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Metabolism plays critical roles in maintaining the homeostasis of cells. Metabolic
abnormalities are often considered as one of the main driving forces for cancer
progression, providing energy and substrates of biosynthesis to support neoplastic
proliferation effectively. The tumor suppressor p53 is well known for its roles in
inducing cell cycle arrest, apoptosis, senescence and ferroptosis. Recently, emerging
evidence has shown that p53 is also actively involved in the reprogramming of cellular
metabolism. In this review, we focus on recent advances in our understanding of the
interplay between p53 and metabolism of glucose, fatty acid as well as amino acid, and
discuss how the deregulation of p53 in these processes could lead to cancer.
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INTRODUCTION

p53, encoded by the TP53 gene, is a critical tumor suppressor that is required to prevent the
oncogenic transformation of cells. Of note, TP53 is the most frequently mutated gene in human
cancers, and in most cases, TP53 mutation is associated with poor prognosis (Levine, 2020; Olivier
et al., 2010). Mutant p53 (Mutp53) proteins not only lose tumor suppressive functions, but also
frequently acquire various gain-of-functions (GOF) that promote tumorigenesis. Under normal
conditions, p53 is maintained in an inactive and unstable form through the interaction between p53
and its E3 ligase MDM2 and negative regulator MDMX (Fu et al., 2020). Under various stress
conditions, p53 is stabilized and activated by post-translational modifications such as
phosphorylation, acetylation, sumoylation, disrupting the interaction between p53 and Mdm2
and Mdmx (Fu, et al., 2020).

As a transcriptional factor, p53 directly activates and suppresses the transcription of hundreds of
genes, many of which play key roles in cell cycle, apoptosis, and senescence (Vousden and Prives,
2009). For a long time, the roles of p53 in cell cycle arrest, apoptosis and senescence have been
considered the major mechanisms to mediate its tumor suppressive activities (Vousden and Prives,
2009). However, the disruption of p53-dependent cell cycle arrest, apoptosis and senescence is not
sufficient to induce cancer (Fu et al., 2020). Instead, various studies in mouse models such as the p53
(3KR/3KR) knock-in mouse model have highlighted its metabolic roles in inhibiting cancer
progression (Li et al., 2012).

Reprogramming of cellular metabolism is one of the “hallmarks of cancer”, and is considered one
of the main driving forces for tumorigenesis (Hanahan and Weinberg, 2011). In order to effectively
support neoplastic proliferation, cancer cells increase their uptake of nutrients, especially glucose and
amino acids, and adapt themselves to ensure their maximum utilization of the metabolic
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intermediates of glycolysis and oxidative phosphorylation for
biosynthesis and NADPH production (Pavlova and
Thompson, 2016). Numerous reports indicate that p53 is
playing extensive and complex roles in regulating various
metabolic pathways, and the gain of function mutants of p53
promotes the oncogenic metabolic reprogramming that induces
drug resistance and metastasis.

In this review, we focus on recent advances in the research of
p53 and its GOF mutants in regulating oncogenic metabolic
alterations, aiming to provide insights into the targeted therapy of
human cancers with metabolic regulation regiments.

P53 AND GLUCOSE METABOLISM

Numerous studies have shown that p53 plays complex roles in
regulating glucose metabolism. Unlike normal cells, tumor cells
use glucose mainly through glycolysis rather than oxidative
phosphorylation (OXPHOS) to meet their energy and
biosynthetic demand even under aerobic conditions, which is
known as “Warburg effect” (Warburg et al., 1927). In many cases,
p53 performs the tumor suppressive functions to inhibit aerobic
glycolysis and promote OXPHOS.

p53 represses the transcription of glucose transporters
GLUT1, GLUT3, and GLUT4 to reduce glucose uptake, which
is the first rate-limiting event in glycolysis (Kawauchi et al., 2008;
Schwartzenberg-Bar-Yoseph et al., 2004). p53 also
transcriptionally induces TP53 Induced Glycolysis Regulatory
Phosphatase (TIGAR) and inhibits 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase (PFKFB3 and PFKFB4), resulting in
reduced intracellular levels of fructose-2,6-bisphosphate (F-2,6-
BP), which functions as allosteric activator of
phosphofructokinase (PFK), the rate-limiting enzyme
catalyzing the conversion from F6P to F-1,6-BP (Bensaad
et al., 2006; Franklin et al., 2016; Liu et al., 2020; Ros et al.,
2017). Moreover, p53 was also reported to inhibit other glycolytic
enzymes such as hexokinase 2 (HK2) and phosphoglycerate
mutase 1 (PGAM1) (Kondoh et al., 2005; Wang et al., 2014).
These findings support the notion that wild-type p53 suppresses
glycolysis.

