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IntroductIon
Despite recent improvements in the identification of coro-
nary artery disease, fatal myocardial infarction remains 
the leading cause of death globally. In 2016, an estimated 
17.6 million deaths were due to cardiovascular disease, 
of which 9.5 million were attributed to coronary artery 
disease.1 The increased use of evidence- based therapies 
combined with lifestyle modification has dramatically 
reduced complications from myocardial infarction over the 
past two decades. However, there remains an unmet clin-
ical need to identify individuals with a high residual risk of 
recurrent cardiovascular events.2 Importantly, whilst vali-
dated risk scores can provide clinicians with information 
on expected survival following a myocardial infarction, 
they do not accurately predict which individuals will be at 
risk of recurrent plaque rupture events.3 To address this, 
research programmes are exploring whether novel imaging 
biomarkers can improve patient risk stratification to deter-
mine who may benefit from intensification of therapy.

Atherosclerotic plaque rupture resulting in luminal throm-
bosis and coronary artery occlusion is the most frequent 

cause of myocardial infarction. The vulnerable plaque 
model, which centres on identifying plaques with specific 
characteristics that are prone to rupture, has been a corner-
stone of our understanding of myocardial infarction for 
decades.4,5 In recent years, there has been increasing recog-
nition that most plaque rupture events remain clinically 
silent.6 Identifying vulnerable plaques alone may therefore 
be insufficient to provide incremental prognostic informa-
tion above and beyond measures of total atherosclerotic 
plaque burden.7 Furthermore, there has been a shift in 
focus away from the assessment of luminal stenosis severity 
towards identification of high- risk plaque characteristics 
within the arterial wall, as the majority of de novo plaque 
rupture events occur in patients with non- obstructive 
stenoses.7–9 Non- invasive imaging offers a unique insight 
into disease processes that underpin atherosclerosis and 
may potentially identify novel therapeutic targets. In this 
review, we focus on the roles of CT coronary angiography 
(CTCA) and combined positron emission tomography and 
CT (PET- CT) in the assessment of vulnerable plaque and 
coronary artery disease activity.
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abstract

Despite recent advances, cardiovascular disease remains the leading cause of death globally. As such, there is a need 
to optimise our current diagnostic and risk stratification pathways in order to better deliver individualised preventative 
therapies. Non- invasive imaging of coronary artery plaque can interrogate multiple aspects of coronary atherosclerotic 
disease, including plaque morphology, anatomy and flow. More recently, disease activity is being assessed to provide 
mechanistic insights into in vivo atherosclerosis biology. Molecular imaging using positron emission tomography is 
unique in this field, with the potential to identify specific biological processes using either bespoke or re- purposed 
radiotracers. This review provides an overview of non- invasive vulnerable plaque detection and molecular imaging of 
coronary atherosclerosis.
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pathophysIology of vulnerable plaque
Atherosclerosis is a chronic inflammatory disease that progresses 
over many years.9 Beginning relatively early in life, arterial endo-
thelial damage leads to accumulation of vascular smooth muscle 
cells and intimal thickening. This process is more common 
in areas of low shear stress such as arterial bifurcations and is 
followed by intimal deposition of plasma lipoproteins, leading 
to oxidation and cellular apoptosis. The local inflammatory 
response is propagated by the expression of cellular adhesion 
molecules on vascular smooth muscle cells which promote 
migration and differentiation of circulating monocytes. Macro-
phage phagocytosis of lipid results in foam cells, which are the 
prelude to the lipid rich, necrotic core that is one of the hallmark 
features of vulnerable plaque. Other key histological and intra-
vascular imaging characteristics of these lesions include macro-
phage infiltration, microcalcification, intraplaque haemorrhage 
and a thin fibrous cap.10 These vulnerable plaque features are 
targets that may be readily identified using a combination of 
anatomical and molecular imaging.

computed tomography coronary 
angIography to assess plaque 
vulnerabIlIty
CTCA offers both diagnostic and prognostic information for 
patients with coronary artery disease, with current scanners and 
protocols offering rapid prospective electrocardiography- gated 
imaging at low radiation doses. The ability to exclude obstructive 
coronary atherosclerosis is relevant for patients with suspected 
angina, and CTCA excels in this regard with a negative predictive 
value approaching 100% in some cohorts.11 The main impedi-
ments to accurate assessment of stenotic severity are (1) the 

