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The statistical data of monthly pulmonary tuberculosis (TB) incidence cases from January 2004 to December 2012 show the
seasonality fluctuations in Shaanxi of China. A seasonality TB epidemic model with periodic varying contact rate, reactivation rate,
and disease-induced death rate is proposed to explore the impact of seasonality on the transmission dynamics of TB. Simulations
show that the basic reproduction number of time-averaged autonomous systemsmay underestimate or overestimate infection risks
in some cases, which may be up to the value of period. The basic reproduction number of the seasonality model is appropriately
given, which determines the extinction and uniformpersistence of TB disease. If it is less than one, then the disease-free equilibrium
is globally asymptotically stable; if it is greater than one, the system at least has a positive periodic solution and the disease will
persist. Moreover, numerical simulations demonstrate these theorem results.

1. Introduction

Tuberculosis (TB) remains one of the world’s deadliest
communicable diseases. In 2013, it was estimated that 9.0
million people developed TB and 1.5 million died from the
disease, and TB is slowly declining each year [1]. According
to the online global TB data collection system, China alone
accounted for 11% of the total cases, which is the second
country of 22 TB high-burden countries, only after India.
Shaanxi is one of themore serious TB provinces inChina, and
its reported new cases each year reach about 25,000, which is
the second in the number of cases of infectious diseases in
Shaanxi, only next to the hepatitis B virus (HBV).

Some researchers have investigated the influence of sea-
sonal variations on the transmission dynamics of infectious
diseases [2–4]. And seasonal variation in TB incidence has
been described in many countries and cities, such as India,
United States, Russia, New York city, and Hong Kong [5–
9]. TB is a seasonal disease in China [10, 11], but it remains
unknown in Shaanxi.

From 2004 to 2012, there are 273,305 reported notifiable
active TB cases in Shaanxi. Monthly reports of notifiable
active TB cases from January 2004 to December 2012 in
Shaanxi (Table 1) are available on the data-center of China
public health science [12]. We apply seasonal filters in
MATLAB program, to deseasonalize the time series; then the
original time series is decomposed into three components:
trend curve and season and irregular noise. The trend curve
is the long-term and medium-to-long term movement of
the series; it also contains consequential turning points;
the seasonal component is within one-year (12 months)
fluctuations about the trend that recur in a similar way in
the same month or quarter every year; and the irregular
component is the residual component that still remains after
trend curve and seasonal component are removed from the
original series.

Figure 1 shows the original time series of active TB
cases from January 2004 to December 2012 in Shaanxi.
Figures 2(a) and 2(b) show the isolated trend curve and the
seasonal component, respectively. To show the correctness
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Table 1: Shaanxi TB cases month report from January 2004 to December 2012 [12].

Month/year 2004 2005 2006 2007 2008 2009 2010 2011 2012
January 2761 3781 3727 3751 3250 2696 2586 2290 2309
February 3057 2613 3118 2914 3033 2486 2038 2187 2440
March 3519 4865 3774 3178 3531 2956 2382 2489 2531
April 3284 4739 3254 2996 3005 2606 2435 2260 2276
May 3064 3602 3064 2909 3182 2556 2314 2325 2258
June 3008 3514 2660 2812 2872 2343 2148 2173 1975
July 3076 3142 2644 2508 2674 2317 2091 1957 1923
August 2822 3293 2569 2480 2540 2234 2076 2061 1878
September 2465 3121 2248 2317 2478 2229 1998 1969 1651
October 2517 2554 2328 2204 1602 2133 2036 1966 1662
November 2306 2653 1721 1989 1954 2021 1849 1837 1595
December 1580 1946 1300 1352 1581 1953 1662 1799 1548
Sum 33459 39823 32407 31410 32702 28530 25615 25313 24046
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Figure 1:The original time series of pulmonary TB cases in Shaanxi
of China, January 2004 to December 2012.

of this multiplicative decomposition, the original series are
compared to a series reconstructed using the component
estimates in Figure 3(a) and giving irregular noise component
in Figure 3(b). It has shown that the multiplicative decompo-
sition is fit for the TB data of Shaanxi.

In Figure 2(a), trend component shows that there is a fast
upward trend after 2004 and in 2005 (the data in 2004 is low
just because this is the first year for reported data, and some
staff may just begin to the report system, so some patients
may be omitted), then a downward trend from 2005 to 2007,
and then a slowly upward in 2008, a steadily decreasing trend
from 2009 to 2012. In Figure 2(b), firstly, seasonal component
shows that seasonal amplitude decreases each year from 2004
to 2012; secondly, it illustrates there exists a seasonal period
𝑇, 12 months, and along with peak and trough months: the
first- and second-peakmonth of TBnotification inMarch and
January, respectively, and between them, there exists a trough,
February, between these two months (February may be a
peak month, but for Chinese lunar new year, Spring Festival,
there exists a special reason that patients may not choose

diagnosis for regarding illness as an unlucky thing in this
traditional festival); the troughmonth is in December. TB is a
seasonal disease in Shaanxi. In addition, the peak and trough
of TB transmission actually are in winter and in autumn,
respectively, due to the delay which tends to last 4–8 weeks.
Understanding TB seasonality may help TB programs better
to plan and allocate resources for TB control activities [8].
Motivated by this, we formulate a seasonality 𝑆𝐿𝐼𝑅 epidemic
model with periodic coefficients for TB and study its global
dynamics in this paper.

This paper is organized as follows. In Section 2, a season-
ality TB model is formulated. In Section 3, a unique disease-
free equilibrium is obtained, and the basic reproduction
number 𝑅

𝑇
for the periodic model is given in detail. Further-

more, some numerical simulations are used to compare the
average basic reproduction number [𝑅

𝑇
] to 𝑅

𝑇
in different

cases. Threshold dynamics of the TB model is analyzed
in Section 4. Meanwhile, some numerical simulations are
provided to validate analytical results. Finally, conclusions are
given in Section 5.

2. Model Formulation

The total population is divided into four compartments:
susceptible (𝑆), latent (𝐿), infectious (𝐼), and recovered (𝑅)
individuals.

