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Ischemic stroke is a multi-factorial cerebrovascular disease with high worldwidemorbidity

and mortality. In the past few years, multiple studies have revealed the underlying

mechanism of ischemia/reperfusion injury, including calcium overload, amino acid

toxicity, oxidative stress, and inflammation. Connexin 43 (Cx43), the predominant

connexin protein in astrocytes, has been recently proven to display non-substitutable

roles in the pathology of ischemic stroke development and progression through forming

gap junctions and hemichannels. Under normal conditions, astrocytic Cx43 could be

found in hemichannels or in the coupling with other hemichannels on astrocytes,

neurons, or oligodendrocytes to form the neuro–glial syncytium, which is involved in

metabolites exchange between communicated cells, thus maintaining the homeostasis

of the CNS environment. In ischemic stroke, the phosphorylation of Cx43 might cause

the degradation of gap junctions and the opening of hemichannels, contributing to the

release of inflammatory mediators. However, the remaining gap junctions could facilitate

the exchange of protective and harmful metabolites between healthy and injured cells,

protecting the injured cells to some extent or damaging the healthy cells depending on

the balance of the exchange of protective and harmful metabolites. In this study, we

review the changes in astrocytic Cx43 expression and distribution as well as the influence

of these changes on the function of astrocytes and other cells in the CNS, providing

new insight into the pathology of ischemic stroke injury; we also discuss the potential of

astrocytic Cx43 as a target for the treatment of ischemic stroke.
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INTRODUCTION

Ischemic stroke is caused by the stenosis or occlusion of the cerebral blood supply. It is the
most common cerebral vascular disease (contributing to ∼80% of strokes) with high morbidity
and mortality (1, 2). It was recently reported that ischemic stroke, cardiovascular diseases, and
malignant tumors constitute the three major causes of human death (3, 4). Although research
into the mechanisms of ischemic stroke injury has made advanced progress in the last few years,
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effective strategies for ischemic stroke treatment to protect
residual neurons by restoring brain perfusion as soon as possible
via intravenous thrombolysis and mechanical thrombectomy (5,
6) remain limited.

Among the glial cells in the brain parenchyma, astrocytes are
the most abundant and critical (7, 8) and may modulate the
homeostasis of the central nervous system (CNS) environment
and support the survival of neurons (8, 9). The roles of
astrocytes in the pathology of ischemic stroke are double-
edged, while they can help maintain the homeostasis of the
CNS micro-environment to protect neurons by maintaining ion
and pH balance, transporting metabolic substrates, and clearing
neuronal waste. Conversely, the inflammatory mediators and
excitatory amino acids produced and released by astrocytes
might promote the death of neurons (10). Connexin 43 (Cx43),
one of the most abundant Cxs in the brain tissue, is essential
for astrocytes to exert their various physiological functions by
forming gap junctions and hemichannels (11, 12) and its role
in the development and progression of ischemic stroke have
received increasing attention in recent years (13, 14). However,
the currently available data show that the change in astrocytic
Cx43 after ischemic stroke and the roles it plays are controversial
(15–17). Therefore, in this study, we reviewed the syncytium
structures that astrocytes form with other cells (astrocytes,
neurons, and oligodendrocytes), and the change in astrocytic
Cx43 expression and distribution after stroke as well as how these
changes influence the functions of astrocytes and the neuro–
glial syncytium, subsequently regulating ischemic injury. The
delineation of the roles of astrocytic Cx43 in ischemic stroke
could help elucidate the initiation and spread of inflammation
and neuronal damage after ischemic stroke, which might provide
some new targets for the treatment of ischemic stroke.

THE STRUCTURE, DISTRIBUTION, AND
PHYSIOLOGICAL FUNCTIONS OF Cx43

Cxs in the CNS are important membrane proteins of a family
that consist of 21 members that can form gap junctions and
hemichannels. Eleven of these Cxs are expressed in the adult
mammalian brain and are distributed differently on glial cells
and neurons in the CNS (Table 1) (31–33). Among these Cxs,
astrocytic Cx43 is the most widely expressed and studied in
the CNS, playing essential roles in the communication between
astrocytes and other cells or with the extracellular milieu, as they
form gap junction channels or hemichannels (34).