presence of extensive coronary calcification or coronary stents 
which may cause photon starvation and partial volume artefact, 
thereby limiting accurate luminal assessment, and (2) inability to 
achieve adequate heart rate control, thereby increasing motion 
artefact. Two recent randomised controlled trials assessing the 
use of CTCA in stable patients have been published. The Scot-
tish Computed Tomography of the Heart (SCOT- HEART) trial 
(n = 4146) compared CTCA to routine care in stable patients 
with suspected angina and demonstrated CTCA was associated 
with increased diagnostic certainty and more appropriate use of 
invasive angiography and preventative therapies.12 At 5 years, a 
pre- specified secondary analysis demonstrated a reduction in the 
combined endpoint of coronary heart disease death or non- fatal 
myocardial infarction in the CTCA arm [2.3% vs 3.9%, hazard 
ration (HR) 0.59, 95% confidence interval (CI) 0.41–0.84], prin-
cipally driven by a reduction in non- fatal myocardial infarc-
tion (2.1% vs 3.5%, HR 0.60, 95% CI 0.41–0.87).13 To date, this 
is the only randomised controlled trial of non- invasive cardiac 
imaging that has demonstrated improved outcomes in this 
setting. Of note, approximately half of patients with subsequent 
adverse events did not have obstructive coronary artery disease. 
The Prospective Multicenter Imaging Study for Evaluation of 
Chest Pain (PROMISE) trial (n  =  10,003) compared CTCA 
with functional testing in symptomatic outpatients without 
diagnosed coronary artery disease in whom physicians believed 
non- urgent, non- invasive testing for suspected coronary artery 
disease was required.14 There was no difference in the primary 
outcome of death, myocardial infarction (MI), hospitalisation 
for unstable angina, or major procedural complication between 
groups (HR 1.04, 95% CI 0.83–1.29) at a mean follow- up of 25 
months. However, the risk of death or non- fatal myocardial 
infarction was lower in the CTCA group at 12 months (HR 0.66, 
95% CI 0.44 to 1.00).

On the basis of currently available data, the use of CTCA in 
patients with suspected stable angina is recommended as 
an appropriate first- line investigation in the 2019 European 
Society of Cardiology chronic coronary syndromes guidelines.15 
Conversely, the role of CTCA in screening asymptomatic patients 
for primary prevention is not supported at present16 and given 
that CTCA requires the use of ionising radiation and iodinated 
contrast, this should not be undertaken routinely outside the 
context of a clinical trial. This question will be addressed in the 
upcoming CTCA for the Prevention of Myocardial Infarction 
(SCOT- HEART2) randomised controlled trial (NCT03920176).

In addition to its diagnostic role in identifying obstructive coro-
nary artery disease, CTCA is able to delineate intramural and 
extramural plaque characteristics, comparing favourably with 
intravascular ultrasound—long held to be the gold- standard 
for coronary atherosclerosis imaging.17,18 The hallmark CTCA 
findings of vulnerable plaque are low- attenuation plaque (<30 
Hounsfield units), positive remodeling (maximum vessel diam-
eter divided by reference vessel diameter >1.1), spotty calcification 
and the napkin- ring sign (low attenuation plaque core with a rim 
of high attenuation (Figure 1).19 Contemporary non- randomised 
data have consistently demonstrated the prognostic power of 
CTCA in identifying vulnerable plaque and predicting future 

Figure 1. High- risk plaque features on CT coronary angiogra-
phy. Features of high- risk atherosclerotic plaque including (A) 
positive remodelling, (B) low attenuation plaque, (C) spotty 
calcification and (D) the ‘napkin ring’ sign. Images courtesy 
of Williams et al.7
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acute coronary syndromes.7,20–24 These data are supported by 
analyses from SCOT- HEART and PROMISE. In SCOT- HEART, 
608 (34%) patients had adverse plaque features which were asso-
ciated with a 3- fold higher risk of coronary heart disease death 
or nonfatal myocardial infarction (HR 3.01, 95% CI 1.61–5.63).7 
In PROMISE, 676 (15%) patients had high- risk plaque, the pres-
ence of which was again associated with a greater risk of major 
adverse events (HR 1.72, 95% CI 1.89–3.93).25 It is important to 
note that despite these associations, the high prevalence of high- 
risk plaque demonstrates the low positive predictive value of 
these findings for clinical events.