To further tilt the balance from glycolysis to OXPHOS, p53
also promotes cellular OXPHOS by various complementary
mechanisms. p53 is able to inhibit the expression of pyruvate
dehydrogenase kinase 2 (PDK2), a negative regulator of pyruvate
dehydrogenase (PDH) that converts pyruvate to acetyl-CoA,
leading to increased OXPHOS (Contractor and Harris, 2012).
In addition, p53 induces the expression of Synthesis of
Cytochrome C Oxidase 2 (SCO2), thereby promoting the
synthesis of cytochrome C oxidase complex that catalyzes the
major step of OXPHOS (Matoba et al., 2006). It was also reported
that the induction of ferredoxin reductase (FDXR) by p53
promotes electron transfer from NADPH to cytochrome p450
(Liu and Chen, 2002). Moreover, p53 could promote
mitochondrial biogenesis, support mitochondrial fission,
maintain mitochondrial genome integrity, and ensure the
quality control and turnover of mitochondria, thereby
guarantees the proper function of mitochondria (Lacroix et al.,

2020). Besides, the pentose phosphate pathway (PPP) is also
reported to be repressed by p53 through its direct binding to
glucose-6-phosphate dehydrogenase (G6PD), which is the first
and rate-limiting enzyme of PPP. Consequently, p53 suppresses
the production of NADPH as well as precursors for nucleotide
biosynthesis (Jiang et al., 2011).

In contrast to the above reviewed canonical functions, the
complexity of the roles of p53 in glucose metabolism remains to
be elucidated. In this context, p53 could play an oncogenic role by
dominantly suppressing OXPHOS. For example, in contrast to
many types of human cancers such as lung cancer, wide-type p53
is often retained in hepatocellular carcinomas (HCC), where it
induces PUMA expression to disrupt the oligomerization and
function of mitochondrial pyruvate carrier (MPC) through direct
PUMA-MPC interaction, thereby inhibits the mitochondrial
pyruvate uptake and promotes glycolysis of HCC (Kim et al.,
2019). These findings underscore the complexity of wild-type
p53, indicating that the impact of p53 on glucose metabolism in
cancer cells is complex and cell context dependent.

P53, LIPID METABOLISM AND
FERROPTOSIS

It has become increasingly clear that cancer cells gain the unique
ability to synthesize fatty acids essential for cellular growth and
survival (Beloribi-Djefaflia et al., 2016). Another non-canonical
function of p53 is the capability to regulate lipid metabolism. p53
is thought to promote catabolism of fatty acids while
simultaneously inhibit fatty acid synthesis. In addition to its
inhibition of Glucose-6-phosphate dehydrogenase (G6PD) and
pentose phosphate pathway (PPP) that is important for DNA
synthesis and lipid synthesis (Jiang, et al., 2011), p53 can
transcriptionally upregulate aromatase that is involved in lipid
metabolism (Wang et al., 2013). Increased lipid accumulation in
the livers of p53−/− mice is mitigated by the transgenic expression
of aromatase, indicating important roles of p53-aromatase
pathway in lipid metabolism (Wang, et al., 2013).

While wild-type p53 can suppress lipid synthesis by regulating
the activities or levels of downstream effectors/targets such as
G6PD and aromatase (Jiang, et al., 2011; Wang, et al., 2013),
numerous reports have demonstrated that mutant p53 can
promote lipid synthesis by altering the activities of various
transcription factors or signaling molecules such as p63, p73,
Nrf2, and AMP-activated protein kinase (AMPK), which are
involved in lipid metabolism (Do et al., 2012; Walerych et al.,
2016; Xu et al., 2011). Several studies have shown that the
upregulation of enzymes involved in the synthesis of fatty
acids and cholesterol (mevalonate pathway) is required for
tumor progression (Bathaie et al., 2017; Kuhajda et al., 1994;
Ribas et al., 2016; Roongta et al., 2011; Zhan et al., 2008). The
presence of p53 mutations correlates with high levels of enzymes
involved in the mevalonate pathway in human breast cancer
tissues (Freed-Pastor et al., 2012). Another study shows that
ectopic expression of p53 mutants (p53R175H and p53P151S)
inhibits AMPK activity and subsequently reduces
phosphorylation of Acetyl-CoA carboxylase (ACC) under
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glucose and serum starvation in a p53-null head and neck
squamous cell carcinoma (HNSCC) cell line UMSCC1 (Zhou
et al., 2014).

Ferroptosis is a new form of programmed cell death
characterized by the accumulation of iron-dependent lethal
lipid peroxides (Dixon et al., 2012). p53 plays an important
role in modulating ferroptotic responses by regulating the
expression of its metabolic targets (Jiang et al., 2015). For
example, recent studies have shown that ALOX12 is critical
for p53-mediated ferroptosis (Chu et al., 2019). In addition,
p53 induces ferroptosis partly through transcriptional
activation of Glutaminase 2 (Jennis et al., 2016) and SAT1 (a
polyamine catabolic enzyme) (Ou et al., 2016), and
transcriptionally represses SLC7A11 (Jiang, et al., 2015). In
addition, suppressor of cytokine signal transduction protein
1 (SOCS1) is required for p53-mediated expression of
p53 target genes involved in ferroptosis. In this context,
SOCS1 can reduce the expression of SLC7A11 to sensitize
cells to ferroptosis (Saint-Germain et al., 2017). However,
p53 behaves differently in a context dependent manner.
While the basal p53 promotes ferroptosis, stress-induced
p53 can inhibit ferroptosis (Tarangelo et al., 2018; Xie
et al., 2017). For example, p53 inhibits ferroptosis by
inhibiting dipeptidyl-peptidase-4 (DPP4) activity in human
colorectal cancer cell lines (Xie, et al., 2017). Therefore,
further studies would be needed to clarify the complex roles of
p53 in ferroptosis.