Structure and Distribution of Cx43
Cx43 in the adult mammalian brain, named after its molecular
weight of ∼43 kDa, belongs to the α-Cx family and consists
of 382 amino acids (31, 35, 36). The same as other Cxs,

Abbreviations: ATP, Adenosine triphosphate; CBX, carbenoxolone; CNS, central

nervous system; Cx, connexin; Glu, glutamate; GLUT, glucose transporters; IL-

1β, interleukin-1β; LAD, left anterior descendent; MAPK, mitogen-activated

protein kinase; MCAO, middle cerebral artery occlusion; MCT, monocarboxylate

transporter; NO, nitric oxide; OGD, oxygen glucose deprivation; ROS, radical

oxygen species; TNF-α, tumor necrosis factor-α.

TABLE 1 | Cellular distribution of connexins expressed by glia and neurons in the

adult mammalian central nervous system.

Cell type Connexins Gap junctions

with astrocytic

Cx43

References

Astrocytes Cx26, Cx30, Cx43 Cx43/Cx43 (18, 19)

Neurons* Cx30.2, Cx31.1,

Cx32, Cx36, Cx40,

Cx45, Cx50

Cx36/Cx43 (20–23)

Oligodendrocytes Cx29, Cx32, Cx47 Cx47/Cx43 (24, 25)

Microglia Cx32, Cx36, Cx43 (26–28)

Capillary endothelial

cells

Cx37, Cx40, Cx43 (29, 30)

*The types of connexins distributed on neurons have not been determined.

Cx43 contains four transmembrane regions, the intracellular N-
terminal and C-terminal and two extracellular loops. The two
extracellular loops and the N-terminal are relatively conserved,
while the intracellular loop and C-terminus determine the
different biological characteristics in different species (37, 38).

Cx43 is the dominant Cx protein in astrocytes and the main
component of astrocytic gap junctions and hemichannels (1).
Individual Cx assembles into hexamers around a central pore to
form transmembrane channels named connexons, also known
as hemichannels (39). They can exist as free, no-junctional
channels on the astrocytic membrane and form gap junction
channels with other hemichannels on the membrane of adjacent
astrocytes or other cells (18). Further studies have shown that
hemichannels may be homomeric or heteromeric, depending on
the Cx composition. Similarly, gap junctions are homotypic if
the paired hemichannels contain the same Cxs, and heterotypic
if they contain different Cxs (40).

Hemichannels
Hemichannels are not closed under resting conditions; their
opening probability is very low but not zero (41). However, under
certain physiological and pathological stimulation conditions
(such as the presence pro-inflammatory cytokines, increase in
intracellular calcium concentration, and metabolic inhibition),
hemichannels might increase their opening probability (42–
47). Consequently, activated astrocytic Cx43 hemichannels are
critical ion diffusion (including of Ca2+, K+, Na+) from
astrocytes to the extracellular milieu as well as for the
release of adenosine triphosphate (ATP) and gliotransmitters
[including of glutamate (Glu), adenosine, and glutathione],
thus forming chemical coupling between cells and the micro-
environment through autocrine and paracrine approaches (48–
50). The activated hemichannels might play dual roles in
the CNS. Recent reports have shown that the opening of
hemichannels during resting conditions is involved in basal
synaptic transmission and long-term potentiation (51, 52). Other
studies have reported that the opening of hemichannels can
facilitate the release of D-serine, further enhancing excitatory
synaptic transmission in the hippocampus or olfactory bulb (53).
However, in pathological situations, the changes in hemichannels
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may activate inflammatory signaling, damaging the survival
of glial cells and producing excitotoxic molecules (54). After
ischemic stroke, inflammation followed by ischemia/reperfusion
(I/R) injury could activate the astrocytic hemichannels by
increasing extracellular Ca2+ and inflammatory cytokine release
(15). Then, the opened hemichannels could promote the
differentiation of microglia to the M1 phenotype, which could
produce pro-inflammatory cytokines including tumor necrosis
factor-α (TNF-α) and interleukin-1β (IL-1β), consequently
triggering the opening of astrocytic hemichannels (39, 55).
The vicious cycle caused the uncontrolled release of ATP, Glu,
and Ca2+ overload could induce increase in the number of
abnormally opened hemichannels, which in turn could lead
to tissue excitotoxicity, inflammation amplification, and finally
irreversible brain damage (56).

Gap Junction
Astrocytic gap junctions are axially aligned hexamers of
connexins, which can connect adjacent cells (57). Thousands
of gap junctions clustered into discoid gap junction plaques
could further combine with specific protein binding subunits
of paired connexons on the membrane of adjacent cells
to form the supramolecular gap junction nexus (58). Gap
junctions are the major structures of electrical transmission and
metabolic and ionic coupling between adjacent cells (41). In
contrast to hemichannels, gap junctions are always open under
physiological conditions, allowing intercellular communication
(59). They allow small molecules, below 1,200 Daltons, to
diffuse, including ATP, inositol trisphosphate, and ions (such as
K+, Na+, and Ca2+), cyclic nucleotides, and oligonucleotides
and small peptides, facilitating metabolites exchange and
information communication among astrocytes, neurons, and
oligodendrocytes, maintaining the intracellular and extracellular
homeostasis (60–62). More importantly, astrocytic gap junction
channels also transmit chemical signals and metabolites (glucose
and lactate) between glial cells, facilitating the function of
neuronal, glial, and vascular tissues (63).