The clinical utility of identifying high- risk plaque remains 
unknown, as no additional intervention has been shown to 
reduce future cardiovascular risk above and beyond the use of 
optimal medical therapy in this setting. Recently, the Progres-
sion of Atherosclerotic Plaque Determined by Computed Tomo-
graphic Angiography Imaging (PARADIGM) study set out to 
evaluate the medium- term effects of statins on high- risk plaque 
formation and plaque progression in a low risk population.26 An 
eligible cohort of 1255 was divided into 474 statin- naive and 781 
statin- taking patients. Of note, moderate or high- intensity statins 
(atorvastatin or rosuvastatin) were used in 94% of statin- taking 
patients. The rate of coronary artery disease progression was 

slower in patients receiving statin therapy compared with statin- 
naive patients (1.76 ± 2.4% vs. 2.04 ± 2.47% atheroma volume 
per year; p = 0.002) with no overall change in the rate of obstruc-
tive (>50% diameter) stenoses. Over a median follow- up of 3.4 
years, statins increased the overall calcium volume, decreased 
the volume of non- calcified material and importantly reduced 
the rate of high- risk plaque development by 35%.26

coronary posItron emIssIon tomography 
to assess dIsease actIvIty
The features of plaque vulnerability identified using CTCA 
may reflect structural changes in the content of the plaque that 
progress or regress over many years. Attention is now focused 
on developing non- invasive imaging techniques that may better 
assess short and medium- term cardiovascular risk. In this regard, 
PET- CT using targeted radiotracers to identify ligands involved 
in atherosclerotic pathophysiology has important clinical poten-
tial (Table 1). Radiotracers originally developed for imaging in 
oncology have been explored in the more challenging field of 
cardiovascular molecular imaging. Due to the small size of the 
coronary arteries and constant motion of the heart throughout 
the cardiac cycle, there has been significant technical investment 
in optimising acquisition protocols,27–29 reconstruction algo-
rithms30 and post- processing interpretation of coronary artery 

Table 1. PET radiotracers under investigation to assess coronary plaque vulnerability

Target Radiotracer Study type Summary of evidence to date
Selected 
references

Microcalcification 18F- Fluoride In vitro experiments Histological validation of selectivity for 
microcalcification

33, 34

    Technical feasibility 
studies

Good interobserver and scan- rescan 
repeatability

31

Improvement in coronary assessment 
with:

(1) Motion correction and blood pool 
clearance

 

21

(2) 3 h delay injection – PET acquisition 29

PET fusion with offline coronary CT 
angiography

44

Optimised image reconstruction 30

Partial volume correction for coronary 
arteries

45

    Prospective studies in 
stable CAD

Correlation with high risk plaque 
features

46

Correlation with high risk phenotype 35, 47

Measure of CAD activity in diabetes 
mellitus

48

Intensification of antiplatelet therapy 38

    Prospective studies in 
acute coronary syndrome

Identifies culprit plaque rupture 37

Thrombus 18F- GP1 Phase I studies High affinity in platelet aggregation 40

First- in- human study carotid 
thrombosis

42

CAD, coronary artery disease; PET, positron emission tomography.
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activity to attain a robust methodology for molecular imaging in 
the coronary arteries.31 Here, we will focus on two radiotracers 
that have the most clinical potential; several other tracers have 
been investigated in small studies and are discussed elsewhere.32

18f-fluorIde
To date, 18F- sodium fluoride (18F- fluoride) is currently the most 
promising radiotracer for molecular coronary imaging due to its 
low background activity in the myocardium and excellent signal 
to noise ratio in all epicardial coronary arteries.31 The mecha-
nism of 18F- fluoride binding in atherosclerotic coronary plaque 
is through hydroxyl exchange on the surface of hydroxyapatite 
to generate fluoroapatite which serves as a marker of microcal-
cification.33,34 As the calcium crystal size decreases, the surface 
area for 18F- fluoride binding increases, resulting in an intensi-
fied signal in regions of isolated microcalcification.34 This allows 
regions of microcalcification to be identified prior to the develop-
ment of macrocalcific deposits which are recognised in advanced 
stable coronary artery disease.35 In contrast to the stability of this 
macrocalcification, atherosclerotic microcalcification arising 
from apoptotic macrophages alters the structural integrity of the 
fibrous cap and is thought to increase the propensity to plaque 
rupture.36 This manifests clinically as acute coronary syndromes 

where 18F- fluoride has been associated with a high proportion 
of culprit plaque ruptures37 (Figures 2 and 3). Ongoing clinical 
studies are investigating whether the identification of microcal-
cification using 18F- fluoride can predict individuals at risk of 
recurrent myocardial infarction (NCT02278211).

