster A and gene cluster B)
(Figures 8(a)–8(d)). A heat map is used in Figure 8(e) based
on the expression of 104 DEGs in two gene patterns. More-
over, we tried to explore the expression differences of 21
m6A regulators between the two gene patterns, our research
results revealed that CBLL1, YTHDC1, HNRNPA2B1, and
RBMX had higher expression levels in gene cluster A, while
IGFNP1 had a higher expression level in gene cluster B
(Figure 8(f)). To quantify the m6A patterns, PCA algorithms
were utilized to calculate the m6A score for each sample.
Subsequently, we compared the m6A score between the
two distinct m6A gene clusters and the m6A clusters. It
can be seen from the results that the m6A score in cluster
A or gene cluster A was higher than that in cluster B or gene
cluster B (Figures 8(g) and 8(h)).

3.7. Analyses of Immune Characterization and Functional
Enrichment. We performed the GO and KEGG analyses to
understand the possible mechanism of these DEGs in AS.
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Figure 5: Establishment of the nomogram model. (a) Construction of the nomogram model based on the five candidate RNA N6-
methyladenosine regulators. (b) Predictive ability of the nomogram model as revealed by the calibration curve. (c) Decisions based on
the nomogram model may benefit AS patients. (d) Clinical impact of the nomogram model as assessed by the clinical impact curve.
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GO analysis suggested that DEGs mainly concentrated in the
processes of heme metabolic, porphyrin containing compound
metabolic, tetrapyrrole metabolic, hydrogen peroxide meta-
bolic, hydrogen peroxide catabolic, the modification of mito-
chondrial matrix, mitochondrial inner membrane and
hemoglobin complex, the activity of ubiquitin-protein transfer-
ase, ubiquitin-protein ligase, and oxidoreductase (Figure 9(a)).
Moreover, KEGG analysis demonstrated that DEGs mainly
concentrated in porphyr in metabolism, longevity regulating
pathway, glycine, serine and threonine metabolism, mTOR sig-
naling pathway, as well as p53 signaling pathway (Figure 9(b)).
In addition, ssGSEA was applied to calculate the abundance of
immune cells in AS and to evaluate the correlation between the

eight distinct m6A regulators and immune cells. The result of
the heat map displayed the correlation between the eight dis-
tinct m6A regulators and immune cells (Figure 10(a)). We
could conclude that HNRNPA2B1 had positive correlations
with numerous immune cells. Then, the two groups (high
HNRNPA2B1 expression and low HNRNPA2B1 expression)
were used to evaluate the differential immune cell infiltration
(Figure 10(b)). The results indicated that patients with high
HNRNPA2B1 expression had increased immune cell infiltration
compared to those with lowHNRNPA2B1 expression. Further-
more, we tried to evaluate the correlation between m6A clusters
and differential immune cell infiltration (Figure 10(c)). The
results showed that the two significant m6A patterns were
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Figure 6: Validation of nomogram model in the diagnostic value. (a) ROC curve analysis of nomogram model. (b) ROC curve analysis of
gene PUM1 model. (c) ROC curve analysis of gene ZFP91 model.
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consistent with activated CD4 T cell immunity, activated CD8
T cell immunity, and MDSC immunity. Cluster A was linked
to activated CD4 T cell immunity and activated CD8 T cell
immunity, while cluster B had a correlation with the immunity
of MDSC that has been linked to immunosuppressive func-
tions, which indicated that cluster A might be related to AS.
In addition, we explored the relationship between gene clusters
and differential immune cell infiltration, and the result was con-
sistent with the correlation between m6A cluster A and differ-
ential immune cell infiltration (Figure 11(a)). The Sankey
diagram shows the changes in m6A cluster, gene cluster, and
m6A score (Figure 11(b)).

3.8. Role of m6A Patterns in Distinguishing AS. We explored
the correlation between m6A patterns and risk genes in
order to obtain a better understanding of the association
between m6A patterns and AS (Figures 11(c) and 11(d)).
We noticed that the expression levels of CD3D, PTGER4,
and BACH2 were significantly higher in cluster A or gene
cluster A than those in cluster B or gene cluster B, indicating
that cluster A or gene cluster A may be strongly associated
with AS.

4. Discussion

AS is a complex and potentially debilitating disease with an
insidious onset, which would progress to radiation sacroilii-

tis in several years. According to the research papers pub-
lished in recent years, m6A regulators reportedly play an
important role in biological processes. However, the role of
m6A regulators in AS remains unknown.