THE NEURON–GLIAL SYNCYTIUM
STRUCTURE IN THE CENTRAL NERVOUS
SYSTEM

As mentioned above, astrocytic Cx43 can both form
hemichannels on the cell membrane of astrocytes and form
gap junctions with Cx43 or other Cxs on the adjacent astrocytes
(18). Considering the hemichannels and gap junctions, astrocytes
play a central role in the formation of neuro–glial syncytium
structures, where neurons, microglia, oligodendrocytes, and
even capillaries could combine to perform various physiological
functions (Figure 1) (64).

First, astrocytes can be coupled by Cx43 gap junctions to
form syncytium structures, which allows groups of cells to
synchronously respond to stimuli (61). The coupled astrocytes
can differentiate together during the developmental process
(65). They also participate in various physiological processes,
including clearing K+ from the extracellular space, synthesizing

neurotransmitters, propagating calcium waves, balancing Glu
and γ-aminobutyric acid, and the immune response (59, 66, 67).
However, in ischemic stroke, gap junctions might also act as
channels for the transmission of cytotoxic molecules (including
of Ca2+, excessive ATP, and Glu) from dying astrocytes to their
coupled cells, amplifying ischemia-induced brain injury (68).

Apart from astrocyte–astrocyte coupling, astrocytes can also
couple with neurons and oligodendrocytes through Cx43 (11,
69). Various studies have confirmed that neurons mainly
express Cx36, Cx45, and Cx32, all of which can serve
as hemichannels (20, 21). Among these Cxs, Cx36 on
neurons can couple with astrocytic Cx43, thus forming
Cx43/Cx36 heterotypic gap junctions, which facilitate direct
metabolic and electrical communication between astrocytes and
neurons (20, 70). Additionally, the existence of Cx43/Cx36
gap junctions can combine neurons into the syncytium
network. Under physiological conditions, astrocytes can provide
energetic substrates (glucose, lactate, citrate, and glutamine) for
neurons. Furthermore, Cx32, Cx47, and Cx29 are primarily
expressed on oligodendrocytes (24, 25). Among these Cxs
on oligodendrocytes, Cx47 participates in the formation of
gap junctions with astrocytic Cx43 (19). Recently, studies
have revealed that astrocyte–oligodendrocyte gap junctions are
essential for CNS myelination and homeostasis (71). Some
studies have found that astrocytes can deliver glucose and lactate
to oligodendrocytes through gap junctions, which is essential for
the survival of neuronal axons (72, 73). Additionally, heterotypic
Cx43/Cx47 gap junctions have been shown to mediate the
spatial buffering of K+ and the bi-directional transmission of
Ca2+ between astrocytes and oligodendrocytes (74). The loss
of Cx43/Cx47 gap junctions might disrupt the spatial buffering
of K+, subsequently leading to myelin swelling and axonal
degeneration (75, 76).

Although Cxs expressed on capillary endothelial cells (mainly
Cx 37, Cx40, and Cx43) can also form hemichannels and gap
junctions (29, 30), there is no evidence that astrocytes establish
direct contact with endothelial cells, which might account for
the obstruction of the basal lamina between these two cell types
(77). Astrocytes can attach to capillaries through their end-feet
(78, 79). Under normal conditions, capillary endothelial cells can
take up blood-borne glucose and lactate by glucose transporter 1
and monocarboxylate transporter (MCT) 1, respectively, which
then diffuse through gap junction channels between adjacent
endothelial cells. Both glucose and lactate are eventually taken
up by the astrocytic end-feet via MCT4 and Cx43 hemichannels,
respectively, or released to the extracellular space (80, 81).
Thus, glucose and lactate can be transported through astrocytes
and their gap junctions with neighboring astrocytes to reach
relatively distant areas (82). Furthermore, astrocytes can transfer
lactate and glucose to oligodendrocytes through the heterotypic
Cx43/Cx47 gap junction channels between them (80). Finally, the
lactate in oligodendrocytes can be transported to neuronal axons,
inducing axonal degeneration, while the glucose can supply
energy for neurons (72, 73).