For a diagnostic imaging modality to have utility in wider clin-
ical practice, it is must be able to guide risk stratification and 
treatment allocation to improve clinical outcomes. Phase II 
clinical trials using PET radiotracers have demonstrated good 
agreement between modification of plaque activity and subse-
quent larger Phase III clinical outcome studies (Table 2). Instead 
of continuing to adopt a ‘one size fits all’ approach within clinical 
trial design, the use of imaging biomarkers to quantify plaque 
activity may be an alternative strategy to identify those indi-
viduals who have the most to gain from intensification of treat-
ment. This approach was applied in the recently published Dual 
Antiplatelet Therapy to Reduce Myocardial Injury (DIAMOND) 
study.38 In the context of advanced stable coronary artery disease, 
clinical trials have demonstrated that cardiovascular events can 
be reduced with the extended use of dual antiplatelet therapy, 
although there is no overall reduction in all- cause mortality as 
prolonged therapy comes at the expense of higher rates of major 

Figure 2. 18F- fluoride uptake in left main stem high- risk coronary plaque. A 62- year- old male with anterior ST elevation myocar-
dial infarction (high- sensitivity Troponin I 22144 ng l−1). (A) Following primary percutaneous coronary angiography, CT coronary 
angiography demonstrated a positively remodelled plaque with intraplaque haemorrhage and low attenutation in the distal left 
main stem (yellow arrow). Inset Cross- section multi planar reconstruction of distal left main stem lesion. (B & C) 18F- fluoride ECG- 
gated positron emission tomography revealed increased radiotracer uptake in the lesion. ECG, electrocardiogram.

Figure 3. 18F- fluoride uptake in right coronary artery. A 56- year- old male with inferior ST elevation myocardial infarction (high- 
sensitivity Troponin I 22910 ng l−1). (A) CT angiography following percutaneous coronary intervention to the proximal (culprit 
lesion) and mid- segment RCA. Previous coronary intervention was performed to distal RCA and PDA following ACS- NSTEMI 
7 years prior to admission. Inset Sagittal reconstruction (yellow line) of proximal and distal RCA stents in the right atrioventricular 
groove. (B & C) 18F- fluoride ECG- gated positron emission tomography demonstrating accummulation of radiotracer in the prox-
imal (culprit) and distal (old) RCA segments. CA, right coronary artery.
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bleeding.39 The DIAMOND study was undertaken to test the 
hypothesis concerning whether 18F- fluoride PET imaging could 
appropriately select patients who may benefit from the extended 
use of P2Y12 inhibition. The study population comprised of 202 
patients who underwent coronary 18F- fluoride PET imaging 
and were randomised 1:1 to ticagrelor, a potent P2Y12 inhib-
itor, or placebo to assess whether intensification of antiplatelet 
therapy would reduce subclinical myocardial injury in patients 
with high- risk plaque. A per- protocol group of 191 patients was 

used for the primary analysis and excluded patients without a 
troponin sample at 30 days and in whom compliance with the 
study medication (ticagrelor or placebo) was less than 80%. 
Whilst coronary 18F- fluoride activity was associated with 
higher plasma high- sensitivity cardiac troponin I concentrations 
(geometric mean 3.8 ± 2.9 vs 2.5 ± 2.6 ng l−1, p = 0.004), there 
was no reduction in subclinical myocardial injury at 30 days or 
1 year.38 Whilst the primary end point did not reach statistical 
significance, this type of novel trial design illustrates some key 
lessons for future studies in this field. A sophisticated under-
standing of plaque pathophysiology will help to select the appro-
priate target for the right patient group. The underlying reason 
for this result may be due to the specificity of 18F- fluoride in 
identifying atherosclerotic microcalcification rather than intra 
coronary thrombosis per se. Radiotracers visualising plaque 
activity (18F- fluoride, 18F- fluoro-2- deoxyglucose) may be best 
used to stratify plaque- directed therapy (e.g. interleukin-1 β 
antagonists, proprotein convertase subtilisin/kexin Type 9 inhib-
itors). In contrast, to reduce the risk of thrombosis and platelet 
aggregation, radiotracers targeting the coagulation cascade may 
need to be considered.

18f-gp1
Thrombus formation plays an integral role in the pathophys-
iology of coronary atherosclerosis and plaque destabilisation. 
This is particularly relevant in the current era of high- sensitivity 

Figure 4. 18F- GP1 arterial uptake in right popliteal artery. 18F- GP1 PET- CT images of a patient who had recently undergone right 
common femoral artery endarterectomy and right popliteal artery angioplasty. Anterior maximum intensity projection and axial 
images taken 120 min after 18F- GP1 injection show focal increased uptake in the right popliteal artery (a, b); arrows), which cor-
responds to a thrombotic lesion after angioplasty (c). Additional 18F- GP1 uptake is seen in the dissected right distal external iliac 
artery (d, e); dotted arrows) and right common femoral artery (a, f); arrow heads) where endarterectomy was performed 3 days 
prior to the PET- CT (g, arrow head). Images courtesy of Chae et al.40 PET, positron emission tomography.

