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The structures of the cytosolic portion of voltage activated
sodium channels (CTNav) in complexes with calmodulin and
other effectors in the presence and the absence of calcium
provide information about the mechanisms by which these
effectors regulate channel activity. The most studied of these
complexes, those of Nav1.2 and Nav1.5, show details of the
conformations and the specific contacts that are involved in
channel regulation. Another voltage activated sodium
channel, Nav1.4, shows significant calcium dependent
inactivation, while its homolog Nav1.5 does not. The available
structures shed light on the possible localization of the
elements responsible for this effect. Mutations in the genes of
these 3 Nav channels are associated with several disease
conditions: Nav1.2, neurological conditions; Nav1.4,
syndromes involving skeletal muscle; and Nav1.5, cardiac
arrhythmias. Many of these disease-specific mutations are
located at the interfaces involving CTNav and its effectors.

Voltage activated sodium channels (Nav) are the major partici-
pants in the depolarization and electrical conductance of neurons,
muscle cells and heart cells. They consist of a major subunit (a)
whose activity is modulated by several channel interacting proteins
(CIP). The a subunit contains 4 pseudo-repeats, each containing 6
transmembrane helices which form the NaC conducting pore and
the voltage sensor, plus a C-terminal region that includes an EF-
hand-like motif (EFL) and a long helix (helix aVI) followed by a
region of variable length depending on the isoform. The different
isoforms (Nav1.1 to Nav1.9 and Nax) also differ in their tissue dis-
tribution, cellular localization and the specific effectors that control
of their function. Recent publications have provided structural
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insight into the regulation of several sodium channels (Nav1.2,
Nav1.4, and Nav1.5) by 2 of the most important effectors: calmod-
ulin—a CIP— and Ca2C.1-4 Another CIP, the fibroblast growth
factor homologous factor (FHF, such as FGF11, FGF12, FGF13
or FGF14), which has an inhibitory effect on channel activity, is
present in several relevant sructures.3 The cytoplasmic C-terminal is
the region of the channels that interacts with these effectors. This
region is also the locus of many of disease causing mutations.

Mutations in the genes coding for these 3 Nav channels
have been associated with neurological conditions (Nav1.2;
autism,5 infantile spasms and bitemporal glucose hypermetab-
olism,6 febrile seizures7,8), with skeletal muscle disorders
(Nav1.4; myotonia9-11 and paralysis12,13), and cardiac arrhyth-
mias (Nav1.5; Long QT syndromes,14 Brugada syndrome,15,16

cardiac conduction defect, atrial fibrillation) and dilated
cardiomyopathy.14

Here we review and discuss the regulation of these channels
by calmodulin (CaM) and Ca2C with emphasis on the specific
structural characteristics of the C-terminal region that may be
responsible for their differences in functional behavior of the
isoforms.

Comparison of the Nav1.5 and Nav1.2 structures in their
CaM complexes

The structure of the Nav1.5 C-terminal fragment in complex
with CaM (CTNav1.5-CaM) was determined in the presence of
Mg2C (PDB ID 4OVN) 4 and CTNav1.2 was crystallized in
complex with CaM and FGF-13 in the presence of Ca2C (PDB
ID 4JPZ).3 These 2 structures show a high conservation of sec-
ondary structure elements, as expected from their high sequence
similarity (91% sequence similarity, 80% identity) (Fig. 1A).
However, despite the high sequence homology, there are differ-
ences between the 2 structures as shown by the main chain trace
of Nav1.5 (PDB ID 4OVN) with the tube radius representing
the mean r.m.s. deviation of the a-carbons of the equivalent resi-
dues of the 2 chains 3,4 (Fig. 1B). Most of the differences in Ca
positions result from a change in the orientation of helix aVI
with respect to the EFL between the Nav1.5 and the Nav1.2
structures (distance between the ends of the helices of »14 A

�
; see

Figure 2). A similar distance is observed when the CTNav in the
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structure of the CTNav1.5-CaM complex is aligned with that in
the Nav1.5-CaM-FHF (Fig. 2).