Through differential expression analyses, we identified
eight significant m6A regulators among 21 m6A regulators
in AS patients and non-AS patients. Eight candidate m6A reg-
ulators (WTAP, YTHDC1, CBLL1, HNRNPA2B1, METTL14,
RBMX, ALKBH5, and IGFBP1) were extracted from the RF
model to predict the occurrence of AS. Following that, we
made a nomogram based on the eight candidate m6A regula-
tors, and we used the DCA curve to see how the nomogram
model benefited the AS patients.

m6A is a methylated modification generated by methyl-
ating the sixth position N of adenine on messenger RNA
(mRNA) using a methyltransferase complex (MTC) [28,
29]. WTAP is a nuclear protein that functions as the partner
of Wilms’ tumor 1 (WT1) [30]. WTAP deletion has been
verified to be embryonically fatal [31], indicating its critical
biological role in vertebrate development. Meanwhile, as an
important part of the MTC, WTAP can promote the forma-
tion of m6A [32]. Within the cytoplasm, YTHDF1 promotes
the initiation of translation and the decay of m6A-
dependent mRNA. Within the nucleus, it binds to m6A-
modified RNAs and facilitates splice site selection [33].
CBLL1 is an evolutionarily conserved E3 ubiquitin ligase
containing a RING-finger domain, and extensive studies
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Figure 7: Consensus clustering of the 8 distinct RNA N6-methyladenosine (m6A) regulators in AS patients. (a) The consensus clustering
matrix at k = 2. (b) The consensus clustering matrix at k = 3. (c) CDF curve for k = 2 to 9. (d) The relative variation of the area under the
CDF curve that k is from 2 to 9. (e) Expression heat map of the 8 significant m6A regulators in cluster A and cluster B. (f) Differential
expression histogram of the 8 significant m6A regulators in cluster A and cluster B. (g) Principal component analysis on the expression
profiles of the 8 significant m6A regulators that shows a remarkable difference in transcriptomes between the two m6A patterns ∗p <
0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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have demonstrated that CBLL1 plays an important role in
tumorigenesis [34]. HNRNPA2B1 regulates Wnt signaling
transcriptional activity by regulating the stability of TCF7L2
mRNA, and it is related to tumor growth [24, 35]. Mass
spectrometry has shown that METTL14 works to make
m6A methylation, and it can form a stable heterodimer.
METTL14 is a key RNA-binding scaffold that plays a crucial
role in recognition of substrate RNAs [36]. RBMX was ini-
tially identified as a component of the spliceosome and is
involved in alternative splicing. RBMX has been rediscov-
ered in recent years to participate in DNA damage repair,
sister chromatid cohesion, and the assembly of higher-
order ribonucleoprotein complexes [37–40]. Human AlkB
homolog H5 (ALKBH5) could demethylate long noncoding
RNAs, promote cancer cell self-renewal, or regulate autoph-
agy in malignancies, playing a fundamental role in noncan-
cerous reproductive system illnesses in humans [41].
Insulin-like growth factor binding protein-1 (IGFBP-1) is a
member of the insulin-like growth factor (IGF) system.
IGFBP-1’s biological effects in cancer have been discovered
to be reliant on its phosphorylation status, as well as on
IGF-dependent and -independent pathways [42]. Increasing
studies have proved that the eight m6A regulators have a
correlation with the occurrence of cancer. However, no
reports are available on the relationship between the eight
candidates m6A regulators and AS. We hope that the
selected eight distinct m6A regulators can provide a direc-
tion for future clinical research.

Furthermore, two clusters were divided based on the
eight distinct m6A regulators. Compared with cluster B,
ALKBH5 and FTO showed higher expression levels in cluster
A in our study. Then PCA was established to distinguish the
m6A patterns. Additionally, 104 DEGs were obtained based
on the two m6A clusters, GO terms, and KEGG pathway
analysis. This study revealed that 104 m6A-related DEGs
mainly concentrated in the processes of heme metabolic,
porphyrin containing compound metabolic, tetrapyrrole
metabolic, hydrogen peroxide metabolic, hydrogen peroxide
catabolic, the modification of mitochondrial matrix, mito-
chondrial inner membrane and hemoglobin complex, the
activity of ubiquitin-protein transferase, ubiquitin-protein
ligase, and oxidoreductase. Moreover, KEGG analysis dem-
onstrated that DEGs mainly concentrated in porphyrin
metabolism, longevity regulating pathway, glycine, serine
and threonine metabolism, mTOR signaling pathway, as
well as p53 signaling pathway. Besides, we further divided
the AS patients into two genomic subtypes (gene cluster A
and gene cluster B) based on the 104 DEGs. Then, the
m6A score for each sample was calculated by using PCA
algorithms, and comparisons were made between the signif-
icant m6A gene clusters and m6A clusters. The results
showed that the m6A score in cluster A or gene cluster A
was higher than that in cluster B or gene cluster B.