Taken together, astrocytic Cx43 places astrocytes to a central
position in neuron–glial syncytium structures to enroll neurons,
oligodendrocytes, microglia, and even capillaries in the CNS into
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FIGURE 1 | The interaction between astrocytic Cx43 and other parenchymal cells in the CNS. Astrocytes and other parenchyma cells in the CNS form neuro–glial

syncytium structures via Cx43/Cx43 gap junctions between astrocytes, Cx43/Cx36 gap junctions between astrocytes and neurons, and Cx43/Cx47 gap junctions

between astrocytes and oligodendrocytes. Such structures allow the exchange of metabolites and rapid signal communication, resulting in synergistic response to

stimuli. Astrocytic Cx43 is also involved in the capillary-astrocyte-oligodendrocyte-neuron axis and participates in the lactate and glucose transport between capillaries

and neurons. Moreover, astrocytes can also indirectly promote the differentiation of microglia to the M1 phenotype through releasing pro-inflammatory mediators via

hemichannels. In turn, the differentiated M1 microglia could aggravate the destruction of gap junctions, enhancing injury after ischemic stroke.

this network, facilitating these cells and structures to respond
to changes in the CNS micro-environment, thus maintaining
the stability of the CNS milieu and regulating the development,
differentiation, and function of neurons.

CHANGE IN ASTROCYTIC Cx43 IN
ISCHEMIC STROKE

After ischemic stroke, various types of cells in the CNS,
including neurons, glial cells, and vascular endothelial cells,
sustain different degrees of damage. Astrocytes could be activated
and proliferate after ischemic stroke, which is known as reactive
astrogliosis (81, 83). Reactive astrogliosis is a type of multistage
and pathology-specific reaction, which represents a series of
alterations that occur in astrocytes in response to any insult to
the CNS (84). At the earlier stage of ischemic stroke, reactive
astrocytes can seal the damaged area (85), maintain the balance
of the micro-environment, provide nutrients for the neurons,
reduce the excitatory toxicity of amino acids, and activate
local immune reactions (86). These processes can promote the
remodeling of surrounding structural tissues, avoiding secondary
damage to neurons (87). However, at the later stage of ischemic
stroke, excessive proliferation of reactive astrocytes can change
the axon regeneration micro-environment to restrain axonal
growth (88), form glial scars, and inhibit the information

communication of neurons (89), which can suppress the recovery
of nerve function.

Cx43 on astrocytes is an important mediator of CNS ischemic

injury, and change in Cx43 expression and distribution has been

associated with the outcome of ischemic injury (59). The change

in Cx43 expression in the CNS after ischemic stroke remains
controversial and depends on ischemia severity, regions, and
phase. Cx43 immunoreactivity (Cx43-ir) in the hippocampus
and striatum could increase under mild to moderate ischemic
conditions (90). However, further studies have indicated that
there is an area of reduced Cx43-ir surrounded by a zone
of increased Cx43-ir following severe ischemia (66). Another
study found that there was a transient downregulation of Cx43
mRNA on day 1 and then upregulation on day 7 after ischemic
stroke (91). However, some studies have revealed that there is
no significant change in the total amount of Cx43 in in vitro
and in vivo hypoxia models of astrocytes (92). Apart from
change in expression, change in Cx43 distribution has also
been reported in ischemic stroke. A recent study showed that
Cx43 decreased on the astrocytic plasma membrane, whereas it
increased in the cytoplasm after ischemic stroke (93). In addition,

the reorganization Cx43 gap junctions was also confirmed by
immuno-electron microscopy (94).

The C-terminal of astrocytic Cx43 has critical roles in
regulating astrocytic functions. Various studies have indicated
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that the phosphorylation status of the astrocytic Cx43 C-terminal
is an important mediator modulating the gap junction channels
and hemichannels after ischemic stroke, thus influencing the
functions of astrocytes and neurons (Figure 2) (95). It has
been reported that the C-terminal of astrocytic Cx43 could be
phosphorylated after ischemic stroke via several protein kinases
including protein kinase C (96), mitogen-activated protein
kinase (MAPK) (97), pp60Src kinase (98), and casein kinase
1δ (99), inducing Cx43 internalization, further contributing to
the uncoupling process of astrocytes (100, 101). Interestingly,
other studies have found that in vitro hypoxia may lead to
the dephosphorylation of the C-terminal of astrocytic Cx43,
accompanied by the uncoupling of astrocytes (101, 102).
This controversy arises because the phosphorylation and
dephosphorylation of Cx43 as well as astrocytic uncoupling
all occur within a short period after ischemia. Further studies
have revealed that astrocytic coupling was significantly reduced
by 77% after 15min of hypoxia, 92% after 30min of hypoxia,