From Figure 2(b), new TB cases have shown the periodic
monthly trend and the possible causes of the seasonal pattern.
Shaanxi has a continental monsoon climate and has four
distinct seasons. Seasons in Shaanxi are defined as spring
(February–April), summer (May–July), autumn (August–
October), and winter (November–January). TB is usually
acquired through airborne infection from active TB cases;
its transmission and progress tend to be effected by the
climate within one year (12 months). In particular, the indoor
activities are much more in winter than in a warm climate,
which improves the probability of susceptible individuals
exposed toMycobacterium tuberculosis (Mtb) from the infec-
tious individuals in a room with windows closed for a longer
period of time [13]; thus infection rate may have the periodic
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Figure 2: (a) The trend component of time series for pulmonary TB cases in Shaanxi of China, January 2004 to December 2012. (b) The
seasonal component of time series for pulmonary TB cases in Shaanxi of China, January 2004 to December 2012.
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Figure 3: (a) Compare the original series to a series reconstructed using the component estimates of time series for pulmonary TB cases in
Shaanxi of China, January 2004 to December 2012. (b) The irregular noise component of time series for pulmonary TB cases in Shaanxi of
China, January 2004 to December 2012.

influence. In addition, during these months near or in the
highest peak month of TB cases, cold weather and lack
of sunshine, which may reduce human immunity, cause a
higher disease-induced rate. Individuals with lower Vitamin
D level may be more reactivated for TB [14]. Thus, disease-
induced rate and reactivation rate may also have the periodic
influence. To describe and study the TB transmission in
Shaanxi, three periodic coefficients are selected: (i) infection
rate coefficient 𝛽(𝑡) and the bilinear incidence 𝛽(𝑡)𝑆𝐼 which
are applied in this model; (ii) reactivation rate coefficient
𝛾(𝑡), at which an individual leaves the latent compartment for
becoming infectious; and (iii) disease-induced rate coefficient
𝛼(𝑡), which is the disease-induced death rate coefficients
for individuals in compartment 𝐼. In view of the periodic
trend of monthly, 𝛽(𝑡), 𝛾(𝑡), and 𝛼(𝑡) are assumed to be
positive periodic continuous function of 𝑡 with period 𝑇.
In some TB models, the fast and slow progression has been
considered [15–17]. Based on those, a seasonality TB model
with fast and slow progression and periodic coefficients is
formulated in this section.The transfer among compartments
is schematically depicted in Figure 4. It leads to the following
model of ordinary differential equations:

𝑆

= Λ − 𝛽 (𝑡) 𝑆𝐼 − 𝜇𝑆,

𝐿

= (1 − 𝑝) 𝛽 (𝑡) 𝑆𝐼 − 𝛾 (𝑡) 𝐿 − 𝜇𝐿,

𝐼

= 𝑝𝛽 (𝑡) 𝑆𝐼 + 𝛾 (𝑡) 𝐿 − 𝜎𝐼 − 𝛼 (𝑡) 𝐼 − 𝜇𝐼,

𝑅

= 𝜎𝐼 − 𝜇𝑅,

(1)

p𝛽(t)SI

Λ
S

𝜇S 𝜇L 𝜇I 𝛼(t)I 𝜇R

𝜎I
RIL

(1 − p)𝛽(t)SI 𝛾(t)L

Figure 4: The transfer diagram for model (1).

with initial condition (𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0)) = (𝑆
0
, 𝐿
0
, 𝐼
0
,

𝑅
0
) ∈ R4

+
, and all parameters are positive. Here, Λ is the

recruitment rate and parameter 𝜇 is the natural death rate
coefficient; 𝜎 is the rate coefficient at which an infective indi-
vidual leaves the infectious compartment to the recovered;
𝑝 (0 ≤ 𝑝 < 1) is the fraction of infected individuals who are
fast developing into infected cases and enter the infectious
compartment directly, while 1 − 𝑝 is the fraction of infected
individuals who are slowly developing into infected cases and
transferred to the latent compartment.

Since 𝑅 does not appear in the other equations of system
(1), system (1) is equivalent to the following system:

𝑆

= Λ − 𝛽 (𝑡) 𝑆𝐼 − 𝜇𝑆,

𝐿

= (1 − 𝑝) 𝛽 (𝑡) 𝑆𝐼 − 𝛾 (𝑡) 𝐿 − 𝜇𝐿,

𝐼

= 𝑝𝛽 (𝑡) 𝑆𝐼 + 𝛾 (𝑡) 𝐿 − 𝜎𝐼 − 𝛼 (𝑡) 𝐼 − 𝜇𝐼.

(2)
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Theorem 1. Every forward solution (𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡)) of system
(2) eventually enters Ω = {(𝑆, 𝐿, 𝐼) ∈ R3

+
: 𝑆 + 𝐿 + 𝐼 ≤ Λ/𝜇},

and Ω is a positively invariant set for system (2).

Proof. From system (1), it follows that

(𝑆 + 𝐿 + 𝐼 + 𝑅)

= Λ − 𝜇 (𝑆 + 𝐿 + 𝐼 + 𝑅) − 𝛼 (𝑡) 𝐼

≤ Λ − 𝜇 (𝑆 + 𝐿 + 𝐼 + 𝑅) ,

(3)

and then

lim sup
𝑡→∞

(𝑆 + 𝐿 + 𝐼 + 𝑅) ≤
Λ

𝜇
. (4)

It implies that region 𝑋 = {(𝑆, 𝐿, 𝐼, 𝑅) ∈ R4
+
: 𝑆 + 𝐿 + 𝐼 +

𝑅 ≤ Λ/𝜇} is a positively invariant set for system (1). Then,
Ω = {(𝑆, 𝐿, 𝐼) ∈ R3

+
: 𝑆 + 𝐿 + 𝐼 ≤ Λ/𝜇} is a positive invariant

with respect to system (2).Therefore, system (2) is dissipative,
and its global attractor is contained inΩ.

In the rest of this paper system (2)will be studied in region
Ω.

3. Disease-Free Equilibrium and
the Basic Reproduction Number

To study system (2), some notations are introduced.
Let (R,R𝑛

+
) be the standard ordered 𝑛-dimensional

Euclidean space with a norm ‖ ⋅ ‖. For 𝑢, V ∈ R𝑛, denote 𝑢 ≥ V
if 𝑢 − V ∈ R𝑛

+
; 𝑢 > V if 𝑢 − V ∈ R𝑛

+
\ {0}; and 𝑢 ≫ V if

𝑢 − V ∈ Int(R𝑛
+
).

