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General Synthesis of Secondary Alkylamines by Reductive
Alkylation of Nitriles by Aldehydes and Ketones
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Abstract: The development of C@N bond formation reac-
tions is highly desirable due to their importance in biology

and chemistry. Recent progress in 3d metal catalysis is in-
dicative of unique selectivity patterns that may permit

solving challenges of chemical synthesis. We report here
on a catalytic C@N bond formation reaction—the reduc-

tive alkylation of nitriles. Aldehydes or ketones and nitriles,

all abundantly available and low-cost starting materials,
undergo a reductive coupling to form secondary alkyl-

amines and inexpensive hydrogen is used as the reducing
agent. The reaction has a very broad scope and many

functional groups, including hydrogenation-sensitive ex-
amples, are tolerated. We developed a novel cobalt cata-

lyst, which is nanostructured, reusable, and easy to

handle. The key seems the earth-abundant metal in com-
bination with a porous support material, N-doped SiC,

synthesized from acrylonitrile and a commercially available
polycarbosilane.

C@N bond formation reactions are of fundamental interest in
chemistry and biology, and amines are very important com-

pounds and key functional groups in many bulk and fine

chemicals,[1] drugs[2] and materials.[3] Differently substituted sec-
ondary alkylamines, examples of pharmaceuticals are shown in

Scheme 1 A, are challenging to synthesize. Most of the existing
catalytic methods, such as borrowing hydrogen or hydrogen

autotransfer,[4, 5] reductive amination,[6, 7] hydroaminomethyla-
tion[8] and hydroamination,[9, 10] albeit intensively investigated,

start already from an amine (Scheme 1 B) and are restricted re-

garding the synthesis of secondary alkylamines.[11] The hydro-
genation of amides is an alternative (Scheme 1 C), since it does

not require an amine as starting material,[12, 13] but again the
synthesis of differently substituted secondary alkylamines is

rarely reported.[14] The use of catalysts based on earth-abundant
metals such as Mn, Fe or Co in reactions classically associated

with rare noble metals is also of fundamental interest.[15–23]

We report herein that the reductive alkylation of nitriles by
aldehydes or ketones permits the general synthesis of secon-

dary alkylamines. The reaction has a broad scope. Aromatic or
aliphatic nitriles and benzylic or aliphatic aldehydes or ketones

-dialkyl, diaryl or arylalkyl substituted—can be employed. In
addition, we demonstrated the synthesis and modification of

bioactive compounds and pharmaceuticals. Many functional

groups, including hydrogenation-sensitive examples, are toler-
ated. We had to develop a novel catalyst which is nanostruc-

tured, reusable, and easy to handle. The key is the earth-abun-
dant metal cobalt (Co) in combination with a porous support

material, N-doped SiC synthesized from acrylonitrile and a

Scheme 1. A) Examples of secondary dialkylamine motifs in pharmaceuticals.
B/C) Examples of the catalytic synthesis of secondary alkylamines. These
methods can be used to synthesize secondary alkylamines but the scopes
are mostly demonstrated for aryl-alkylamines or tertiary alkylamines (borrow-
ing hydrogen/hydrogen autotransfer, reductive alkylation and hydroamino-
methylation, hydrogenation of amides). The intermolecular hydroamination
of alkylamines and olefins is challenging. D) Catalytic reaction introduced
herein.
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commercially available polycarbosilane. The catalyst has a dis-
tinct selectivity pattern; it permits the selective hydrogenation

of aliphatic or aromatic nitriles while barely reducing aldehydes
or ketones. In addition, the transiently formed imine intermedi-

ate is efficiently hydrogenated.
Attempts to reductively link nitriles and carbonyl com-

pounds in the gas phase[24] indicate that this high-temperature
approach is extremely limited in conversion, scope, and func-
tional group tolerance. Based on the inspiring development of

Co catalysts for the selective hydrogenation of nitriles,[25–30] we
expected that a Co catalyst could also be the key to develop a
broadly applicable catalytic process for the reductive alkylation
of nitriles. Co catalysts have also been employed successfully

in reductive amination reactions, the coupling of amines or
ammonia and aldehydes or ketones in the presence of hydro-

gen as the reducing agent.[27, 31–41] In addition, the Co catalyzed

transfer hydrogenation and coupling of nitriles has been de-
scribed.[42]