and 97% after 1 h of hypoxia, while subsequent substantial
Cx43 dephosphorylation was observed at 30min or 60min after
hypoxia. In addition, a greater quantity of dephosphorylated
Cx43 was observed at 60min than at 30min. Moreover,
dephosphorylated Cx43 became predominant after 60min.
Subsequent studies have also found that phosphorylated Cx43
remained preponderant from 1min until 30min after hypoxia,
and the level of preserved astrocytic coupling was 34% after
30min of hypoxia with addition of phosphatase inhibitors to
hypoxic astrocytes (101, 103). These studies indicated that the
gap junction uncoupling process of astrocytes lies between the
phosphorylation and dephosphorylation of Cx43 and might
be the result of the phosphorylation of Cx43 and the cause of
Cx43 dephosphorylation on hemichannels. However, the precise
phosphorylation and dephosphorylation sites of the astrocytic
Cx43 C-terminal remain undetermined. Márquez-Rosado
et al. revealed that phosphorylation and dephosphorylation
occurred at the serine 325/328/330/365/368 (104) site, while

FIGURE 2 | The phosphorylation of astrocytic Cx43 C-terminal and its influence on astrocytes and neurons after ischemic stroke. ① At the early stage of ischemic

stroke, astrocytic membrane Cx43, which is involved in the formation of gap junction channels and hemichannels, is phosphorylated at the C-terminal (predominantly

from 1 to 30min) via several protein kinases including protein kinase C, MAPK, pp60Src kinase, and casein kinase 1δ. This process leads to the internalization of

membrane Cx43 to the cytoplasm and the degradation of gap junctions. ② At the later stage of ischemic stroke, the remaining astrocytic membrane Cx43 is

dephosphorylated (predominantly after 60min), increasing the permeability of hemichannels. ③ Thus, resulting in the release of ATP, glutamate, and nicotinamide

adenine dinucleotide from the cytoplasm of injured astrocytes or injured neurons to the extracellular space, initiating or enhancing neuroinflammation through the

remaining gap junctions. ④ In coupled astrocytes, healthy astrocytes could transfer essential ions and metabolites (including Na+, K+, glutamine, antioxidants, and

glucose) to injured astrocytes by Cx43/Cx43 gap junction channels or injured neurons by Cx43/Cx36 gap junction channels and protect the injured astrocytes. In turn,

harmful ions and metabolites (including Ca2+, ATP, glutamate, NO, and ROS) might also be transferred from injured astrocytes or injured neurons to healthy

astrocytes, thus spreading the death wave.
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Freitas-Andrade et al. demonstrated that phosphorylation
and dephosphorylation of serine 255/262/279/282 (105) also
occurred. It is unknown whether the phosphorylation and
dephosphorylation of astrocytic Cx43 after stroke occurred
at the same site and whether the phosphorylation and
dephosphorylation of different Cx43 sites might trigger
different degrees of Cx43 degradation. Additionally, Cx43
cysteine residues of S-Nitrosylation have been observed in in
vitro ischemic models induced by nitric oxide (NO) (106).
Other in vitro studies have found that astrocytic Cx43 was
S-Nitrosylated in cultured astrocytes treated with NO for 50min
and that S-Nitrosylated Cx43 could increase the numbers and
opening probability of hemichannels (107).

Meanwhile, in vitro studies have confirmed that astrocytic
Cx43 C-terminal dephosphorylation may increase the opening of
hemichannels (108, 109). Previous studies have used astrocytes
cultured in in vitro ischemia to study the activity of astrocytic
Cx43 gap junctions and hemichannels. Among such studies, it
has been found that Cx43 gap junctions between dying astrocytes
remained functional under ischemic conditions, although Cx43
gap junction coupling decreased (101, 110), signifying that
intercellular communication can still occur via astrocytic Cx43
gap junctions under ischemic conditions. Although the opening
hemichannels may disrupt the electrochemical and metabolic
gradients across the plasma membrane, studies have proven that
the remaining gap junctions can protect dying astrocytes to
some extent by transferring ions and essential metabolites from
healthy astrocytes to dying ones with open hemichannels (107).
In contrast, dying astrocytes can also transfer harmful ions and
metabolites to neighboring healthy ones with open hemichannels
via the remaining gap junctions, which can again cause the death
of their neighbors (111). This wave-like spread of the death
process is much similar to the extension of infarct regions under
ischemic conditions (108, 112, 113).