Let 𝐴(𝑡) be a continuous, cooperative, irreducible, and
𝑛 × 𝑛 matrix function with period 𝑇 > 0, and let Φ

𝐴
(𝑡)

be the fundamental solution matrix of the linear ordinary
differential equation:

𝑑𝑥

𝑑𝑡
= 𝐴 (𝑡) 𝑥. (5)

And let 𝜌(Φ
𝐴
(𝑇)) be the spectral radius ofΦ

𝐴
(𝑇). By Perron-

Frobenius theorem, 𝜌(Φ
𝐴
(𝑇)) is the principle eigenvalue of

Φ
𝐴
(𝑇), in the sense that it is simple and admits an eigenvector

V∗ ≫ 0.
There is a unique disease-free steady state 𝐸

0
, that is

(Λ/𝜇, 0, 0), for system (2).
In the following, the basic reproduction number 𝑅

𝑇

will be introduced for system (2) according to the general
procedure presented in [2].

With 𝜒 fl (𝐿, 𝐼, 𝑆), system (2) becomes

𝜒

(𝑡) = F (𝜒) −V (𝜒) , (6)

where

F (𝜒) = (

(1 − 𝑝) 𝛽 (𝑡) 𝑆𝐼

𝑝𝛽 (𝑡) 𝑆𝐼

0

) ,

V (𝜒) = (

𝛾 (𝑡) 𝐿 + 𝜇𝐿

−𝛾 (𝑡) 𝐿 + 𝜎𝐼 + 𝛼 (𝑡) 𝐼 + 𝜇𝐼

−Λ + 𝜇𝑆

) .

(7)

Furthermore, here comes

𝐹 (𝑡) = (

0
(1 − 𝑝) 𝛽 (𝑡) Λ

𝜇

0
𝑝𝛽 (𝑡) Λ

𝜇

) ,

𝑉 (𝑡) = (

𝛾 (𝑡) + 𝜇 0

−𝛾 (𝑡) 𝜎 + 𝛼 (𝑡) + 𝜇
) .

(8)

Then 𝐹(𝑡) is nonnegative, and −𝑉(𝑡) is cooperative in the
sense that the off-diagonal elements of−𝑉(𝑡) are nonnegative.
Thus, it is easy to verify that system (2) satisfies the assump-
tions (A1)–(A7) in [2].

Define 𝑌(𝑡, 𝑠), 𝑡 ≥ 𝑠, which is a 2 × 2 matrix, and is the
evolution operator of the linear 𝑇-periodic system

𝑑𝑦

𝑑𝑡
= −𝑉 (𝑡) 𝑦. (9)

That is, for each 𝑠 ∈ R, 𝑌(𝑡, 𝑠) satisfies

𝑑𝑌 (𝑡, 𝑠)

𝑑𝑡
= −𝑉 (𝑡) 𝑌 (𝑡, 𝑠) , ∀𝑡 ≥ 𝑠, 𝑌 (𝑠, 𝑠) = 𝐸, (10)

where 𝐸 is the 2 × 2 identity matrix. Thus, the monodromy
matrix Φ

−𝑉(𝑡)
of (9) equals 𝑌(𝑡, 0), 𝑡 ≥ 0. Assume that the

population is near the disease-free periodic state 𝐸
0
. And

suppose that 𝜙(𝑠), 𝑇-periodic in 𝑠, is the initial distribution
of infectious individuals. Then 𝐹(𝑠)𝜙(𝑠) is the rate of new
infections produced by the infected individuals who were
introduced at time 𝑠. Given 𝑡 ≥ 𝑠, 𝑌(𝑡, 𝑠)𝐹(𝑠)𝜙(𝑠) gives the
distribution of those infected individuals who were newly
infected at time 𝑠 and remain in infected compartments at 𝑡.
It follows that

𝜓 (𝑡) fl ∫

𝑡

−∞

𝑌 (𝑡, 𝑠) 𝐹 (𝑠) 𝜙 (𝑠) 𝑑𝑠

= ∫

∞

0

𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎

(11)

is the distribution of accumulative new infections at time 𝑡
produced by all those infected individuals 𝜙(𝑠) introduced at
time 𝑠 (𝑠 ≤ 𝑡). Let 𝐶

𝑇
be the ordered Banach space of all 𝑇-

periodic functions fromR toR𝑛, which is equipped with the
maximum norm ‖ ⋅ ‖

∞
and the positive cone 𝐶+

𝑇
= {𝜙 ∈ 𝐶

𝑇
:

𝜙(𝑡) ≥ 0, 𝑡 ∈ R}. Define a linear operator𝐻 : 𝐶
𝑇
→ 𝐶
𝑇
by

(𝐻𝜙) (𝑡) = ∫

∞

0

𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎,

∀𝑡 ∈ R, 𝜙 ∈ 𝐶
𝑇
.

(12)

Then, according to Wang and Zhao [2], the basic reproduc-
tion number 𝑅

𝑇
is defined as

𝑅
𝑇
fl 𝜌 (𝐻) (13)

for the periodic epidemic system (2), where 𝜌(𝐻) denotes the
spectral radius of the matrix𝐻.
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In the constant case, that is, 𝛽(𝑡) ≡ 𝛽, 𝛾(𝑡) ≡ 𝛾, 𝛿(𝑡) ≡ 𝛿,
∀𝑡 > 0, then 𝐹(𝑡) ≡ 𝐹, 𝑉(𝑡) ≡ 𝑉, ∀𝑡 > 0, in which

𝐹 = (

0
(1 − 𝑝) 𝛽Λ

𝜇

0
𝑝𝛽Λ

𝜇

) ,

𝑉 = (

𝛾 + 𝜇 0

−𝛾 𝜎 + 𝛼 + 𝜇
) .

