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Canine Adipose-Derived Mesenchymal
Stromal Cells Enhance Neuroregeneration
in a Rat Model of Sciatic Nerve Crush Injury

Diego Noé Rodrı́guez Sánchez1,2 , Luiz Antonio de Lima Resende3,
Giovana Boff Araujo Pinto1,2, Ana Lı́via de Carvalho Bovolato2,
Fábio Sossai Possebon4 , Elenice Deffune2, and Rogério Martins Amorim1

Abstract
Crush injuries in peripheral nerves are frequent and induce long-term disability with motor and sensory deficits. Due to axonal
and myelin sheath disruptions, strategies for optimized axonal regeneration are needed. Multipotent mesenchymal stromal
cells (MSC) are promising because of their anti-inflammatory properties and secretion of neurotrophins. The present study
investigated the effect of canine adipose tissue MSC (Ad-MSC) transplantation in an experimental sciatic nerve crush injury.
Wistar rats were divided into three groups: sham (n ¼ 8); CrushþPBS (n ¼ 8); CrushþMSC (n ¼ 8). Measurements of sciatic
nerve functional index (SFI), muscle mass, and electromyography (EMG) were performed. Canine Ad-MSC showed meso-
dermal characteristics (CD34-, CD45-, CD44þ, CD90þ and CD105þ) and multipotentiality due to chondrogenic, adipo-
genic, and osteogenic differentiation. SFI during weeks 3 and 4 was significantly higher in the CrushþMSC group (p < 0.001).
During week 4, the EMG latency in the CrushþMSC groups had better near normality (p < 0.05). The EMG amplitude showed
results close to normality during week 4 in the CrushþMSC group (p < 0.04). There were no statistical differences in muscle
weight between the groups (p > 0.05), but there was a tendency toward weight gain in the CrushþMSC groups. Better motor
functional recovery after crush and perineural canine Ad-MSC transplantation was observed during week 2. This was
maintained till week 4. In conclusion, the canine Ad-MSC transplantation showed early pro-regenerative effects between 2–4
weeks in the rat model of sciatic nerve crush injury.
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Introduction

Multipotent mesenchymal stromal cells derived from adi-

pose tissue (Ad-MSC) have potential for use in translational

medicine because they can be easily harvested with low

morbidity and have high self-renovation capacity1–3. Several

in vivo and in vitro studies have demonstrated the ability of

Ad-MSC to repair the nervous system through substitution and

fusion with myelinating cells, resulting in re-myelination;

production of neurotrophins, which provides axonal protec-

tion; and production of anti-inflammatory cytokines, which

decreases inflammatory reaction and supports axonal

growth1,4,5. Other mechanisms of action include immuno-

modulation, homing capacity, limitation of apoptosis, and

angiogenesis promotion4–9. The therapeutic effectiveness

of allogeneic Ad-MSC transplantation has generated
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fundamental interest10. Research on MSC in several animal

models is crucial and may contribute to clarifying the effect,

relocation, permanency, and functionality of cells in a non-

self-environment11,12.

Traumatic lesions of peripheral nerves lead to long-term

disability, with motor and sensory deficits of the affected

region, neuropathic pain, and reduction in quality of life13,14.

Sciatic nerve and brachial plexus injuries are common in

dogs14. Compression, stretching or traction, laceration,

crushing and local injections of drugs are the most common

etiologies of nerve injuries in dogs14,15. Kouyoumdjian16

reviewed 456 patients with peripheral nerve injury. Vehicle

accidents affecting the brachial plexus or radial, sciatic,

facial, and peroneal nerves were the most common. Neu-

rotmesis occurred in 41% of cases, while axonotmesis

occurred in 45% of cases. Vehicle accidents resulted in inju-

ries to the upper limb nerves in 75.3% of cases16.

The peripheral nervous system (PNS) shows intrinsic

regeneration post-trauma. However, functional recovery

fails in severe injuries, leading to axon degeneration and

subsequently Wallerian degeneration and loss of muscle

innervation17–19. Schwann cells in the distal stump maintain

their regenerative phenotype. However, diffuse axonal

impairment and myelin sheath disruptions, lesion of the

proximal nerve, chronic insult, and motor neuron damage

impede recovery20,21. There are ethical restrictions regarding

the induction of injuries in companion animals; thus, animal

models are crucial for peripheral nerve research. The sciatic

nerve crush in rats (axonotmesis) causes myelin and axon

disruption, and is widely used to investigate functional

achievement and organ re-innervation2,22.