EFFECTS OF ASTROCYTIC Cx43 IN
ISCHEMIC STROKE

Functions of Astrocyte–Astrocyte Coupling
Coupled astrocytes in the astrocytic network share the same fate
in ischemic stroke, while the uncoupled ones do not (61, 114).
Gap junction communication could positively regulate astrocytic
activation and proliferation (115, 116). In permanent right
middle cerebral artery occlusion (MCAO) models of Cx43+/−

and Cx43+/+ mice, Cx43+/− mice showed a significantly
larger infarct size but in a smaller area of astrogliosis than
did Cx43+/+ mice (63), indicating that astrocytic Cx43 gap
junctions indeed display a vital role in astrocyte activation and
cytotoxic-molecule removal, thus facilitating neuronal survival.
Moreover, the astrocytic network formed by gap junctions
could also provide energy substrates (glucose and lactate) to
neurons (63). Besides, studies with oxygen glucose deprivation
(OGD) and MCAO models have found that astrocytic Cx43
is important for astrocytic integrity and stability by activating
either astrocytic Cx43 gap junctions or hemichannels (117,
118). Astrocytic Cx43 gap junctions can protect astrocytes by

permitting the exit of toxic molecules [including Ca2+, excessive
ATP, Glu, NO, and radical oxygen species (ROS)] out of the
injured astrocyte and the entrance of neuroprotective metabolites
(including Na+, K+, glutamine, antioxidants, glucose) into
the astrocytes under ischemic conditions (119, 120). However,
if too many toxic molecules are transferred into healthy
astrocytes, beyond their bearing load, astrocytic injury might
spread to the adjacent astrocytes. Metabolites released by
Cx43 hemichannels can also act on the neighboring astrocytes
(121). In ischemic stroke, the internalization of astrocytic
Cx43 induced by the phosphorylation of the C-terminal might
contribute to the uncoupling of astrocytes, thus reducing the
mutual support of astrocytes and aggravating their injury (99).
In addition, the opening of hemichannels induced by the
dephosphorylation of astrocytic Cx43 could promote the release
of inflammatory mediators, increasing neuroinflammation after
ischemic stroke (108, 109).

Functions of Astrocyte–Neuronal Coupling
Recent studies have found that astrocytes could protect
neurons by producing glutathione to exert anti-oxidant effects,
reducing inflammatory media, enlarging the gap junctions,
regulating energy metabolism, inhibiting apoptosis, up-
taking excitatory amino acids, inducing cerebral ischemic
tolerance in response to ischemic preconditioning, and other
processes (122, 123). Accumulating evidence indicates that
the amount of Cx43/Cx36 gap junctions decreases due to
Cx43 internalization after ischemic stroke, which reduces the
transportation of neurotransmitters and metabolites between
astrocytes and neurons (100). However, aerobic metabolism
and ATP production declined while toxic ions and molecules,
such as Ca2+, glutamate, ROS, and NO, accumulated in
damaged neurons after ischemic stroke (124). These toxic
metabolites may be released by hemichannels and transmitted
from damaged neurons to healthy astrocytes via Cx43/Cx36
gap junctions, thus reducing the load of neurons and activating
astrocytes (125). The activated astrocytes could release pro-
inflammatory cytokines and chemokines (80), which could
in turn lead to changes in the neuronal functions that affect
behavior, mood, and cognitive abilities (126). Furthermore, pro-
inflammatory cytokines decreased the gap junctions between
astrocytes and increased the opening of neuronal Cx36 and
astrocytic Cx43 hemichannels, finally causing an increase in
the release of ATP, Glu, prostaglandins, and NO (127–129).
These molecules are toxic to adjacent cells, which may amplify
the inflammation and cause secondary damage to distant
cells, leading to tissue excitotoxicity and irreversible brain
damage (56, 130).

Functions of Astrocyte–Oligodendrocyte
Coupling
Studies have reported that the existence of astrocytic Cx43
is necessary for the functions of oligodendrocytes (71, 131).
The loss of astrocytic Cx43, which forms hemichannels and
gap junction channels on the astrocytic membrane, could
disrupt the Cx43/Cx47 gap junctions, which are harmful for
the transmission of ions and nutrients between astrocytes and
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oligodendrocytes (132). Studies have found that Cx43 displays
multiple metabolic and signaling roles in astrocytes, which can
affect oligodendrocytes independently of gap junctions (133).
Studies with astrocytic Cx43-deficient mice have revealed that
Cx47 was not stabilized and its amount was strongly decreased
because of internalization and degradation (131), which lead
to the diffusion of Cx47 away from the oligodendrocytic
cell membrane, aggravating the post-ischemic inflammatory
response and myelin loss of oligodendrocytes (134, 135).