(14)

By van den Driessche and Watmough [18], here comes

𝑅
𝑇
= 𝜌 (𝐹𝑉

−1
) =

𝛽

𝜇 + 𝛼 + 𝜎
(𝑝 +

𝛾

𝜇 + 𝛾
(1 − 𝑝)) . (15)

In the periodic case, in order to characterize 𝑅
𝑇
, consider

the following linear 𝑇-periodic equation:

𝑑𝑤

𝑑𝑡
= (−𝑉 (𝑡) +

𝐹 (𝑡)

𝜆
)𝑤, ∀𝑡 ∈ R, (16)

with parameter 𝜆 ∈ (0,∞). Let 𝑊(𝑡, 𝑠, 𝜆) be the evolution
operator of system (16) on R2, and 𝑅

𝑇
can be calculated in

numerically according to Lemma 2.

Lemma2 (Wang and Zhao, [2],Theorem 2.1). For system (2),
the following statements are valid:

(i) If 𝜌(𝑊(𝑇, 0, 𝜆)) = 1 has a positive solution 𝜆
0
, then 𝜆

0

is an eigenvalue of𝐻, and hence 𝑅
𝑇
> 0.

(ii) If 𝑅
𝑇
> 0, then 𝜆 = 𝑅

𝑇
is the unique solution of

𝜌(𝑊(𝑇, 0, 𝜆)) = 1.
(iii) 𝑅

𝑇
= 0 if and only if 𝜌(𝑊(𝑇, 0, 𝜆)) < 1, ∀𝜆 > 0.

And the threshold behaviors occur.

Lemma 3 (Wang and Zhao [2],Theorem 2.2). For system (2),
the following statements are valid:

(i) 𝑅
𝑇
= 1 if and only if 𝜌(Φ

𝐹(𝑡)−𝑉(𝑡)
(𝑇)) = 1.

(ii) 𝑅
𝑇
> 1 if and only if 𝜌(Φ

𝐹(𝑡)−𝑉(𝑡)
(𝑇)) > 1.

(iii) 𝑅
𝑇
< 1 if and only if 𝜌(Φ

𝐹(𝑡)−𝑉(𝑡)
(𝑇)) < 1.

Thus, the disease-free periodic solution 𝐸
0
for system (2) is

locally asymptotically stable if 𝑅
𝑇
< 1 and unstable if 𝑅

𝑇
> 1.

Define

[𝑓] fl
1

𝑇
∫

𝑇

0

𝑓 (𝑡) 𝑑𝑡 (17)

as the average for a continuous periodic function 𝑓(𝑡) with
the period 𝑇. Let [𝑅

𝑇
] be the basic reproduction number of

the autonomous systems obtained from the average of system
(2); that is,

𝑆

= Λ − [𝛽] 𝑆𝐼 − 𝜇𝑆,

𝐿

= (1 − 𝑝) [𝛽] 𝑆𝐼 − [𝛾] 𝐿 − 𝜇𝐿,

𝐼

= 𝑝 [𝛽] 𝑆𝐼 + [𝛾] 𝐿 − 𝜎𝐼 − [𝛼] 𝐼 − 𝜇𝐼.

(18)
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Figure 5: For system (2), the graph of the average basic reproduction
number [𝑅

𝑇
] and the basic reproduction number 𝑅

𝑇
with respect

to 𝑏
0
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1
= 𝑘
2
= 𝑘
3
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𝑎
0
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An example is given to show that the basic reproduction
number of the time-averaged autonomous systems may
underestimate, estimate, or overestimate the infection risk.

Example 4. Consider the following:

𝛽 (𝑡) = 𝑏0 (1 + 𝑘1 cos(
𝜋 (𝑡 + 1)

(𝑇/2)
)) ,

𝛾 (𝑡) = 𝑔0 (1 + 𝑘2 cos(
𝜋 (𝑡 − 1)

(𝑇/2)
)) ,

𝛼 (𝑡) = 𝑎0 (1 + 𝑘3 cos(
𝜋 (𝑡 − 1)

(𝑇/2)
)) .

(19)

Now Lemma 2 is applied to calculate the basic reproduc-
tion number 𝑅

𝑇
of system (2).

Firstly, Λ = 0.8, 𝜇 = 0.008, 𝑝 = 0.08, 𝑔
0
= 0.003,

𝑘
1
= 𝑘
2
= 𝑘
3
= 1, 𝜎 = 0.5, 𝑇 = 12, and 𝑎

0
= 0.08

in system (2); by numerical computation, it can acquire the
curves of the average basic reproduction number [𝑅

𝑇
] and the

basic reproduction number 𝑅
𝑇
when 𝑏

0
varies, respectively,

in Figure 5. It can be seen that [𝑅
𝑇
] is always greater than

𝑅
𝑇
as 𝑏
0
is ranging from 0.003 to 0.045. Secondly, when

𝑏
0
= 0.015 in system (2), 𝑔

0
varies from 0.003 to 0.007,

and other parameters are the same as those of Figure 5; then
the numerical calculations indicate [𝑅

𝑇
] is greater than 𝑅

𝑇

in Figure 6 as 𝑔
0
is varying. Thirdly, 𝑏

0
= 0.015 in system

(2), 𝑎
0
varies from 0.01 to 0.05, and other parameters are the

same as those of Figure 5; then the numerical calculations
indicate [𝑅

𝑇
] is greater than 𝑅

𝑇
in Figure 7 as 𝑎

0
is varying.

Summing up the above, Figures 5, 6, and 7 imply that the
risk of infection may be overestimated, if the average basic
reproduction number [𝑅

𝑇
] is used.
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Figure 6: For system (2), the graph of [𝑅
𝑇
] and 𝑅

𝑇
with respect to

𝑔
0
which varies from 0.003 to 0.007 when 𝑏

0
= 0.015, and other

parameter values are the same as those of Figure 5.
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Figure 7: For system (2), the graph of [𝑅
𝑇
] and 𝑅

𝑇
with respect

to 𝑎
0
which varies from 0.01 to 0.05 when 𝑏

0
= 0.0165, and other

parameter values are the same as those of Figure 5.

But, on the other hand, if 𝑇 = 1, from Figures 8, 9, and
10, the numerical calculations indicate [𝑅

𝑇
] is less than 𝑅

𝑇

in Figures 8, 9, and 10, respectively. These imply that the
risk of infection may be underestimated, if the average basic
reproduction number [𝑅

𝑇
] is used.