Residues involved in the interface EFL-FHF, in particular the
loops between aII and aIII, aIII and b2, and loop L4 and strand
b4, are conserved between Nav1.5 and Nav1.2 suggesting that
FHF may play a similar role in the regulation of the long-term
inactivation of both isoforms by interacting with the EFL of
CTNav (Fig. 1C, D).2,3

Interaction of Nav with calmodulin
In complexes involving Nav, CaM lobes have been observed

in all 3 conformations described previously: open, semi-open,
and closed.17 CaM has 2 lobes (N- and C-lobe) each containing
2 EF-hands both of which can bind Ca2C. Each lobe can, in

principle, adopt any of the 3 conformations. The open confor-
mation is observed when Ca2C is bound to the EF-hands, while
the other 2 are observed in the structurally equivalent apoCaM
and Mg2C bound CaM (Table 1).

The semi-open conformation of the CaM C-lobe in the
CTNav1.5-CaM structure (PDB ID 4OVN) is similar to that of
apo CaM bound to Nav peptides such as the apo CaM C-lobe
complex with the Nav1.2 IQ motif peptide, (PDB ID 2KXW;
rmsd 1.0 A

�
; Fig. 3).18 Although the CTNav1.2-CaM-Ca-FHF

and the CTNav1.5-CaM-Ca-FHF are reported as Ca2C bound,
the arrangement of the CaM helices in the C-lobe does not resem-
ble the open conformation typically described in bound CaM-
Ca2C structures such as those observed in Cav-CaM-Ca struc-
tures.19,20 It is noteworthy that the authors indicate that the

Figure 1. Sequence and structural similarity of Nav1.5 and Nav1.2 in their cytoplasmic C-terminal region. (A) Red background displays sequence identity,
yellow background sequence conservation of charge and white background, non-homologous residues. The relative accessibility (acc), calculated by
Endspript/DSSP, is shown in white for buried residues and in blue for accessible residues. 39 Residues involved in the intermolecular contact between 2
Nav1.5 molecules are labeled “H” (contacts with distances less 3.2 A

�
, black H; those with distances between 3.2 and 5.0 A

�
, red H). Helix aIII interacts with

the CaM N-lobe and helix aVI with the CaM C-lobe (“D”; colored as for the “H”). Residues at the end of helix aVI involved in intermolecular contact
between two Nav1.5 molecules (in CTNav1.5-CaM) or with CaM N-lobe in CTNav1.5-CaMCa-FHF are labeled “G.” The end of helix aVI interacts with
another molecule of Nav1.5. The light gray boxes show the residues of Nav1.2 that interact with FHF in the ternary complex (PDB ID 4JPZ). (B) Ca trace
of CTNav1.5 in which the thickness of the tube is proportional to the rmsd of the Ca residues in the structural overlap of CTNav1.5 (PDB ID 4OVN) with
the CTNav1.2 (PDB ID 4JPZ); (non-conserved residues in gray). (C) As (B) with CaM bound as in 4OVN. (D) Surface representation of the Nav1.5 showing
complete sequence conservation at the surface that binds FHF (green); Nav1.5 is 180 degrees from the orientation in (B and C).
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Figure 2. Snapshots of Nav1.5 structures aligned by their EFL domain. (A) Heterodimer of the structure of Nav1.5-CaM. (B) Nav1.5 bound to FHF and with
CaM in extended conformation. (C) Nav1.5 bound to FHF with CaCaM as in 4JQ0. In (A–C), the structures are aligned by the EFL domain. (D) Close-up of
helix aVI displaying the position of K1922, R1910 and K1899. (E) Similar to panel (B) but showing the same side chains as (D) to display the rotation of
90� around the helix aVI axis relative to the position of the other Nav1.5 molecule (light gray). (F) Displacement of helix aVI of the CTNav1.5-CaM-Ca-FHF
(yellow) with respect to the CTNav1.5-CaM-FHF (green).