AS is a chronic inflammatory disease of unknown etiol-
ogy in which the innate immune system plays a dominant
role and is characterized by abnormal activation of innate
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Figure 8: Consensus clustering of the 104 RNA N6-methyladenosine (m6A)-related DEGs in AS patients. (a) The consensus clustering
matrix at k = 2. (b) The consensus clustering matrix at k = 3. (c) CDF curve for k = 2 to 9. (d) The relative variation of the area under the
CDF curve that k is from 2 to 9. (e) Expression heat map of the 104 m6A-related DEGs in gene cluster A and gene cluster B. (f)
Differential expression histogram of the 8 significant m6A regulators in gene cluster A and gene cluster B. (g) Differences in m6A score
between cluster A and cluster B. (h) Differences in m6A score between gene cluster A and gene cluster B. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p
< 0:001.
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Figure 10: Single sample gene set enrichment analysis. (a) Correlation between infiltrating immune cells and the 8 significant RNA N6-
methyladenosine regulators. (b) Differences in the abundance of infiltrating immune cells between high and low HNRNPA2B1 expression
groups. (c) Differential immune cell infiltration between m6A cluster A and m6A cluster B. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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immune cells. When considering the ssGSEA analysis, we
also discovered that the two significant m6A patterns were
consistent with activated CD4 T cell immunity, activated

CD8 T cell immunity, and MDSC immunity. The immunity
of MDSC, on the other hand, has been linked to immuno-
suppressive functions [43]. In the previous studies, several
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Figure 11: Role of RNA N6-methyladenosine (m6A) patterns in distinguishing AS. (a) Differential immune cell infiltration between gene
cluster A and gene cluster B. (b) Sankey diagram showing the relationship between m6A patterns, m6A gene patterns, and m6A scores. (c)
Differential expression levels of TYK2, PTGER4, CD3D, IL23R, KIF21B, ERAP1, ERAP2, BACH2, and CXCR2 between cluster A and cluster
B. (d) Differential expression levels of TYK2, PTGER4, CD3D, IL23R, KIF21B, ERAP1, ERAP2, BACH2, and CXCR2 between gene cluster A
and gene cluster B. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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risk genes (TYK2, BACH2, IL6R, IL7R, IL12B, IL27, NKX2,
and PTGER4) play a vital role in the development of AS.
Cluster A was found to be more associated with activated
CD4 T cell immunity, activated CD8 T cell immunity, and
lower MDSC immune infiltration, compared with cluster
B, which implied that cluster A may be related to AS.

In short, we used the consensus clustering method to
discover two m6A patterns (cluster A and cluster B) based
on the eight significant m6A regulators and to identify two
gene patterns (gene cluster A and gene cluster B) based on
the 104 DEGs. Cluster A and gene cluster A were found to
be enriched in activated CD4 T cell immunity, activated
CD8 T cell immunity, and MDSC immunity by ssGSEA,
implying that cluster A and gene cluster A may be associated
with AS. Then m6Ascore was calculated based on the m6A
modification, and the Sankey diagram was used to attribute
changes among m6A clusters, m6A gene clusters, and m6A
score.

Currently, there are few articles on the relationship
between m6A regulators and AS, therefore, our findings
have provided novel ideas for identifying different AS phe-
notypes and promoting personalized diagnosis in the future.
The aim of our study is to find out more about the role of
m6A regulators in AS. However, there are still some limita-
tions in our study. For instance, our model is not validated
in an independent data set due to a lack of datasets with
m6A regulators in the public database. Another problem is
that our clinical data is relatively incomplete. Moreover,
the sample data we utilized for our study are obtained retro-
spectively, so all analyses are conducted on public databases.
Inevitably, the research outcomes might have been partial as
a result of the inherent case selection bias. To confirm our
results, larger prospective studies as well as in vitro and vivo
experiments are needed.

5. Conclusion

To conclude, we build in our research a nomogram model
that accurately predicts the occurrence of AS by using eight
distinct m6A regulators. Additionally, we find two signifi-
cant m6A patterns and two gene clusters based on eight
important m6A regulators and DEGs, and our research find-
ings show that cluster A and gene cluster A may be associ-
ated with AS. Our work offers a foundation for further
research on various AS phenotypes, providing more insight
into the future diagnosis and treatment of AS.
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