Our hypothesis is that canine Ad-MSC transplantation in

rat sciatic nerve injuries stimulates neuroregeneration. In this

context, the aim of this study was to evaluate the regenera-

tive effects of Ad-MSC local transplantation in experimental

sciatic nerve injury in rats.

Material and Methods

Experimental Design

Ninety-day-old Wistar rats (n ¼ 24) (from central bioterium

of the São Paulo State University, Brazil) weighing between

200 and 300 g were subjected to axonotmesis. They were

maintained in controlled conditions (12/12 light: dark cycle,

at a room temperature between 20 and 22�C) with ad libitum

access to food and water. This study was approved by the

committee for experimental ethics in animal use (CEUA/

FMB/UNESP protocol PE-2/2015).

The rats were randomly assigned to three groups. The

Sham group (n ¼ 8) was subjected only to approach of the

sciatic nerve. The CrushþPBS group (n ¼ 8) was subjected

to crush lesion followed by perineural application of

phosphate-buffered saline (PBS). The CrushþMSC group

(n ¼ 8) was subjected to crush lesion followed by perineural

transplantation of canine Ad-MSC.

Evaluations were performed by electromyography

(EMG) at pre-treatment (week 0) and 4 weeks post-

treatment. The sciatic nerve functional index (SFI) was mea-

sured pre- (week 0) and post-treatment during weeks 1, 2, 3,

and 4. During week 4, muscle mass measurement was per-

formed on the tibial cranial and gastrocnemius muscles.

Isolation, Culture, and Characterization of Canine
Ad-MSC

Inguinal subcutaneous fat segments were harvested from the

inguinal area from each dog under inhalation anesthesia.

These segments were finely cut with scissors, digested with

collagenase type 1 (0.04%) (Sigma-Aldrich, St. Louis, MO,

USA), and shaken for 60 min at 37�C. The cells were seeded

in T-75 cell culture flasks with 15 ml of culture medium

containing 90% Dulbecco’s Modified Eagle Medium

(DMEM) high glucose, 10% fetal bovine serum (FBS), 1%
penicillin/streptomycin (10,000 U/mL), and 1.2% amphoter-

icin B (3 mg/mL) (all from Invitrogen, São Paulo, Brazil) and

0.005% amikacin (250 mg/mL) (Novafarma, Anapolis, Bra-

zil). The culture flasks were incubated at 37�C in a humidified

chamber containing 5% CO2 and 95% oxygen. The medium

was changed twice weekly. When cells reached 80% conflu-

ence within 2–3 weeks, they were harvested using trypsin

(trypsin, 0.25%, Invitrogen, São Paulo, Brazil) and cryopre-

served in liquid nitrogen. Cryopreserved cell stock was used

for characterization in vitro and transplantation.

The canine Ad-MSC was characterized by plastic adher-

ence, colony formation, and fibroblast morphology 14–21

days after start of culture. Furthermore, the Ad-MSC showed

tri-lineage differentiation potential (the ability to differenti-

ate into chondrocytes, adipocytes, and osteocytes) and

expression of surface markers including CD34-, CD45-,

CD44þ, CD90þ, and CD105þ by flow cytometry. These

features support the mesodermal fate of these cells.

Cell viability was evaluated using the trypan blue (0.4%)

exclusion method. Viable cells were determined according

to the formula: Viability (%) ¼ cells unstained (viable) �
100/total cells (stainedþunstained). The viability of the

transplanted canine MSC was between 70% and 80%.