Table 1. Available CTNav structures. The table includes the residues of CTNav used in the study, the residues and lobe of CaM, whether or not Ca2C was
present in the experimental conditions, the orientation of CaM with respect to CTNav and the PDB ID of the structure. All the structures listes have the CaM
C-lobe bound to the Nav IQ motif in a semi-open conformation

Identifier Amino Acids FGF CaM* Ca2C N-lobe Config. N-lobe Target CaM Orient. Method PDB ID

IQNav1.5-CaM 1901–1927 no 1–148 apo closed none NAx NMR 2L5321

IQNav1.2-CaM 1901–1927 no 76–148# apo NA NA NAy NMR 2KXW18

CTNav1.5-CaM-FGF 1773–1940 yes 1–148 apo closedz none NAx X-ray 4DCK2

CTNav1.5-CaM-Ca-FGF 1773–1940 yes 1–148 Ca2C open post-IQ anti-parallel X-ray 4JQ03

CTNav1.2-CaM-Ca-FGF 1777–1937 yes 1–148 Ca2C openz post-IQ anti-parallel X-ray 4JPZ3

CTNav1.5-CaM 1773–1929 no 1–148 apo closed EFL parallel X-ray 4OVN4

*Hs: Homo sapiens, unless indicated.
#Pt: Paramecium tetraurelia
xCaM N-lobe is not bound, resulting in no determination of CaM lobes’ orientation relative to Nav.
yOnly the CaM C-lobe was used, resulting in no determination of CaM lobes’ orientation relative to Nav.
zThe authors called the N-lobe in 4DCK semi-open, and closed in 4JPZ.3 See text and Fig 4 for discussion.
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anomalous signal of Ca2C in the C-lobe was weak. Given the
weakness of the anomalous signal and the fact that the data extend
only to 3.8 A

�
, it is possible that a majority of the CaM C-lobe

molecules do not contain Ca2C.3 Alternatively, the strong interac-
tion of the C-lobe with helix aVI may prevent the lobe from
adopting the open conformation even in the presence of Ca2C.

The N-terminal lobe of CaM (CaM N-lobe) is observed in
different conformations in the complexes with CTNav: closed,
and open (Fig. 4).17 The structural similarity of the CaM N-lobe
in the structure of the CTNav1.5-CaM-FHF (PDB ID 4DCK)
and the structure of the isolated CaM N-lobe without Ca2C

(rmsd~1.0 A
�
with PDB ID 3UCW; Fig. 4A, B) is in agreement

with, that as reported, this structure does not contain Ca2C (rmsd
»2.7A

�
with 1CDM, a complex with Ca2C; Fig. 4C, D). Com-

parison of the alignment of CTNav1.5-CaM N-lobe with CaM
N-lobe-Mg (rmsd 0.4 A

�
, Fig. 4 E, K) vs with CaM-Ca (rmsd 4.1

A
�
, Fig. 4 H,N) emphasizes the lack of Ca2C, and the presence of

Mg2C in the CTNav1.5-CaM structure. On the other hand,
alignment of the CaM N-lobe with Ca2C to either CTNav1.5-
Ca-CaM-FHF (rmsd 1.4 A

�
, Fig. 4I, O) or CTNav1.2-Ca-CaM-

FHF (rmsd 0.8 A
�
, Fig. 4J, P) compared to the alignment of the

same 2 structures with the CaM N-lobe-Mg (rmsd 3.4 A
�
Fig. 4

F,L; and rmsd 3.2 A
�
Fig. 4G, M) agrees with the presence of

Ca2C in the N-lobe of both structures (Fig. 4F–P).
The C-terminal lobe of apoCaM (CaM C-lobe) interacts with

the Ile-Gln of the IQ motif of helix a-VI of the C-terminus of all
Nav channels. This interaction seems to serve as an anchor for

the control of activation of the channels by CaM (Fig. 3). The
apoCaM C-lobe recognition of the CTNav helix aVI shows
structural characteristics typical of the complexes of CaM with
the helices of the large number of other CaM regulated proteins
(Fig. 5).18,20-25 The residues that participate in this interaction
in the case of Nav have been identified in several structures.
2,4,18,21,26 These residues are mostly conserved in Nav1.2,
Nav1.4, and Nav1.5 (Fig. 1A and Fig. 6). In addition to the iso-
leucine and the glutamine of the IQ motif, several residues in the
middle of helix aVI are also conserved (Fig. 1 and Fig. 6). Of
the 14 residues of helix aVI in contact with the CaM C-lobe, 10
are conserved and 4 are similar (Fig. 1A and Fig. 6), underscor-
ing the equivalence of the interactions between the helix aVI of
the 3 Nav channels and the CaM C-lobe.