Especially, if 𝑇 = 5, from Figures 11, 12, and 13, the
numerical calculations indicate [𝑅

𝑇
] is almost equal to 𝑅

𝑇
in

Figures 11, 12, and 13, respectively.These imply that the risk of
infectionmay be estimated by the average basic reproduction
number [𝑅

𝑇
] and [𝑅

𝑇
] can be used in some conditions.
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The trends of RT and [RT] as b0 is changing

[RT]
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Figure 8: For system (2), the graph of [𝑅
𝑇
] and𝑅

𝑇
with respect to 𝑏

0

which varies from 0.003 to 0.045 when 𝑇 = 1, and other parameter
values are the same as those of Figure 5.
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The trends of RT and [RT] as g0 is changing

Figure 9: For system (2), the graph of [𝑅
𝑇
] and𝑅

𝑇
with respect to 𝑔

0

which varies from 0.003 to 0.007 when 𝑇 = 1, and other parameter
values are the same as those of Figure 6.

If 𝑏
0
= 0.0165 and 𝑘

1
, 𝑘
2
, 𝑘
3
vary in [0, 1] for system (2),

respectively, with other parameters unchanged as Figure 5,
numerical computation indicates (see Figures 14, 15, and 16)
the average basic reproduction number overestimates the
disease transmission risk.

Finally, if 𝑏
0
= 0.015 and 𝑇 varies in [0, 22] for system (2),

with other parameters unchanged as those shown in Figure 5,
numerical computation gives the relation between the basic
reproduction number 𝑅

𝑇
and period 𝑇 in Figure 17, which

indicates the average basic reproduction number [𝑅
𝑇
]may be
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Figure 10: For system (2), the graph of [𝑅
𝑇
] and 𝑅

𝑇
with respect to

𝑎
0
which varies from 0.01 to 0.05 when 𝑇 = 1, and other parameter

values are the same as those of Figure 7.
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Figure 11: For system (2), the graph of [𝑅
𝑇
] and𝑅

𝑇
with respect to 𝑏

0

which varies from 0.003 to 0.045 when 𝑇 = 5, and other parameter
values are the same as those of Figure 5.

superior, inferior, or equal to the basic reproduction number
𝑅
𝑇
, which is up to value of period 𝑇.
Furthermore, in the next section, we will prove some

theoretical results of system (2), in which 𝑅
𝑇
serves as a

threshold parameter: if 𝑅
𝑇
< 1, then there exists a globally

asymptotically stable disease-free periodic state𝐸
0
(Λ/𝜇, 0, 0);

if 𝑅
𝑇
> 1, then the disease is persistent in the population and

there exists at least one positive periodic solution.
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Figure 12: For system (2), the graph of [𝑅
𝑇
] and𝑅

𝑇
with respect to𝑔

0

which varies from 0.003 to 0.007 when 𝑇 = 5, and other parameter
values are the same as those of Figure 6.
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Figure 13: For system (2), the graph of [𝑅
𝑇
] and 𝑅

𝑇
with respect to

𝑎
0
which varies from 0.01 to 0.05 when 𝑇 = 5, and other parameter

values are the same as those of Figure 7.

4. Extinction and Uniform Persistence

The following lemma is useful for our discussion in this
section.

Lemma 5 (see [19], Lemma 2.1). Let 𝑙 = (1/𝑇) ln(𝜌(Φ
𝐴
(𝑇))),

and then there exists a positive 𝑇-periodic function V(𝑡) such
that 𝑒𝑙𝑡V(𝑡) is a solution of (5).
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Figure 14: For system (2), the graph of [𝑅
𝑇
] and 𝑅

𝑇
with respect to

𝑘
1
which varies from 0 to 1 when 𝑏

0
= 0.0165, and other parameter

values are the same as those of Figure 5.
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Figure 15: For system (2), the graph of [𝑅
𝑇
] and 𝑅

𝑇
with respect to

𝑘
2
which varies from 0 to 1 when 𝑏

0
= 0.0165 and other parameter

values are the same as those of Figure 5.

Theorem 6. For system (2), the disease-free periodic state
𝐸
0
(Λ/𝜇, 0, 0) is globally stable on set Ω if 𝑅

𝑇
< 1; and it is

unstable if 𝑅
𝑇
> 1.

Proof. By Lemma 3, if 𝑅
𝑇
> 1, then 𝐸

0
(Λ/𝜇, 0, 0) is unstable;

and if 𝑅
𝑇
< 1, then 𝐸

0
is locally asymptotically stable. Hence,

we only need to prove that 𝐸
0
is globally attractive for𝑅

𝑇
< 1.
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Figure 16: For system (2), the graph of [𝑅
𝑇
] and 𝑅

𝑇
with respect to

𝑘
3
which varies from 0 to 1, when 𝑏

0
= 0.0165 and other parameter

values are the same as those of Figure 5.
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Figure 17: For system (2), the graph of [𝑅
𝑇
] and 𝑅

𝑇
with respect to

𝑇 which varies from 0 to 22 when 𝑏
0
= 0.015, and other parameter

values are the same as those of Figure 5.

Since 𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡) is a nonnegative solution of system (2)
in Ω, we have 𝑆 ≤ Λ/𝜇, and know that

𝐿

≤
(1 − 𝑝) 𝛽 (𝑡) Λ

𝜇
𝐼 − 𝛾 (𝑡) 𝐿 − 𝜇𝐿,

𝐼

≤
𝑝𝛽 (𝑡) Λ

𝜇
𝐼 + 𝛾 (𝑡) 𝐿 − 𝜎𝐼 − 𝛼 (𝑡) 𝐼 − 𝜇𝐼,

(20)

for 𝑡 ≥ 0.
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Consider an auxiliary system:

�̃�


=
(1 − 𝑝) 𝛽 (𝑡) Λ

𝜇
�̃� − 𝛾 (𝑡) �̃� − 𝜇�̃�,

�̃�


=
𝑝𝛽 (𝑡) Λ

𝜇
�̃� + 𝛾 (𝑡) �̃� − 𝜎�̃� − 𝛼 (𝑡) �̃� − 𝜇�̃�;