MSC Transplantation

Rats were anesthetized using isoflurane (Isoforine®, Cristá-

lia, Brazil). The surgical posterior approach to the left sciatic

nerve through the gluteal muscle was performed using

microsurgery instruments. The axonotmesis injury (crush)

was performed using a hemostatic forceps for 60 s in the

CrushþPBS and CrushþMSC groups as previously

described23,24. The observation of translucent nerve bands

confirmed the crush lesion. In the CrushþMSC group,

perineural transplantation of 106 cells in suspension was

performed using the Hamilton microsyringe. In the

CrushþPBS group 10 ml of PBS buffer solution was applied

by perineural injection.
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Sciatic Nerve Functional Index

This test was performed in weeks 1, 2, 3 and 4 in the Sham,

CrushþPBS, and CrushþMSC groups. Footprints of the

hind limbs were taken for walking track analysis. Several

measurements were obtained from the footprints to obtain

the SFI. They include (i) distance from the heel to the third

toe, the print length (PL); (ii) distance from the first to the

fifth toe, the toe spread (TS); and (iii) distance from the

second to the fourth toe, the intermediary toe spread (ITS).

These parameters were measured for both normal (N) and

experimental (E) feet. The SFI were analyzed using the fol-

lowing equation: -38.3 ([EPL-NPL]/NPL) þ109.5 ([ETS-

NTS]/NTS) þ13.3 ([EIT-NIT]/NIT) - 8.8. An SFI value of

-100 indicates total crush or transection of the sciatic nerve,

while an SFI value of 0 means intact sciatic nerve25.

Electrophysiological Test

The latency (m/s) and amplitude (mV) were measured

using EMG in the Sham, CrushþPBS, and CrushþMSC

groups before experimental injury of the sciatic nerve and

4 weeks after the injury. A bipolar stimulation electrode

was positioned in the proximal stump of the sciatic nerve.

The active surface electrode (black) and a reference elec-

trode (red) were placed in the belly of the tibial cranial

muscle and near its insertion point, respectively. A dis-

persive electrode (green) was placed in the ventral

abdominal region. A Sapphire II 4ME instrument (Teca

Medelec, USA) was used; the intensity ranges for stimu-

lation and the filter were 10–20 mA and 20–2,000 Hz,

respectively.

Muscle Atrophy

The tibial cranial and gastrocnemius muscles of the left

(atrophied) and right (normal) hind limbs were collected

4 weeks later to compare muscle weight among Sham,

CrushþPBS, and CrushþMSC groups. To do this, the

animals were humanely euthanized at the end of the

experiment.

Statistical Analysis

The variables (amplitude, latency, SFI, and muscle mass)

were evaluated for their normality with statistical tests

(Shapiro–Wilk) and graphical analyses. An analysis of

variance test followed by Tukey’s test was performed to

verify the difference in means of the variables between

each group and moment of the experiment. All analyses

were performed using the Statistical Analysis Software –

SAS version 9.3 (SAS Institute, 2011). Non-repeated and

unpaired measures were analyzed with the Mann–Whit-

ney test (GraphPad Prism version 5.01 for Windows,

San Diego, CA, USA). Statistical significance was set

at p < 0.05.

Results

Sciatic Nerve Functional Index

Significant differences were observed after 3 and 4 weeks

between the CrushþMSC (SFI; –31.15 during week 3 and

–19.42 during week 4) and CrushþPBS groups (SFI; –62.91

during week 3 and –50.85 during week 4) (p < 0.001), as

shown in Fig 1. The CrushþMSC group showed mean val-

ues close to normal.

A significant difference was observed within the

CrushþMSC group after 2 and 4 weeks, with values of

–50.19 after 2 weeks and –19.42 after 4 weeks (p < 0.01),

as shown in Fig 1. No significant difference was observed

within the CrushþPBS group after 2 and 4 weeks, with values

of 61.12 after 2 weeks and –50.85 after 4 weeks (p > 0.05).

Electromyography

Latency. The mean latency of the CrushþMSC group did not

show any significant difference between week 0 (pre-treatment;

1.54 m/s) and week 4 (post-treatment; 2.23 m/s) (p > 0.05). The

mean latency values of the CrushþPBS group were not signif-

icantly different between weeks 0 (1.74 m/s) and 4 (2.16 m/s) (p

> 0.05), as shown in Fig 2. These results show that the latency of

both groups was higher than the normal values.

No significant differences in latency were observed

among the Sham, CrushþMSC, and CrushþPBS groups (p

> 0.05) after week 4 with values of 1.59, 2.23, and 2.16 m/s,

respectively, as shown in Fig 2.