In the structure of the CTNav1.5-CaM complex, the N-ter-
minal lobe of CaM (CaM N-lobe) interacts with the CTNav1.5
EFL (Fig. 1C, 2A).4 This interaction involves contacts of helices
a1 and a2 of the CaM N-lobe with helix aIII of the EFL (resi-
dues 1832–1838) and the beginning of helix aVI (residues
1895–1899) of the CTNav1.5 (Fig. 1A, Fig. 2A). Binding of
FHF is not compatible with this interaction (see below). The
sequences of both Nav1.5 regions involved in contacting the
CaM N-lobe are conserved in the 3 Nav channels considered in
this review. The helix aIII residues that contact the CaM N-lobe
in the Nav1.5-CaM complex (QISLI) have sequences in Nav1.2
(KVQLI) and Nav1.4 (KIKLI) that appear to be compatible
with the same EFL/CaM N-lobe interaction. The sequences of

Figure 3. CTNav1.2 and CTNav1.5 aligned by their CaM C-lobe. This alignment displays the different contacts of the CaM N-lobe: parallel in CTNav1.5-
CaM (olive) and antiparallel in CTNav1.2-CaM-Ca-FHF (marine). The alignment shows that the EFL domains do not align due to the 90� degree rotation of
helix aVI. The FHF domains have been omitted for clarity. (A) Alignment of CTNav1.5-CaM with CTNav1.5-CaM-Ca-FHF. (B) CTNav1.5-CaM (CTNav1.5, pur-
ple; CaM, marine). (C) CTNav1.5-CaM-Ca-FHF (CTNav1.5, yellow; CaM, olive). (D) CTNav1.2-CaM-Ca-FHF (CTNav1.2, orange; CaM, teal).
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the other contact region involving the N-terminal of helix aVI
(TL(R/K)RK) is highly conserved among the 3 proteins. These
observations suggest that the interaction of the CaM N-lobe with
the CTNav is a common feature of the 3 Nav channels (Fig. 6).

The structure of the CTNav1.5-CaM complex can be
described as a “parallel” arrangement to reflect the fact that the
N-lobe of CaM is located toward the N-terminal EFL domain of
CTNav1.5 (Fig. 2A, B and 3A, B). On the other hand the
CTNav1.5-CaM-Ca-FHF is an “antiparallel” arrangement with
the N-lobe of CaM located toward the C-terminus of CTNav1.5
(Fig. 3C, D). This change in orientation of the CaM N lobe has
been explained by its binding of Ca2C that appears to favor post
IQ binding.3 In the structure of CTNav1.5-CaM-FHF, deter-
mined in the absence of Ca2C by the same group, the N-lobe of
CaM does not contact Nav1.5 (Fig. 2B).

In summary, residues observed interacting with CaM in the
structure of the CTNav1.5-CaM are conserved in the 3 Nav chan-
nels with a small number of exceptions, some participating in

contacts of the parallel arrangement with the CaM N-lobe [1832-
1834, 1837, 1900 (Fig. 3 and Fig. 6)], and some of the antiparal-
lel arrangement [1915, 1918–1920 (Fig. 1, Fig. 3C and D)].

Interaction of Nav with another molecule of Nav: Nav-Nav
dimerization

An intermolecular Nav1.5-Nav1.5 interaction was observed in
the structure of the CTNav1.5-CaM complex between the EFL
domain of one Nav1.5 molecule (helices aI and aV) and the end
of helix aVI of another CTNav1.5. Residues involved in this
interaction are conserved between Nav1.5 and Nav1.2 (marked
with H in Fig. 1A) suggesting that this CTNav-CTNav interac-
tion may be have a similar functional role in both channels.
Noteworthy is the fact that the only EFL residues that differ
between Nav1.5 and Nav1.2 at this CTNav-CTNav interface are
in contact with each other in the CTNav1.5-CaM crystal (S1920
and A1882 in Nav1.5, are K1147 and N1109 in Nav1.2;
Fig. 2). Although the other component of this interaction, the