(21)

that is,

(

�̃�

�̃�

)



= (𝐹 (𝑡) − 𝑉 (𝑡)) (

�̃�

�̃�

) . (22)

It follows from Lemma 5 that there exists a positive 𝑇-
periodic function V

1
(𝑡), such that 𝑒𝑙1𝑡V

1
(𝑡) is a solution of (22),

where 𝑙
1
= (1/𝑇) ln(𝜌(Φ

𝐹(𝑡)−𝑉(𝑡)
(𝑇))). Choose 𝑡

1
≥ 0 and a

real number 𝑎
1
> 0 such that

(

𝐿 (𝑡
1
)

𝐼 (𝑡
1
)
) ≤ 𝑎

1
V
1 (0) . (23)

By the comparison principle, we get

(

𝐿 (𝑡)

𝐼 (𝑡)
) ≤ 𝑎

1
V
1
(𝑡 − 𝑡
1
) 𝑒
𝑙
1
(𝑡−𝑡
1
)
, ∀𝑡 ≥ 𝑡

1
. (24)

By Lemma 3, it is easy to know that 𝑅
𝑇
< 1 if and only

if 𝜌(Φ
𝐹(𝑡)−𝑉(𝑡)

(𝑇)) < 1, thus 𝑙
1
= (1/𝑇) ln(𝜌(Φ

𝐹(𝑡)−𝑉(𝑡)
(𝑇))) <

0. Therefore, 𝐿(𝑡) → 0, 𝐼(𝑡) → 0, and 𝑆(𝑡) → Λ/𝜇 as 𝑡 →
∞; that is, 𝐸

0
(Λ/𝜇, 0, 0) is globally attractive for 𝑅

𝑇
< 1. In

conclusion, 𝐸
0
is globally asymptotically stable if 𝑅

𝑇
< 1.

Theorem 7. If 𝑅
𝑇
> 1, system (2) is uniformly persistent, and

there exists at least one positive periodic solution.

Proof. Denote Ω
0
fl {(𝑆, 𝐿, 𝐼) ∈ Ω : 𝐿 > 0, 𝐼 > 0} and

𝜕Ω
0
fl Ω \ Ω

0
. And then 𝑥

0
= (𝑆
0
, 𝐿
0
, 𝐼
0
) ∈ Ω

0
. Let 𝑃 :

Ω → Ω be the Poincaré map associated with system (2); that
is, 𝑃(𝑥

0
) = 𝑢(𝑇, 𝑥

0
), ∀𝑥
0
∈ Ω, where 𝜑(𝑡, 𝑥

0
) is the unique

solution of system (2) with 𝜑(0, 𝑥
0
) = 𝑥
0
.

Now it is proved that 𝑃 is uniformly persistent with
respect to (Ω

0
, 𝜕Ω
0
).

It is easy to see thatΩ andΩ
0
are positively invariant, 𝜕Ω

0

is a relatively closed set in Ω, and 𝑃 is point dissipative from
Theorem 1.

Set 𝑀
𝜕

= {(𝑆
0
, 𝐿
0
, 𝐼
0
) ∈ 𝜕Ω

0
: 𝑃
𝑚
(𝑆
0
, 𝐿
0
, 𝐼
0
) ∈

𝜕Ω
0
, ∀𝑚 ≥ 0}.
We claim that

𝑀
𝜕
= {(𝑆, 0, 0) : 𝑆 ≥ 0} . (25)

Obviously, {(𝑆, 0, 0) : 𝑆 ≥ 0} ⊆ 𝑀
𝜕
. For any (𝑆

0
, 𝐿
0
, 𝐼
0
) ∈

𝜕Ω
0
\{(𝑆, 0, 0) : 𝑆 ≥ 0}, if𝐿

0
> 0, 𝐼
0
= 0, then𝐿(𝑡) > 0, ∀𝑡 ≥ 0,

and then 𝐼 = 𝛾(𝑡)𝐿 > 0. For the other case, 𝐿
0
= 0, 𝐼

0
> 0,

and then 𝐼(𝑡) > 0, and, from the first equation of system (2),
thus

𝑆 (𝑡) = 𝑒
−∫
𝑡

0
(𝛽(𝑠)𝐼(𝑠)+𝜇)𝑑𝑠

(𝑆
0
+ Λ∫

𝑡

0

𝑒
∫
𝑠

0
(𝛽(𝜁)𝐼(𝜁)+𝜇)𝑑𝜁

𝑑𝑠)

≥ Λ𝑒
−∫
𝑡

0
(𝛽(𝑠)𝐼(𝑠)+𝜇)𝑑𝑠

∫

𝑡

0

𝑒
∫
𝑠

0
(𝛽(𝜁)𝐼(𝜁)+𝜇)𝑑𝜁

𝑑𝑠 > 0,

(26)

for any 𝑡 > 0.
From the second equation of system (2), we have

𝐿 (𝑡) = 𝑒
−∫
𝑡

0
(𝛾(𝑠)+𝜇)𝑑𝑠

(𝐿
0

+ ∫

𝑡

0

(1 − 𝑝) 𝛽 (𝑠) 𝑆 (𝑠) 𝐼 (𝑠) 𝑒
∫
𝑠

0
(𝛾(𝜁)+𝜇)𝑑𝜁

𝑑𝑠) > 0,

∀𝑡 > 0.

(27)

It then follows that (𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡)) ∈ 𝜕Ω
0
for 0 < 𝑡 ≪ 1.Thus,

the positive invariance ofΩ
0
implies (25).

Clearly, there is a unique fixed point of 𝑃 in𝑀
𝜕
, which is

𝐸
0
(Λ/𝜇, 0, 0).
For system (2), by the continuity solutions with respect to

the initial values, ∀𝛼 > 0, there exists 𝛼∗ > 0 such that, for all
𝑥
0
∈ Ω
0
with ‖𝑥

0
− 𝐸
0
‖ ⩽ 𝛼
∗, we have ‖𝜙(𝑡, 𝑥

0
) − 𝜙(𝑡, 𝐸

0
)‖ <

𝛼, ∀𝑡 ∈ [0, 𝑇].