P53 AND IRON METABOLISM

In addition to ferroptosis, p53 also modulates iron homeostasis.
p53 expression is decreased upon the exposure to excessive levels
of iron through heme-p53 interaction (Shen et al., 2014). Under
iron-deprived conditions, HIF1α is activated to increase p53
protein stability and protein levels (An et al., 1998;
Peyssonnaux et al., 2008; Peyssonnaux et al., 2007). In
contrast, p53 is also found to be downregulated upon iron
depletion via MDM2 (Dongiovanni et al., 2010). Therefore,
the regulatory mechanisms of p53 by the iron concentration
appear to be context dependent.

p53 can control the intracellular iron pool by modulating
the expression of iron sensors. For example, p53 directly
activates the expression of hepcidin, an iron-regulating
hormone (Weizer-Stern et al., 2007). Another study suggests
that p53 induces the expression of iron-sulfur cluster
assembly proteins (ISCU) and protects cells from iron
overload (Funauchi et al., 2015). p53 has been reported
to modulate mitochondrial proteins that are involved in
iron metabolism. For example, p53 mediates the expression
of its target ferredoxin reductase (FDXR), and
subsequently, modulates mitochondrial iron homeostasis
through iron sulfur clusters (ISC) or heme synthesis (Sheftel
et al., 2010).

P53 AND AMINO ACID METABOLISM

Amino acid metabolism has extensive effects on tumors, and it
has been revealed that p53 functions to protect cells from
metabolic stress and promote cellular survival. Cancer cells
rely on glutamine for cellular proliferation after glucose
depletion through a process named glutaminolysis, by which
glutamine is converted to the intermediates of the TCA cycle
(Pavlova and Thompson, 2016). p53 activates the expression of
Glutaminase 2 (GLS2), a key enzyme in glutamine-based cellular
energy production under glucose-deprivation conditions to
support cancer cell growth. Glutamate also limits intracellular
and extracellular oxidative stress to promote cell survival (Suzuki
et al., 2010).

Under the conditions when both glucose and glutamine
become limited, aspartate metabolism becomes very important
for cellular energy production. p53 is reported to transactivate
Solute Carrier Family 1 Member 3 (SLC1A3), an aspartate/
glutamate transporter, under glutamine starvation conditions
(Tajan et al., 2018). p53 can also promote cellular survival by
the induction of high affinity amino acid transporter Solute
Carrier Family 1 Member 3 (SLC1A3) (Tajan, et al., 2018).
Another important player in tumor cell survival and
proliferation is serine. p53 promotes serine synthesis by
glutathionine (GSH) synthesis, eventually leading to overall
cell survival (Maddocks et al., 2013). In summary, p53
promotes cellular survival by promoting energy production
from amino acids under the condition of glucose deprivation.

FIGURE 1 | Summary of the complex roles of p53 in regulating various
metabolic pathways.
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CONCLUDING REMARKS

Tumor suppressor gene p53 is not only essential in cell cycle
arrest or apoptosis, but also participates in various physiological
functions. Here we take a closer look at the complexity of p53
function in regulating cellular metabolism. These findings
together suggest that p53 could regulate various aspects of
cellular metabolism via regulating different target gene
expression or protein-protein interactions in a cellular and
environmental context dependent manner (Figure 1). The
roles of wild-type p53 in tumor metabolism are complex, and
sometimes, could conflict with its status as a tumor suppressor.
For example, some roles of p53 in suppressing OXPHOS and
inducing amino acid based energy production can promote
cancer cell survival and proliferation (Kim, et al., 2019; Suzuki,
et al., 2010, Tajan et al., 201). While the full-length p53 mutants
are found to be overexpressed inmore than half of human cancers
and apparently gain new oncogenic properties (Zhu et al., 2020),
many questions remain unanswered for their roles in cellular
metabolism. Further advancements in single-cell analysis and
multi-omics analyses will provide more in-depth understanding
of p53-related regulatory mechanisms.

Considering the unusual reliance of cancer cells on glycolysis,
targeting tumor metabolic reprogramming has become a
promising strategy for cancer treatment. In addition, the

increased glycolysis contributes to higher levels of the acidic
intermediates such as lactate and acidic tumor
microenviroment, directly or indirectly suppress tumor
immunity. Therefore, the activation of the roles of p53 in
suppressing the metabolic reprogramming of cancer cells
could become effective targeted therapy for human cancers.
However, the development of such strategy requires attention
to the complex and sometimes conflicting roles of p53 in cancer
cells. The comprehensive understanding of various p53 regulated
pathways will enable the precise activation of the p53-dependent
pathways in suppressing tumor metabolism.
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