Figure 4. CaM N-lobe conformations in Nav-CaM complexes. The structures of the CaM N-lobe in the different complexes are compared with the isolated
CaM N-lobe with Mg2C (green, 3UCW 40,41) or CaM-Ca (magenta, 1CDM 40). Helix aVI is shown in the structures in which there is an interaction between
the CaM N-lobe and the helix. In the figure, CTNav1.5-CaM-FHF (navy blue, PDB ID 4DCK), CTNav1.5-CaM (marine, PDB ID 40VN), CTNav1.5-CaM-Ca-FHF
(olive, PDB ID 4JQ0), CTNav1.2-CaM-Ca-FHF (teal, PDB ID 4JPZ), and CaM-Ca (magenta, PDB ID 1CDM) are shown. (A) Overlap of the CaM N-lobe as seen
in CaM N-lobe with Mg2C (PDB ID 3UCW) with CTNav1.5-CaM-FHF (navy, PDB ID 4DCK). (B) 90� rotation of A. (C) Overlap of the CaM N-lobe as seen in
CaM-Ca (PDB ID 1CDM) with CTNav1.5-CaM.FHF (navy). (D) 90� rotation from C. (E, K) Alignment of the CTNav1.5-CaM N-lobe with CaM N-lobe-Mg (rmsd
0.4 A

�
). (H, N) Alignment of the CTNav1.5-CaM with CaM-Ca (rmsd 4.1 A

�
). (F, L) Alignment of the CTNav1.5-CaM-Ca-FHF N-lobe with CaM N-lobe-Mg

(rmsd 3.4 A
�
). (I, O) Same as (F, L)with CaM-Ca (rmsd 1.4 A

�
). G, M. Alignment of the CTNav1.2-CaM-Ca-FHF N-lobe with CaM N-lobe-Mg (rmsd 3.2 A

�
). (J, P)

Same as (G, M)with CaM-Ca (rmsd 1.45).
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end of helix aVI, displays less sequence identity between the
2 channels, the conservation of the EFL residues suggests that the
intermolecular CTNav-CTNav interaction may be functional in
both Nav channels, even though this interaction has not been
observed in the published Nav1.2 structures.3,18

Conformations of CTNav in the structures of CTNav with
CaM and FHF

The binary complex of CT Nav1.5 with CaM (CTNav1.5-
CaM) and the ternary with FHF (CTNav1.5-CaM-FHF) pro-
vide snapshots of the states of the cytoplasmic C-terminal
domain during the cycle of opening and closing the channel.
Structural alignment of the EFL domain of the 3 known struc-
tures shows that helix aVI is not in the same orientation with
respect to the CTNav EFL in all the structures: in the struc-
tures containing FHF helix aVI is rotated 90� about its long
axis (Fig. 2). A change in the conformation of residues 1892–
1895 (Loop L4), which link the EFL to helix aVI allows the

90� rotation of the helix. As a result, the positively charged
residues of helix aVI that interact with the EFL (helix aV) of
the other Nav1.5 molecule (Arg1910, Lys1899 and Arg1922)
are rotated, most likely preventing or disrupting this interac-
tion (Fig. 2D–F). The change of conformation in loop L4
which results in the 90� rotation of helix VI has been pro-
posed to reflect a change from the inactivated state to the state
that is poised for activation.4

In the structure of the CTNav1.5-CaM-Ca-FHF complex,
helix aVI forms a different angle with the CTNav EFL than in
the ternary CTNav1.5-CaM-FHF complex (Fig. 2F). This dif-
ference has not been suggested to be associated with a unique
physiological state of the channel.

Residues involved in the EFL-FHF interface observed in the
CTNav1.2(or 1.5)-CaM-FHF structures, in particular strand b4
and the preceding loop L4, are conserved between Nav1.5 and
Nav1.2 suggesting a similar role for FHF in the regulation of
both channels (Fig. 1C).2,3

Figure 5. CaM C-lobe conformations bound to Nav C-termini. The structures display a semi-open, not the open conformation typical of Ca-CaM. In the
figure the colors are CaM C-lobe (yellow, PDB ID 2KXW), CTNav1.5-CaM (marine, PDB ID 40VN), CTNav1.5-CaM-FHF (navy blue, PDB ID 4DCK), CTNav1.2-
CaM-Ca-FHF (teal, PDBID 4JPZ), IQNav1.2-apoCaM-(yellow, PDBID 2KXW), and CaM-Ca (Magenta, PDB ID 1CDM). (A) Overlap of the semi-open CaM C-
lobe (PDB ID 2KXW) as seen IQNav1.2-CaM with CTNav1.5-CaM-FHF (PDB ID 4DCK). (B) 90� rotation from A. (C) Overlap of CaM C-lobe as seen in CaM-Ca
(PDB ID 1CDM) with CTNav1.5-CaM-FHF (PDB ID 4DCK). (D) 90� rotation from (C). (E-G) and (K–M). CaM C-lobe displaying the lack of change in conforma-
tion of the helices upon Ca2C binding with respect to semi open CaM C-lobe (rmsd for all pairwise aligments is~1.0 A