Then, we will show that

lim sup
𝑚→∞

𝑑 (𝑃
𝑚
(𝑥
0
) , 𝐸
0
) ≥ 𝛼
∗
, ∀𝑥

0
∈ Ω
0
. (28)

If not, then

lim sup
𝑚→∞

𝑑 (𝑃
𝑚
(𝑥
0
) , 𝐸
0
) < 𝛼
∗

(29)

for some 𝑥
0
∈ Ω
0
.

Without loss of generality, we can assume that

𝑑 (𝑃
𝑚
(𝑥
0
) , 𝐸
0
) < 𝛼
∗
, ∀𝑚 ≥ 0. (30)

Then, we have

𝜙 (𝑡, 𝑃
𝑚
(𝑥
0
)) − 𝜙 (𝑡, 𝐸

0
)
 < 𝛼,

∀𝑚 ≥ 0, ∀𝑡 ∈ [0, 𝑇] .

(31)

For any 𝑡 ≥ 0, let 𝑡 = 𝑚𝑇 + 𝑡
1
, where 𝑡

1
∈ [0, 𝑇) and 𝑚 is the

largest integer less than or equal to 𝑡/𝑇. Therefore, we have

𝜙 (𝑡, 𝑃
𝑚
(𝑥
0
)) − 𝜙 (𝑡, 𝐸

0
)


=
𝜙 (𝑡1, 𝑃 (𝑥0)) − 𝜙 (𝑡1, 𝐸0)

 < 𝛼, ∀𝑡 ≥ 0.

(32)

Note that 𝑥(𝑡) fl (𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡)) = 𝜙(𝑡, 𝑥
0
). It then follows

that 0 ≤ 𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡) ≤ 𝛼, ∀𝑡 ≥ 0. From the first equation
of system (2), we have

𝑆

≥ Λ − 𝛽 (𝑡) 𝑆𝛼 − 𝜇𝑆. (33)
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Note that the perturbed system

�̂�


= Λ − 𝛽 (𝑡) �̂�𝛼 − 𝜇�̂� (34)

admits a unique positive 𝑇-periodic solution

�̂� (𝑡, 𝛼)

= 𝑒
−∫
𝑡

0
(𝛽(𝑠)𝛼+𝜇)𝑑𝑠

(�̂� (0, 𝛼) + Λ∫

𝑡

0

𝑒
∫
𝑠

0
(𝛽(𝜁)𝛼+𝜇)𝑑𝜁

𝑑𝑠)

(35)

which is globally attractive in R
+
, where

�̂� (0, 𝛼) =

Λ∫
𝑇

0
𝑒
∫
𝑠

0
(𝛽(𝜁)𝛼+𝜇)𝑑𝜁

𝑑𝑠

1 − 𝑒
∫
𝑇

0
(𝛽(𝑠)𝛼+𝜇)𝑑𝑠

> 0. (36)

Applying Lemma 3, we know that 𝑅
𝑇
> 1 if and only if

𝜌(Φ
𝐹(𝑡)−𝑉(𝑡)

(𝑇)) > 1. By continuity of the spectrum for
matrices ([20], Section II. 5.8.), we can choose 𝜂, which is
small enough, such that 𝜌(𝜙

𝐹(𝑡)−𝑉(𝑡)−𝜂𝑀(𝑡)
(𝑇)) > 1, where

𝑀(𝑡) = (
0 (1 − 𝑝) 𝛽 (𝑡)

0 𝑝𝛽 (𝑡)
) . (37)

Since �̂�(0, 𝛼) is continuous in 𝛼, we can fix 𝛼 > 0 small
enough that �̂�(𝑡, 𝛼) > �̂�(𝑡) − 𝜂, ∀𝑡 ≥ 0. Furthermore, since the
fixed point �̂�(0, 𝛼) of the Poincaré map associated with (34) is
globally attractive, there exists �̂� > 0 such that 𝑆(𝑡) > �̂�(𝑡) − 𝜂
for 𝑡 ≥ �̂�. As a consequence, for 𝑡 ≥ �̂�, it holds that

𝐿

≥ (1 − 𝑝) 𝛽 (𝑡) (�̂� (𝑡) − 𝜂) 𝐼 − (𝛾 (𝑡) + 𝜇) 𝐿,

𝐼

≥ 𝑝𝛽 (𝑡) (�̂� (𝑡) − 𝜂) 𝐼 + 𝛾 (𝑡) 𝐿 − (𝜎 + 𝛼 (𝑡) + 𝜇) 𝐼.

(38)

Consider another auxiliary system

�̃�


= (1 − 𝑝) 𝛽 (𝑡) (�̂� (𝑡) − 𝜂) �̃� − (𝛾 (𝑡) + 𝜇) �̃�,

�̃�


= 𝑝𝛽 (𝑡) (�̂� (𝑡) − 𝜂) �̃� + 𝛾 (𝑡) �̃� − (𝜎 + 𝛼 (𝑡) + 𝜇) �̃�.

(39)

It follows from Lemma 5 that there exists a positive
𝑇-periodic function (�̃�(𝑡), �̃�(𝑡)) such that (�̃�(𝑡), �̃�(𝑡)) =

𝑒
𝑙𝑡
(�̃�(𝑡), �̃�(𝑡)) is a solution of (39), where

𝑙 =
1

𝑇
ln (𝜌 (𝜙

𝐹(𝑡)−𝑉(𝑡)−𝜂𝑀(𝑡) (𝑇))) . (40)

Choose 𝑡 ≥ �̂� and a small 𝛼
2
> 0 such that (𝐿(𝑡), 𝐼(𝑡)) ≥

(�̃�(0), �̃�(0)). By the comparison principle we get (𝐿(𝑡), 𝐼(𝑡)) ≥
𝛼
2
(�̃�(𝑡 − 𝑡), �̃�(𝑡 − 𝑡))𝑒

𝑙(𝑡−𝑡), ∀𝑡 ≥ 𝑡. Since 𝑅
𝑇

> 1,
𝜌(𝜙
𝐹(𝑡)−𝑉(𝑡)−𝜂𝑀(𝑡)

(𝑇)) > 1. And thus 𝑙 > 0, which implies
that 𝐿(𝑡) → ∞ and 𝐼(𝑡) → ∞ as 𝑡 → ∞. This leads to a
contradiction.