Table 2. Use of positron emission tomography imaging to 
guide inflammatory response to treatment

18F- FDG study (+)
18F- FDG study 
(-)

Clinical 
outcome (+)

Atorvastatin49,50

Pioglitazone51

Clinical 
outcome (-)

Dalceptrapib52

5- lipooxygenase 
inhibitor53

Losmapimod54

Oxidised low density 
lipoprotein antibody55

FDG, fludeoxyglucose.
Phase II clinicaltrials demonstrating cardiovascular 18F- FDG activity 
responseto therapy compared with subsequent Phase IIIclinical 
outcome trials. Study references in brackets. 18F- FDG, 18F- FDG.
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cardiac troponin assays. The identification of myocardial injury 
alone is often clinically insufficient, as there may be several 
differential diagnoses with distinct pathologies, only one of 
which may be plaque rupture. To date, there has been no clini-
cally applicable non- invasive imaging technique that specifically 
targets thrombus. The advent of 18F- GP1 is therefore of major 
clinical interest.

Plaque rupture leads to exposure of the thrombogenic lipid core 
and recruitment of platelets to the site. The glycoprotein IIb/IIIa 
(GPIIb/IIIa) receptor is expressed in high density on activated 
platelets. It is a member of the integrin family of cell surface 
proteins and undergoes activation upon stimulation from a 
variety of thrombogenic factors. Upon activation, GPIIb/IIIa 
binds to fibrinogen which results in cross- linking and thrombus 
formation. GPIIb/IIIa has been a therapeutic target in cardiology 
for many years, with inhibitors (tirofiban, abciximab and eptifi-
batide) commonly used in high- risk acute coronary syndromes 
upstream of, or during, percutaneous coronary intervention. 
18F- GP1 is a novel, small molecule fiban–class ligand that binds 
with high affinity to activated GPIIb/IIIa. Binding is not signifi-
cantly affected by aspirin or heparin.40

Kim et al performed a first- in- human investigational study of 
18F- GP1 in patients with acute deep vein thrombosis (n = 10) 
or pulmonary embolism (n = 10).41 The radiotracer was well- 
tolerated with initial high uptake followed by rapid clearance in 
the spleen, kidneys and blood pool. 18F- GP1 PET- CT detected 
89% of vessels with deep vein thrombosis and 60% with pulmo-
nary embolism, and interestingly demonstrated increased 
uptake in 32 vessels that were not detected by conventional 
imaging.40 The mean standardised uptake value of thrombo-
emboli to blood pool ratio was 4.9 ± 1.4 and 3.7 ± 1.5 for deep 

vein thrombosis and pulmonary embolism respectively; a signal 
to background ratio that is superior to 18F- fluoride. Following 
this, the first- in- human study of 18F- GP1 in arterial throm-
bosis (six endovascular repair of abdominal aortic aneurysm, 
one bypass surgery and stent placement, one endarterectomy, 
one arterial dissection, and one acute cerebral infarction) was 
published by Chae et al.42 The investigators found uptake in arte-
rial thrombus in all patients, again demonstrating a high mean 
standardised uptake value of thrombus to blood pool ratio (3.4, 
range 2.0–6.3) (Figure 4). There were no study- related adverse 
events. The favourable safety and radiation dosimetry profile of 
18F- GP1 has been demonstrated and is comparable to other PET 
radiotracers.43 In light of these preliminary data, 18F- GP1 is a 
novel, highly promising radiotracer for coronary atherosclerosis 
imaging. The clinical applications of this specific thrombus tracer 
are broad- ranging, particularly for the identification of ruptured 
plaque and coronary thrombus. This has the potential to offer 
diagnostic information in patients with myocardial injury that 
cannot be acquired with any other currently available non- 
invasive imaging technique. The clinical use of 18F- GP1 requires 
combined PET- CT, thus offering anatomical and lesion- based 
assessments of plaque in addition to thrombus activity. Further 
clinical studies are highly anticipated.

conclusIons
The emergence of hybrid non- invasive imaging modalities 
which can detect high- risk plaque offers new insights into the 
pathophysiology of coronary artery disease. Using non- invasive 
imaging to predict clinical outcomes and stratify therapy more 
appropriately are key objectives of current cardiovascular 
imaging research programmes. Whether the identification of 
these imaging phenotypes can improve the delivery of cardiovas-
cular care will be addressed by ongoing clinical trials.
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