Our Co catalyst (Co/N-SiC) was synthesized as shown in Fig-
ure 1 A. Firstly, we synthesized the N-doped SiC support (N-

SiC), which contains 8 atom% (at %) nitrogen, as determined
by elemental analysis, using a modified literature proce-

dure.[43, 44] Secondly, the N-SiC material was wet impregnated
with a solution of Co(NO3)2 in water. After the evaporation of

the solvent, the sample was pyrolyzed under nitrogen flow at
700 8C followed by a reduction step (N2/H2, 90/10) at 550 8C

(Figure 1 A). Inductively coupled plasma optical emission spec-
trometry indicated 4.7 weight% (wt %) Co in the catalyst mate-
rial. Homogeneously distributed Co nanoparticles with an aver-

age particle size of 6 nm were determined with transmission
electron microscopy (Figure 1 B). The catalyst has a specific sur-

face area (Brunauer-Emmet-Teller) of 367 m2 g@1 with primarily
micropores and about 9 % mesopores. X-ray photoelectron

spectroscopy analysis confirms the presence of metallic Co
species and oxi(hydroxide) Co species at the surface of the Co

nanoparticles (Figure 1 C). High resolution transmission elec-

tron microscopy of the Co nanoparticles confirms that the core
of these particles is metallic Co (cubic phase, Figure 1 D) and

indicate an embedding of the Co nanoparticles into the N-SiC
support. In the diffraction data, I(Q), of the catalyst (Co/N-SiC),

the broad reflexes of graphite are still visible (Figure 1 E). Addi-
tionally, some reflexes due to Cobalt arise in the black curve.

The first reflex (002) of the graphitic support is shifted slightly

to lower Q values in the catalyst material due to the loading
with Cobalt compared to the bare N-SiC support, indicating ex-

pansion of the graphite interlayer spacing upon catalyst load-
ing. A biphasic refinement of the d-PDF data (Co/N-SiC-N-SiC)

reveals the coexistence of crystalline Co fcc nanoparticles with
diameters of 5.4 nm and smaller CoO fcc domains, with a

phase ratio of Co particles to CoO domains of about 6:1.

The reductive alkylation of benzonitrile with 4-methylbenzal-
dehyde was chosen as a benchmark reaction for the optimiza-

tion of the reaction conditions (Table 1, top). The most active
catalyst based on the yield of product in a given time was ob-

Figure 1. Synthesis and characterization of the Co catalyst denoted as Co/N-
SiC. A) Preparation of the cobalt (Co) catalyst. (a) Wet impregnation of N-SiC
with an aqueous solution of Co(NO3)2. (b) Pyrolysis of the impregnated N-SiC
under a nitrogen atmosphere at 700 8C and reduction of the pyrolyzed
sample in the presence of hydrogen at 550 8C. B) Transmission electron mi-
croscopy analysis of the Co/N-SiC catalyst and Co nanoparticle size distribu-
tion. Homogeneously dispersed Co nanoparticles with an average particle
size of 6 nm. C) X-ray photoelectron spectroscopy analysis verifies the pres-
ence of metallic Co and oxi(hydroxide) Co species (about 70 %) at the sur-
face of the Co nanoparticles. D) Characterization of the Co nanoparticles by
high resolution transmission electron microscopy indicates that they are em-
bedded in the N-SiC support and metallic E) XRD data of catalyst Co/N-SiC
(black) and support N-SiC material (green), together with their difference
(catalyst–support, in red). F) PDF refinement of the d-PDF (Co/N-SiC–N-SiC),
showing the contributions of the Co fcc phase (green) and of the CoO fcc
phase (pink) to the biphasic fit (in offset for clarity), together with the differ-
ence curve (grey) only containing high frequency noise.

Table 1. Catalyst screening.