�
). (E, K)Alignment of the CTNav1.5-

CaM C-lobe (4OVN) with CaM C-lobe (2KXW, rmsd 1.3 A
�
). (H, N) Alignment of the CTNav1.5-CaM C-lobe with CaM-Ca C-lobe (1CDM, rmsd 3.1 A

�
). (F, L)

Alignment of the CTNav1.5-CaM-Ca-FHF C-lobe with CaM C-lobe (2KXW, rmsd 1.3 A
�
). (I, O) Alignment of the the CTNav1.5-CaCaM-FHF C-lobe with CaM-

Ca C-lobe (rmsd 3.1 A
�
). (G, M) Alignment of the CTNav1.2-CaM-Ca-FHF C-lobe with CaM C-lobe (2KWC, rmsd 1.0 A

�
). (J, P) CTNav1.2-CaM-Ca-FHF C-lobe

with CaMCa C-lobe (1CDM, rmsd 3.1 A
�
).
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Ca2C dependent inactivation
Calcium dependent inactivation (CDI) in the presence of

CaM is an essential property of voltage activated Ca2C channels
(Cav). Recently, it was shown that the same phenomenon is
exhibited by Nav1.4.1,27 Surprisingly, Nav1.5 does not show this
inactivation. Figure 6 highlights the location of the residues that
are different between the Nav1.4 and Nav1.5 channels. In the
portion of the Nav cytoplasmic region that is present in the
CTNav1.5-CaM structure there are a small number of sequence

differences between Nav1.4 and Nav1.5: the major differences
are beyond the end of helix aVI. If the structural elements that
contribute to CDI are located in the C-terminal of the channels,
they must include residues that differ between Nav1.5 and
Nav1.4 to account for their differences in CDI. Since CDI is
likely to involve CaM, at least part of the effect must reside in
the residues that differ between the 2 channels in the portion of
the channels that interact with CaM—i.e., the residues showed
in Figure 6.

Figure 6. Comparison of Nav1.5, Nav1.2 and Nav1.4. (A) Alignment of the sequences of Nav1.5, Nav1.2, and Nav1.4. The orange background indicates
sequence identity, red letters sequence conservation of charge and white background, non-homologous residues. (B) Structure of CTNav1.5-CaM show-
ing the residues of aIII at the interface with CaM-N-lobe (marine) that are not conserved in Nav1.4. Differences in these contacts may be responsible for
the CDI differences between Nav1.4 and Nav1.5.
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Nav mutations and disease
Mutations in SCN5A, the gene that encodes the Nav1.5 chan-

nel, have been found in patients with LQT3 or Brugada Syn-
drome.14,15,28,29 The mutations in the CT include changes at
positions 1774, 1779, 1784, 1787, 1795, 1825, 1839, 1895,
1901,1909, 1924 (LQT3; Fig. 7) and positions 1774, 1795,
1812, 1861, 1837, 1872, 1901, 1904, 1919, 1924 (Brugada Syn-
drome).30-37 Some of these mutations occur at the CTNav1.5-
CaM-C-lobe interface (1901, 1909), the CTNav1.5-FHF (1839
LQT3), or close to this interface (1839, LQT3; 1872, Brugada
Syndrome). Other mutations affect the interaction of one
CTNav1.5 with another CTNav1.5 (1790, 1795 and 1913 in
LQT3; 1787, 1919 and 1924 in Brugada Syndrome).