Amplitude. Significant differences were observed in the

mean amplitude during week 4 between the Sham (23.75

mV) and CrushþPBS (10.04 mV) groups (p < 0.05). How-

ever, there were no significant differences between the

Sham (23.75 mV) and CrushþMSC (17.26 mV) groups,

as shown in Fig 3. These findings show better amplitude

results close to normal in the CrushþMSC group.

Fig 1. Sciatic nerve functional index (SFI). The test was performed
during 4 weeks in the CrushþPBS and CrushþMSC groups, after
Ad-MSC transplantation. *Difference between groups (p < 0.05).
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Significant positive differences in amplitude were

observed among the CrushþMSC and CrushþPBS groups

(p < 0.001) during week 4 with values 17.26 and 10.04 mV,

respectively, as shown in Fig 3. This suggests the presence of

more myelinated fibers innervating the muscle in the

CrushþMSC group.

Weight of the tibial cranial and gastrocnemius muscles. The

weight of both tibial cranial and gastrocnemius muscles in

the right limb during week 4 was significantly different

among all experimental groups (p < 0.001), as shown in

Table 1. There were no differences in weights of both gastro-

cnemius (p ¼ 0.139) and tibial cranial (p ¼ 0.075) muscles

among the groups. However, there was a tendency toward

an increase in muscle mass in the CrushþMSC group.

Discussion

Promoting a permissive microenvironment for neuroregen-

eration after peripheral nerve injury is crucial2,20. The align-

ment and organization of nerve fibers and neurotrophins play

an important role in nerve regeneration8,26. However,

cellular components are indispensable for optimized nerve

regeneration27,28. Cell transplantation has therefore become

a challenging field of interest. Local implantation after

nerve repair with guiding tubes for neural stem cells or

bone marrow and adipose tissue mesenchymal stem cells

has been shown to improve peripheral nerve regeneration in

neurotmesis injury12,28–30. Transplantation of Schwann

cells has shown beneficial effects. Despite the results, there

are limitations owing to limited availability and expensive

culture21,31.

To overcome this difficulty, MSC transplantation has

been an area of active research owing to high self-renewal,

growth capacity, and ease of acquisition and culture1,32. Evi-

dence suggests that MSC confer beneficial effects on periph-

eral nerve regeneration in several animal models12,24,33–38.

Neuroprotective effects were demonstrated using human

MSC in rats27,39. However, to date, only few studies have

evaluated the clinical and electrophysiological effects of

canine Ad-MSC on experimental sciatic nerve injury in rats.

The SFI gait analysis is a well-established method for

assessing motor recovery and performance in hind limbs in

rats after experimental sciatic nerve injury25,40,41. In our

study, there was better gait recovery in the CrushþMSC

group treated with canine Ad-MSC after axonotmesis lesion

compared with the non-treated group (CrushþPBS). It was

observed that the perineural transplantation of canine Ad-

MSC 2 weeks after axonotmesis accelerated motor func-

tional recovery. The SFI analysis indicated that Ad-MSC

contributed to significant early improvement 2 weeks after

perineural transplantation and this was maintained until the

end of the experiment (week 4). These observations were

consistent with the positive results obtained in the EMG

latency and amplitude.

Electrophysiological analysis was used to determine the

motor functional recovery of myelinated axons. The group

treated with canine Ad-MSC (CrushþMSC) showed better

electrophysiological results in latency and amplitude com-

pared with the non-treated group (CrushþPBS). The results

indicate greater axonal sprouting and presence of myelinated

fibers, which are responsible for the electrophysiological

response and neuromuscular transmission. Our study

demonstrates that the latency and amplitude in CrushþMSC

groups were close to normal values. However, the recovery

was incomplete. These findings are reinforced by the posi-

tive results obtained in the SFI analysis. Our results are

similar to those of other studies36,38,42,43.

Although there was a tendency toward recovery of muscle

mass in the CrushþMSC group, a significant difference was

not observed. Muscular homeostasis and the regenerative

capacity of muscles depend on electrophysiological and bio-

chemical communication between nerves and muscles2,20,41.

In clinical settings, denervation at the proximal segment of

the nerve leads to rapid muscle mass loss13–15. Accelerated

restoration of the nerve function to prevent muscle atrophy is

essential19,21. The absence of complete muscle recovery

Fig 2. Electromyographic latency. The test was performed in the
Sham, CrushþPBS, and CrushþMSC groups before experimental
injury of the sciatic nerve and 4 weeks after the injury. *Difference
between groups (p < 0.05).