Entry Metal source Support Pyrolysis
temp. [8C]

Yield
[%]

1[a] Co(OAc)2·6 H2O N-SiC 700 71
2[a] Co(acac)2 N-SiC 700 70
3[a] Co(NO3)2·6 H2O N-SiC 700 87
4[b] Co(NO3)2·6 H2O N-SiC 600 48
5[b] Co(NO3)2·6 H2O N-SiC 700 90
6[b] Co(NO3)2·6 H2O N-SiC 800 60
7[c] – N-SiC – 0
8[b] Co(NO3)2·6 H2O Pyrolyzed polyacrylonitrile 700 0
9[b] Co(NO3)2·6 H2O Activated charcoal 700 0
10[b] Co(NO3)2·6 H2O g-Al2O3 700 0

[a] Reaction conditions: 5.0 mol % Co (37 mg catalyst, 4.0 wt % Co,
0.025 mmol Co, 1.47 mg Co), 0.5 mmol benzonitrile, 1.0 mmol 4-methyl-
benzaldehyde, 2 mL 2-methyltetrahydrofuran (2-MTHF), 90 8C, 1.5 MPa H2,
16 h. [b] conditions as above with only 3 mL 2-methyltetrahydrofuran in-
stead of 2 mL. Yields were determined by gas chromatography using n-
dodecane as an internal standard. Abbreviations in entries 1 and 2 are ex-
plained in the text.
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tained by wet impregnation of N-SiC with Co(NO3)2 and a py-
rolysis temperature of 700 8C (Table 1, entry 3). Varying the sol-

vent (2-methyltetrahydrofuran, diglyme, dioxane, triethylamine,
methylcyclohexane, ethanol, toluene, water, isopropanol, pyri-

dine), temperature, hydrogen pressure and ratio of nitrile to al-
dehyde led to a 90 % formation of [N-benzyl-1-(p-tolyl)methan-

amine] in 2-methyltetrahydrofuran at 100 8C at a hydrogen
pressure of 1.5 MPa and a nitrile-to-aldehyde ratio of 1:2

(Table S6–S9). The replacement of the metal source with other

Co compounds led to a decrease in the yield of secondary
amine (Table 1, entries 1 and 2). A minor decrease in activity

was observed by using catalysts with Co(OAc)2 (OAcH = acetic
acid) and Co(acac)2 (acacH = pentane-2,4-dione). Pyrolysis tem-

peratures of 600 and 800 8C led to a significant decrease in the
catalytic activity of the catalysts synthesized from Co(NO3)2 and

N-SiC (Table 1, entries 4 and 6). In addition, we investigated dif-

ferent catalyst supports (Table 1, entries 8 till 10; Table S13),
which are all significantly less active.

The other supports led to inactive catalysts for which we
could not observe any product formation under these condi-

tions. The combination of Co(NO3)2 and the porous support
material N-SiC seem essential for the activity in the reductive

alkylation of nitriles with carbonyl compounds under the opti-

mized and mild conditions. We expected mild conditions to be
crucial in order to achieve a desirable level of tolerance of

functional groups.
We were interested in exploring the substrate scope and the

functional group tolerance of our Co/N-SiC catalyst next. Isolat-
ed yields of the secondary amines were given for the corre-

sponding hydrochloride salts. For the reductive alkylation of

benzonitrile with various aldehydes (Figure 2, products 1–19),
the secondary amines using 4-methylbenzaldehyde (electron-

donating group) and 4-chlorobenzaldehyde (electron-with-
drawing group) were isolated in 99 % yield (Figure 2, prod-

uct 1). In addition, the influence of the substituent position
was investigated by converting 2-, 3- or 4-methylbenzaldehyde

and 2-, 3- or 4-chlorobenzaldehyde. meta-Substituted benzal-

dehydes showed no influence on the catalytic activity
(Figure 2, products 2, 5), but a decrease in the product yields

were observed for sterically more demanding 2-methylbenzal-
dehyde and 2-chlorobenzaldehyde (Figure 2, products 3, 7). In
addition, other electron-withdrawing substituents, such as fluo-
rides and bromides, were tolerated well ; this was indicative, es-
pecially for bromide 8, that dehalogenation is of minor rele-

vance (Figure 2, products 4–8). The tert-butyl substituent in the
para position of benzaldehyde showed no influence on the
product formation and the corresponding amine 9 was isolat-
ed in 99 % yield. Boronic esters, such as 4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)benzaldehyde, are of special impor-
tance, since they are common compounds for cross-coupling

reactions and one example could be isolated in excellent yield
(Figure 2, 10). Secondary amines with methoxy and benzyloxy
substituents, which are used to protect hydroxyl groups, were
also isolated in nearly quantitative yields (Figure 2, prod-
ucts 11, 12). Cyclic acetals, such as piperonal, which are

common protective groups for carbonyl groups, were also tol-
erated (Figure 2, product 13). In addition, purely aliphatic alde-

hydes can be employed (Figure 2, products 14–19) albeit with

lower isolated yields.
For the reductive alkylation of various benzonitriles and

benzaldehyde, methyl group and chloro-substituted benzoni-
triles were used to investigate the substituent position effect

for both electron-donating and -withdrawing substituents
(Figure 2, products 20–22 and 24–26). By converting 2-, 3- or