Interaction of Astrocytes and Microglia
Although microglia express Cx36, Cx32, and Cx43 (26, 136),
gap junctions between microglia and astrocytes have not
been observed. In addition, extracellular ATP released from
astrocytes accounting for the opening of hemichannels after
ischemic stroke could activate the purine ionotropic receptors
on microglia (including P2X4R and P2Y12R), thereby promoting
the differentiation of microglia to the M1 subtype (56, 137).
Activated microglia could secret TNF-α and IL-1β, which could
further aggravate the inflammation (138). Activated microglia
could inhibit gap junction communication and downregulate
Cx43 expression in astrocytes through the release of TNF-α and
IL-1β by mix culturing of astrocytes and activated microglia
induced by lipopolysaccharides. Interestingly, Meme et al. found
in subsequent experiments that activated microglia treated
with lipopolysaccharides were four times more efficient than
untreated microglia in inhibiting gap junction communication
and Cx43 expression (139). We assume that the reason for
this diversity might be that TNF-α and IL-1β are mainly
secreted by activated, rather by untreated, microglia. More
importantly, TNF-α and IL-1β released by activated microglia
could increase astrocytic-hemichannel activity. The increased
hemichannels can continuously release ATP, further activating
the microglia (38, 128). Thus, abnormally opened astrocytic
hemichannels, secondary ATP release, and activated microglia-
mediated neuroinflammation may complement each other,
leading to a vicious cycle of continuously aggravating post-
ischemic tissue damage.

However, the interactions of astrocytes and microglia exert
neuroprotective effects under some pathological conditions such
as traumatic brain injury (TBI).Microglia in the injury core could
be activated after TBI and then release ATP and inflammatory
cytokines, and ensuing downregulation of the P2Y1 receptor
could then transform the astrocytes to a neuroprotective
phenotype (140). Then, reactive astrogliosis would occur in the
peri-injured region and accelerate neuroprotective astrocytic scar
formation, thus relieving inflammation (141).

Interaction of Astrocytes and Capillaries
The interaction between astrocytes and capillaries is quite
meaningful for the energy supply of neurons by astrocytic MCT4
and capillary GLUT. In addition, the lactate in capillaries could
also be transported to astrocytes by astrocytic Cx43 hemichannels
and capillary MCT1, and further delivered to neuronal axons,
inducing axonal degeneration (80, 82). Recent studies have
revealed that the opening of astrocytic Cx43 hemichannels could
increase after ischemic stroke, contributing to substantial lactate

diffusion to astrocytes and neuronal axons (93, 142). Studies have
also found that the overexpression of astrocytic MCT4 under
hypoxia provides more rapid transmission of glucose, facilitating
the energy supply of neurons (82). Furthermore, astrocytes were
considered to produce vasoactive factors in response to neuronal
activity by their hemichannels, causing rapid and localized
changes in cerebral blood flow after ischemic stroke (143, 144).
Thus, astrocytes may nourish neurons by controlling the glucose
and lactate availability through the regulation of blood flow (81).

THERAPIES AND APPLICATIONS

Nowadays, an increasing number of studies focus on the
significance of Cx43 for irreversible injury after ischemic stroke.
The influence of the expression and distribution of Cx43 and
the block of hemichannels might affect the outcomes of ischemic
stroke. Several astrocytic Cx43 targeted reagents or drugs have
been considered to be potential therapeutic in cerebral I/R
injury (145).

Leptin is a multifunctional hormone secreted by adipocytes
and could regulate food intake and energy metabolism (146).
Deng et al. found that leptin could also suppress the elevation
of Cx43 expression via the ERK/MAPK signaling pathway in
MCAO mice in vivo, further alleviating cerebral I/R injury. In
the same study, the authors also demonstrated that leptin could
inhibit Cx43 elevation in SY5Y and U87 cells, thus reducing
Glu release by inhibiting the function of Cx43 hemichannels
and decreasing cell death in in vitro OGD models (147).
Carbenoxolone (CBX) is another widely used hemichannel
blocker in diverse pathological processes in the brain. It has been
proven that CBX can inhibit the release of ATP, further inhibiting
or reversing the activation of microglia (148). The latest studies
have revealed that CBX can switch the differentiation of
activated microglia from M1 to M2, thus providing effective
neuroprotection after ischemic stroke (93, 149). Apart from
directly blocking hemichannels, a recent study revealed that CBX
may influence Cx43 hemichannels and gap junctions by indirect
mechanisms such as phosphorylation or internalization of Cx43
subunits (150).