Mutations in the gene coding for Nav1.4 (SCN4A) result in
myotonias and other syndromes involving skeletal muscles. Resi-
due Gln1633 of Nav1.4 is equivalent to residue 1807 of Nav1.5,
also a Gln (Fig. 6). Assuming similar roles for this residue in
both proteins, the mutation Gln1633 of Nav1.4 would introduce
a charge at the interface between 2 Nav channels that may be
incompatible with maintaining this contact. The same interface
is affected by the F1705I mutation (F1705 is equivalent to
F1879 of Nav1.5; Figures 1, 6). Similarly, if FHF does interact
with Nav1.4, the E1702K mutation of Nav1.4 (Glu1876 in
Nav1.5, Fig. 6) would interfere with this interaction. Interest-
ingly, these mutations occur in residues that are conserved among
the 3 isoforms.

Mutations in the SCN2A gene, which encodes for the neuro-
nal channel Nav1.2, underlie seizure and autism spectrum disor-
ders. 6,7,38 Mutation D1793N, observed in epilepsy patients, is

located in helix aI of the EFL
domain that interacts with the
CaM N-lobe (Fig. 8).8

Arg1918, which interacts with
the linker of the N-lobe the
C-lobe when Ca2C is bound
to CaM, was observed
mutated to His in a patient
with febrile seizures.7 In
the CTNav1.2-CaM-Ca-FHF

Figure 7. Location of mutations of Nav1.5 observed in Brugada Syn-
drome and LQT3. (A) Surface representation of one CTNav1.5 monomer
(purple) interacting with another CTNav1.5 (green). CaM is indicated
only in the foreground CTNav1.5. This state was postulated to be poised
for activation. (B) Brugada Syndrome mutations are at the CTNav1.5-
CaM-C-lobe interface (colored as is A). CTNav1.5 mutations present in
LQT3 (1774, 1779, 1784, 1787, 1795, 1825, 1839, 1872, 1901, 1909, 1903,
1924) are shown in gray and Brugada Syndrome mutations (1774, 1812,
1826, 1837, 1861, 1872, 1795, 1919, 1924) in navy blue. (C) Inset showing
the FHF to display the mutations that are at the interface of the EFL
domain of CTNav1.5 and the FHF (1839 LQT3) or close to it (1840, LQT3;
1872, Brugada Syndrome). (D) Close-up of the interaction of CTNav1.5-
CTNav1.5 (1795 and 1913, gray, LQT3; 1919 and 1924, blue, Brugada
Syndrome).

Figure 8. Location of mutations
of Nav1.2 observed in autism
and febrile seizures. (A) Surface
representation of CTNav1.2 (top
view, orange) interacting with
CaM (teal) and FHF (lime green).
Mutation of residue 1793 of the
EFL domain is shown in gray.
(B) CTNav1.2 mutations in gray
(1902, 1918). (C) Close-up of resi-
due R1902 close to the interface
of CTNav1.2 with FHF. (D) Close-
up of the position of residues
Asp79 and Asp81 of CaM in the
CTNav1.2-CaM-Ca-FHF (antipar-
allel; teal) vs CTNav1.5-CaM (par-
allel; marine).
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complex, Arg1918 interacts with CaM residues Asp79 and
Asp81.3 This interaction may act as a sensor of the presence of
Ca2C in CaM: compared with the structure of CTNav1.5-CaM
in the absence of Ca2C this portion of the linker is the pivot for
positioning the CaM N-lobe. In particular, CaM Asp79 is in the
same position and CaM Asp81 is 7 A

�
away (Fig. 8D). The muta-

tion R1902C seems to impair Ca2C binding 38 to the CaM in the
complex, but its position in the Ca2C bound structure does not
support this proposal (Fig. 8).

Concluding Remarks

Atomic resolution structural information is accumulating on
the conformations of the cytoplamic C-terminal fragments of
Nav channels and CaM lobes in Nav-CaM and Nav-CaM-FHF
complexes in the presence and absence of Ca2C. Some of these
structures have been proposed to be associated with specific func-
tional states of the channels. The structures contain direct infor-
mation about the specific interactions of the C-terminal domain
of the channels that govern the control of channel activity by
CIPs and by Ca2C. As a consequence they are providing insights

about the mechanisms of altered channel function by mutations
associated with the phenotypically variant sodium channelopa-
thies. Further experimentation, including electrophysiological
measurements, binding experiments, and determination of addi-
tional structures will be essential for the identification of all the
states of the cytoplasmic components of the Nav channels needed
to provide a full understanding of their regulation of channel
activity.
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