4-methylbenzonitrile, the yield decreases gradually from para-

via meta- to ortho-substituted nitriles (Figure 2, products 20–
22). This trend could not be observed at the chloro-substituted

nitriles, as the corresponding amines were isolated in 99 %
yield (Figure 2, products 24–26). A decrease of the product

yield was observed by converting 2,6-difluorobenzonitrile,
which we believe is due to the two electron-withdrawing

fluoro substituents (Figure 2, product 28). The electron-donat-

ing methoxy substituent in the para position had no negative
influence on the yield of the corresponding amine, which was

isolated in 99 % yield (Figure 2, product 29).
However, a slight decrease in the yield could be observed

for the methoxy substituent in the meta position (Figure 2,
product 30). The naphthalene-based nitrile can be converted

Figure 2. Scope of secondary amines using aromatic nitriles and aldehydes.
Reaction conditions: 5.0 mol % Co (74 mg Co/N-SiC, 4.0 wt % Co, 0.05 mmol
Co, 2.95 mg Co), 1.0 mmol nitrile, 3.0 mmol aldehyde, 6 mL 2-methyltetrahy-
drofuran, 100 8C, 1.5 MPa H2, 20 h. Isolated yields are given for the corre-
sponding hydrochloride salts.
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in good yields to the corresponding secondary amine 31. To
our delight, the reductive alkylation of an aromatic O-heterocy-

cle proceeded very well and the corresponding amine 32 was
isolated in nearly quantitative yield.

For the reductive alkylation of aliphatic nitriles with various
aldehydes (Figure 3), as before, the influence of the substituent

position was investigated with the methyl- and chloro-substi-
tuted benzaldehydes (Figure 3, products 33–35, 37–39). The

same trend was observed, but the yields of the methyl-substi-

tuted secondary amines 33, 34 and 35 were slightly lower, due
to the lower reactivity of the aliphatic nitrile. The secondary

amines with the electron-withdrawing chloro substituents at
the 2-, 3- or 4-position were obtained in 96–99 % isolated yield

(Figure 3, products 37–39). Fluorinated and brominated benz-
aldehydes were smoothly converted in the corresponding
amines 36 and 40 in good yields. The secondary amine 41
with the electron-donating methoxy substituent in the para
position was isolated in 96 % yield. 4-Benzyloxybenzaldehyde

was converted selectively to product 42 in nearly quantitative
yield without a significant amount of hydrogenolytic ether
cleavage. Piperonal was converted to the corresponding amine
43 in very good yield, no cleavage of the acetal was observed

and a yield of 99 % was observed for 4-tert-butylbenzaldehyde

(Figure 3, product 44). We then varied the aliphatic nitrile and
combined it with numerous, mostly purely aliphatic aldehydes.

Purely aliphatic nitriles of different chain lengths were linked
smoothly with benzaldehyde and the secondary amines were

isolated in yields of 99 % (Figure 3, products 45, 46). The syn-
thesis of such alkyl-benzylamines seems more efficient if an ali-

phatic nitrile is used instead of an aliphatic aldehyde. A nitrile

with a cyclohexane substituent was converted to the prod-
uct 47 in good yields too. The sterically demanding pivaloni-

trile reacts well and the coupling product with benzaldehyde
was obtained in 82 % yield (Figure 3, product 48). The unsatu-

rated secondary amine 49, which was synthesized from valero-
nitrile and citronellal, was still isolated in an acceptable isolat-

ed yield of 62 %. Various pure aliphatic nitriles and aldehydes
with different chain lengths were smoothly converted to the

corresponding amines (Figure 3, products 50–54) ; no influence
of the chain length on the yield were observed.