Cx43 mimetic peptides, including Gap 19, Gap 26, Gap 27,
peptide 5, and L2 peptide, can also serve as Cx43 hemichannel
blockers, further reducing I/R injury (151, 152). In these Cx43
mimetic peptides, Gap26 and Gap27 were found to not only
inhibit the opening of hemichannels after ischemic stroke in
neonatal rats, but also to modulate gap junction communication
due to their poor specificity to Cx43 hemichannels at high
concentrations and/or following prolonged exposure (153, 154).
Indeed, Gap26 has also been confirmed to protect the heart of
rats against myocardial ischemic injury induced by ligation of
the left anterior descendent (LAD) by selective inhibition of
hemichannels at low concentrations of Gap26 (0.5µM) (155).
Gap27 could also reduce the myocardial infarct size in rat LAD
models (156). Interestingly, the function of peptide 5 was shown
to be concentration dependent; it could block hemichannels at
5µM, while blocking gap junctions at 500µM (157). The L2
sequence is located on the cytoplasmic loop of Cx43, and the
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Gap19 sequence is a nine amino acid stretch within the L2
domain (158). The L2 peptide can stabilize the open state of gap
junctions while blocking hemichannels (158). Slightly different
from the L2 peptide, Gap19 blocks hemichannels while not
influencing gap junctions on short exposure (30min) but slightly
inhibits them on longer exposures (24–48 h) (158). In addition,
studies with Gap19-treated mice after ischemic stroke induced
by MCAO found that Gap19 could attenuate the white matter
infarct volume by suppressing the expression of Cx43 and of
inflammatory cytokines (TNF-α and IL-1β) as well as inhibiting
Toll-like receptor 4 pathway activation; experiments with in
vitro OGD ischemic stroke models have also confirmed these
results (55). Furthermore, treating mouse MCAO models with
Gap19 also reduced the myocardial infarct size by blocking Cx43
hemichannels (159). More importantly, Gap19 appeared to be
more effective than Gap26/27 in reducing the myocardial infarct
volume after heart ischemia (160), possibly because Gap26/27 is
less selective to Cx43 gap junctions and hemichannels and it can
inhibit channels composed of Cxs other than Cx43 (161).

CONCLUSION

Astrocytes are the central cells in the neuron–glial syncytium,
which can combine parenchyma cells in the CNS into a whole
to rapidly and synchronously respond to stimuli by forming
Cx43/Cx43 gap junctions with other astrocytes, Cx43/Cx36
gap junctions with neurons, Cx43/Cx47 gap junctions with
oligodendrocytes, and indirect interactions with microglia.
This markedly large network ensures better between-cell
communication and increases tolerance to ischemia. The
gap junctions between astrocytes and other cells have an
important role in substance and metabolite exchange and cell
communication. In ischemic stroke, the phosphorylation of
astrocytic Cx43 might lead to the uncoupling of gap junctions
between astrocytes and other parenchymal cells, reducing the
direct communication between these cells. The subsequent
dephosphorylation of Cx43 on hemichannels activates the
opening of hemichannels, promoting the release of various
pro-inflammatory mediators and toxic molecules, such as
ATP and Glu. Meanwhile, astrocytic Cx43 could also become
S-Nitrosylated after ischemic stroke, increasing the numbers
and opening probability of hemichannels. However, the
change in astrocytic Cx43 expression and distribution remains
controversial and might depend on ischemia duration, region,
and severity. Besides, how ischemia induces change in astrocytic

Cx43 expression and distribution and the underlying mechanism
also need to be delineated.

The destruction of the neuro-glial syncytium structure
resulting from the uncoupling of corresponding gap junctions
might weaken the mutual support between astrocytes and
other cells, and the increase in hemichannel numbers caused
by the uncoupling of gap junctions and permeability caused
by the dephosphorylation of Cx43 might enhance and spread
neuroinflammation and aggravate injury after ischemic stroke.
Based on these theories, astrocytic Cx43 might be a potential
target for ischemic stroke treatment. However, Cx43 participates

both in the formation of gap junctions and of hemichannels. The
former is more likely to play a beneficial role, whereas the latter
is more likely to be deleterious in ischemic stroke; accordingly,
agents that simply target Cx43 might not have the expected
therapeutic effect. Therefore, it might be more meaningful
to explore agents that can specifically block hemichannels or
promote the maintenance of gap junctions. What is more
important is that the currently available research that has
focused on Cx43-associated agents was conducted using animal
and cell models; whether these agents act protectively in
patients with ischemia and their safety in the clinic require
further exploration.
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