So suppose (29) is wrong; that is, (28) is right. Further-
more, (28) shows that 𝐸

0
is an isolated invariant set inΩ, and

𝑊
𝑠
(𝐸
0
) ∩ Ω
0
= Φ. Every orbit in𝑀

𝜕
converges to 𝐸

0
, and 𝐸

0

is acyclic in𝑀
𝜕
. By the acyclicity theorem on uniform persis-

tence for maps ([21],Theorem 1.3.1 and Remark 1.3.1), it fol-
lows that 𝑃 is uniformly persistent with respect to (Ω

0
, 𝜕Ω
0
).

Thus ([21], Theorem 3.1.1) implies the uniform persistence
of the solutions of system (2) with respect to (Ω

0
, 𝜕Ω
0
); that

is, there exists 𝜀 > 0 such that any solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡))
of (2) with initial values (𝑆(0), 𝐸(0), 𝐼(0)) ∈ Ω

0
satisfies

lim
𝑡→∞

𝐿(𝑡) ≥ 𝜀 and lim
𝑡→∞

𝐼(𝑡) ≥ 𝜀.Moreover, by Zhao ([21],
Theorem 1.3.6), 𝑃 has a fixed point (𝑆∗(0), 𝐸∗(0), 𝐼∗(0)) ∈

Ω
0
. From the first equation of (2), 𝑆∗(𝑡) satisfies 𝑆∗ ≥

𝜇𝐴 − 𝛽(𝑡)𝑆
∗
Λ/𝜇 − 𝜇𝑆

∗. By the comparison theorem, we
have 𝑆∗ ≥ 𝑒

−∫
𝑡

0
(𝛽(𝑠)Λ/𝜇+𝜇)𝑑𝑠

(𝑆
∗
(0) + Λ∫

𝑡

0
𝑒
∫
𝑠

0
(𝛽(𝜏)Λ/𝜇+𝜇)𝑑𝜏

𝑑𝑠) >

Λ𝑒
−∫
𝑡

0
(𝛽(𝑠)Λ/𝜇+𝜇)𝑑𝑠

∫
𝑡

0
𝑒
∫
𝑠

0
(𝛽(𝜏)Λ/𝜇+𝜇)𝑑𝜏

𝑑𝑠 > 0, ∀𝑡 > 0. The
seasonality of 𝑆∗(𝑡) implies 𝑆∗(0) > 0. By the second and
third equations of (2) and the irreducibility of the cooperative
matrix

(

− (𝛾 (𝑡) + 𝜇) (1 − 𝑝) 𝛽 (𝑡) 𝑆
∗
(𝑡)

𝛾 (𝑡) 𝑝𝛽 (𝑡) 𝑆
∗
(𝑡) − (𝜎 + 𝛼 (𝑡) + 𝜇)

) , (41)

it follows that (𝐿∗(𝑡), 𝐼∗(𝑡)) ∈ Int(R2
+
), ∀𝑡 ≥ 0. Conse-

quently, (𝑆∗(𝑡), 𝐿∗(𝑡), 𝐼∗(𝑡)) is a positive 𝑇-periodic solution
of (2).

Theorems 6 and 7 have shown that 𝑅
𝑇
is a threshold

parameter which determines whether or not the disease
persists in the population. Now, some numerical simulations
(Figures 18 and 19) are presented to demonstrate these results.
And in these simulations,𝑇 = 12, according to the fact that by
one year has 12 months. In Figures 18 and 19, the simulations
verify Theorems 6 and 7, respectively.

5. Discussion

Monthly pulmonary TB cases, from January 2004 to Decem-
ber 2012 in Shaanxi province, have been analyzed by the
seasonal adjustment program. It has been found that TB cases
show seasonal variation in Shaanxi: the peakmonths (January
and March) compare to the lowest trough month (Decem-
ber). It is necessary to study the seasonality TB epidemic
model according to the seasonal component of Shaanxi’s data.
Considering the regularity of peak TB seasonality may help
allocate resources for the prevention and treatment of TB
activities, a periodic TB epidemicmodel has been formulated
and studied.

Thebasic reproductionnumber𝑅
𝑇
for the periodicmodel

is given. By numerical simulation, 𝑅
𝑇
has been compared

to the average basic reproduction number [𝑅
𝑇
] in different

parameter values. It has shown that [𝑅
𝑇
] may overestimate

or underestimate 𝑅
𝑇
or be equal to 𝑅

𝑇
in different cases. It is

also up to the value of periodic 𝑇. Furthermore, in theory,
the threshold dynamics has been studied for the periodic
TB model: if 𝑅

𝑇
< 1, then the disease-free equilibrium is

globally asymptotically stable; that is, the TB disease will
disappear eventually; if 𝑅

𝑇
> 1, then there exists at least one

positive periodic solution and the disease will be uniformly
persistent.

Our numerical simulations are in good accordance with
these theoretical results. It should be noted that we have
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Figure 18: For system (2), 𝛽(𝑡), 𝛾(𝑡), and 𝛼(𝑡) are listed in Example 4. Λ = 0.8, 𝜇 = 0.008, 𝑝 = 0.08, 𝑎
0
= 0.08, 𝑔

0
= 0.003, 𝑘

1
= 𝑘
2
= 𝑘
3
= 1,

𝜎 = 0.5, 𝑇 = 12, and 𝑏
0
= 0.005, and then 𝑅

𝑇
= 0.2814. These figures show that the disease will die out, which is the same as Theorem 6.
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Figure 19: For system (2), 𝑏
0
= 0.04 and other parameter values are the same as those of Figure 18; then 𝑅

𝑇
= 2.251. These figures show that

the disease will be asymptotic to a periodic solution, which is the same as Theorem 7.

not fit Shaanxi’s data in these simulations since we cannot
accurately estimate some parameters’ values in the periodic
model according to available data or references. Despite lack
of comparing the model results with the Shaanxi’s data, our

theoretical results have shown that the basic reproduction
number with periodic 𝑅

𝑇
plays a crucial role in determining

dynamics of the seasonality TB disease and could be used for
controlling the spread of TB epidemic in reality strategies.
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