For reductive alkylation of nitriles with ketones, the imine in-
termediate formed after the condensation is sterically more

protected and, thus, more difficult to hydrogenate. Higher re-

action temperatures (110 8C) and catalyst loadings of 8 mol %
Co were required to obtain good yields. We systematically ex-

plored the coupling of an aromatic nitrile, namely, benzonitrile
or a purely aliphatic nitrile, namely, pentanenitrile with a diaryl,

aryl-alkyl, dialkyl or cyclic ketone. Isolated yields between 57
and 81 % were obtained (Figure 4, product 55 till 62). The yield

of the secondary amines in the reductive alkylation of benzoni-

trile decreases gradually from diaryl via aryl-alky to dialkyl ke-
tones (Figure 4, products 55–57). The cyclic ketone was con-

verted smoothly in the secondary amine 58. The yield (85 %)
was, compared to the other ketones, higher due to a smaller

steric demand. The same trends but lower isolated yields were
observed for the reaction of the aliphatic nitrile pentanenitrile

with the same ketones (Figure 4, products 59–62).

For the modification and synthesis of biologically active mol-
ecules, nabumentone and pentoxifylline, common drug mole-

cules, were converted to the respective amines in up to 78 %
isolated yield (Figure 4, products 63–66). To our delight, pen-

Figure 3. Scope of secondary amines using aromatic nitriles and aldehydes.
Reaction conditions: 5.0 mol % Co (74 mg Co/N-SiC, 4.0 wt % Co, 0.05 mmol
Co, 2.95 mg Co), 1.0 mmol nitrile, 3.0 mmol aldehyde, 6 mL 2-methyltetrahy-
drofuran, 100 8C, 1.5 MPa H2, 20 h. Isolated yields are given for the corre-
sponding hydrochloride salts.

Figure 4. Reductive alkylation of nitriles using ketones and modifications
and synthesis of biologically active molecules. [a] Reaction conditions:
8.0 mol % Co (118 mg Co/N-SiC, 4.0 wt % Co, 0.08 mmol Co, 4.71 mg Co),
1.0 mmol nitrile, 3.0 mmol ketone, 6 mL 2-methyltetrahydrofuran, 110 8C,
1.5 MPa H2, 20 h. Isolated yields are given for the corresponding hydrochlo-
ride salts. [b] 130 8C.
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toxifylline was converted without hydrogenation of the C=O
bond. Our synthesis protocol may also be applied to synthe-

size biologically active molecules. Tecalcet, which is used as a
calcimimetic agent, can be synthesized from the two commer-

cially available educts 2-chlorohydrocinnamonitrile and 3-me-
thoxyacetophenone in 66 % isolated yield (Figure 4, prod-

uct 67). Nitriles can also be alkylated with various steroid deriv-
atives. The reductive alkylation of benzonitrile and valeronitrile

with estrone, stanolone and testosterone proceeded smoothly,

and the products were obtained in yields up to 80 % (Figure 4,
products 68–73). Testosterone, which contains the C@C double

bond, was converted into the corresponding unsaturated
amines 72 and 73. The yields of the products, which were syn-

thesized with an aliphatic nitrile, were slightly lower than
those obtained with an aromatic nitrile. Various tests were per-
formed to demonstrate the catalyst stability and leaching of

cobalt species (see Supporting Information). The reductive al-
kylation of benzonitrile with 4-methylbenzaldehyde at about

65 % yield of product was chosen to demonstrate the reusabili-
ty of the catalyst and to establish its efficiency. Five consecu-
tive runs showed no decrease in the catalytic activity (Fig-
ure S10). An upscaling of the reaction was performed using

various substrates. Therefore, 5 mmol of the nitriles was con-

verted into the secondary alkylamines on a gram scale. No de-
crease of the yield obtained was observed as the reaction was

upscaled (Table S14).
We propose a hydrogenation–condensation–hydrogenation

pathway regarding the reductive alkylation of nitriles with car-
bonyl compounds as shown in Scheme 2, top. Mechanistic in-

vestigations were carried out under the given conditions

(Scheme 2, bottom), and product and intermediates are ob-
tained in the yields listed. We used milder reaction conditions

to better distinguish between the rates of the individual reac-
tion steps. The hydrogenation of the nitrile proceeds slowly in

comparison to condensation and imine hydrogenation and is
probably the rate-determining step in the product formation

sequence. The benzaldehyde is slowly converted to the corre-
sponding alcohol (23 % under the conditions given) if no nitrile

is present. No hydrogenation of benzaldehyde to the corre-
sponding alcohol was observed if the reaction is performed in

the presence of nitriles.
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