Fig 3. Electromyographic amplitude. The test was performed in the
Sham, CrushþPBS, and CrushþMSC groups before experimental
injury of the sciatic nerve and 4 weeks after the injury. *Difference
between groups (p < 0.05).
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might be justified by insufficient time necessary for the

regeneration of the muscle, long distance from the site of

nerve injury to the muscle, and possible decreases in the

receptivity of regenerated axons in the muscle2,19,21,41.

From the results of our study, the positive effects of local

perineural transplantation of canine Ad-MSC may be

related to the high concentration of pro-regenerative mole-

cules in the microenvironment of the lesion44. Importantly,

intracytoplasmic vesicles in the MSC seem to have para-

crine regenerative effects because they contain neuro-

trophic and proangiogenic factors9,45. The most important

factors include the nerve growth factor, brain-derived neu-

rotrophic factor (BDNF), neurotrophin-3/4 (NT-3/4), vas-

cular endothelial growth factor, basic fibroblast growth

factor, insulin-like growth factor, and glial-derived neuro-

trophic factor9,44–46. Neurotrophins can stimulate axon

growth, preventing apoptosis and stimulating cell prolifera-

tion and regeneration by several pathways of axon growth

promoters47,48. Studies have shown high expression of

BDNF after MSC transplantation in the first 4–8 weeks

after experimental lesion of the sciatic nerve. The effects

were related to the production of neurotrophins38,45,49. In

addition, MSC transplantation can promote cell replace-

ment, angiogenic capacity, immunomodulatory and anti-

inflammatory effects, migration, and survival in damaged

tissues1,32,35,50,51.

The distal environment of the damaged nerve and

Schwann cells play an important role in axonal sprouting,

formation of Büngner bands, and guidance of regenerating

axons. The conduction of action potentials depends on the

proliferation of Schwann cells and myelin production19,20. In

our study, we observed significant motor functional

improvement in nerve conduction owing to a high number

of myelinated axons, determined by the EMG latency and

amplitude. Possible differentiation of MSC into Schwann-

like cells or the increase in intrinsic Schwann cell prolif-

eration mediated by neurotrophins can explain these

observations5,8,52–55. Greater expression of the S-100

Schwann cell marker was observed in rats treated with

allogeneic and xenogeneic Ad-MSC after peripheral nerve

injury compared with the control group30,42,56. Other in vivo

studies have demonstrated the co-expression of S-100, the

receptor specific for the BDNF, and NT-3,4,5 neurotrophins

following experimental axonotmesis and neurotmesis in the

sciatic nerve in rats after MSC transplantation42,49.

Canine MSC perineural transplantation promotes motor

functional and electrophysiological recovery in axonotmesis

injury. Canine MSC perineural transplantation is easy and

results in a higher concentration of cells at the lesion site.

However, the fact that the perineural cells are preserved in

this model can positively influence the regeneration process

maintaining the guiding structure for the growth of axons

and Schwann cells57,58. Spontaneous functional recovery in

experimental murine axonotmesis was observed between 7

and 9 weeks59. Our results demonstrated motor functional

and electrophysiological recovery in a short period (3 weeks)

after canine Ad-MSC perineural transplantation, reinforcing

the cell-mediated effect at the lesion site after experimental

axonotmesis. Our study suggests that the canine cells were

effective and presented adaptive capacity in the inflamma-

tory environment facilitating regeneration.

Lastly, canine Ad-MSC presents a relevant therapeutic

potential in the acute axonal injury model, representing a

valuable tool for the treatment of PNS traumatic, inflamma-

tory, or degenerative diseases in animals. A limitation of the

study is the short time for evaluating recovery (4 weeks)

necessary to reach maximum neuroregeneration. We believe

that functional evaluation is important in nerve regeneration

studies, since morphological recovery does not often reach

maximum values between 3 and 6 months60.

Conclusion

Canine Ad-MSC promoted electrophysiological and motor

recovery in the rat sciatic nerve 3 weeks after crush injury.

Future studies are needed to evaluate the therapeutic poten-

tial of canine MSC in the regeneration of peripheral nerves

through clinical trials in dogs.
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