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Abstract 
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality worldwide. Regulatory T cells (Tregs) are 
a key constituent of immune cells in the tumor microenvironment (TME) and are significantly associated with patient outcomes. 
Our study aimed to construct a Treg-associated signature to predict the prognosis of CRC patients. The genes’ expression 
values and patients’ clinicopathological features were downloaded from TCGA and gene expression omnibus (GEO) databases. 
The single-cell RNA (scRNA) sequencing data of CRC were analyzed through the Deeply Integrated human Single-Cell Omics 
database. WGCNA analysis was used to select Tregs-associated genes (TrAGs). The infiltrated levels of immune and stromal 
cells were accessed through the ESTIMATE algorithm. Cox regression analysis and the LASSO algorithm were implemented to 
construct prognostic models. Gene set enrichment analysis (GSEA) was performed to annotate enriched gene sets. Based on 
scRNA sequencing data, our study uncovered that more Tregs were significantly enriched in the TME of CRC. Then we identified 
123 differentially expressed TrAGs which mainly participated in immune regulation. Given that CRC patients were reclassified into 
2 subgroups with distinct overall survival based on 26 differentially expressed TrAGs with prognostic values, we subsequently 
constructed a signature for CRC. After training and validating in independent cohorts, we proved that this prognostic model can 
be well applied to predict the prognosis of CRC patients. Further analysis exhibited that more tumor-suppressing immune cells 
and higher immune checkpoint genes were enriched in CRC patients with high-risk scores. Moreover, immunohistochemistry 
analysis validated that the genes in the prognostic model were significantly elevated in CRC tissues. We were the first to construct 
a prognostic signature for CRC based on TrAGs and further revealed that the poor prognosis of patients was mainly attributed to 
the tumor-suppressing microenvironment and upregulated immune checkpoint genes in tumor tissues.
Abbreviations: ANTs = adjacent normal tissues, CRC = colorectal cancer, GEO = gene expression omnibus, GSEA = gene 
set enrichment analysis, LASSO = least absolute shrinkage and selection operator, ROC = receiver operating characteristic, 
scRNA = single-cell RNA, TME = tumor microenvironment, TrAGs = Tregs-associated genes, Tregs = regulatory T cells, WGCNA 
= weighted gene co-expression network analysis.

Keywords: colorectal cancer, GEO, prognosis, scRNA sequencing, TCGA, Tregs

1. Introduction

Colorectal cancer (CRC) ranks as the second leading cause of 
cancer-related death worldwide.[1,2] Despite advances in thera-
peutic methods, most CRC patients still suffer from unfavorable 
prognoses.[3,4] Therefore, novel therapeutic strategies are urgently 
needed to improve the clinical outcomes of CRC patients.

Tumor cells live in a complex microenvironment that consists 
of multiple types of cells, such as immune cells.[5] Foxp3 + regula-
tory T cells (Tregs) are a key constituent of the immune cells in the 
tumor microenvironment (TME) and are significantly associated 

with patients’ prognoses.[6] In normal conditions, Tregs main-
tain the immunologic self-tolerance and immune homeostasis by 
suppressing aberrant as well as excessive immune responses.[7] 
However, cancer cells often recruited Tregs in high frequencies 
to construct a suppressing TME through their antitumor immu-
nity ability.[8] With the development of single-cell RNA (scRNA) 
sequencing technology, it has been proved that immune cells are 
a highly heterogeneous population of cells and the communica-
tions between them are active.[9] For instance, tumor-infiltrating 
Tregs generally express higher levels of immune checkpoint genes, 
such as CTLA-4 and PD-1, to inhibit CD8 + T cell activation.[10] 
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Given the close association between patients’ outcomes and 
Tregs, we aimed to construct a Tregs-associated signature to pre-
dict the prognosis of CRC patients.

In the present study, we uncovered that more Tregs infiltrated 
CRC tissues through scRNA sequencing analysis and that CRC 
patients can be reclassified into 2 subgroups with distinct over-
all survival based on Tregs-associated genes. Moreover, we estab-
lished a prognostic signature for CRC and revealed that there were 
more tumor-suppressing immune cells and higher immune check-
point genes in tumor tissues of CRC patients with high-risk scores.

2. Material and methods

2.1. The collection of data

The genes’ expression and patients’ clinicopathological infor-
mation were collected from The Cancer Genome Atlas (TCGA, 
https://xenabrowser.net/datapages/) CRC cohort as well as Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 
database. The “limma” R package was used to normalize genes’ 
expression values and calculate their fold changes. The scRNA 
sequencing data of CRC were analyzed in the Deeply Integrated 
human Single-Cell Omics database (https://www.immunesin-
glecell.org). The immunohistochemistry analysis of genes was 
detected through immunohistochemistry based on The Human 
Protein Atlas database (https://www.proteinatlas.org/).

2.2. WGCA analysis

The weighted gene co-expression network analysis (WGCNA) 
was conducted by using the R package “WGCNA.” According 
to Pearson’s correlation values, each gene was reclarified into 

a similarity matrix and was subsequently transformed into 
an adjacency matrix. The adjacency matrix was calculated by 
amn = |cmn| β among which the cmn and amn mean Pearson’s 
correlation between paired genes and adjacency between paired 
genes, respectively. Parameter β was aimed to improve the cor-
relation between different genes and when the power of β = 5, a 
topological overlap matrix was generated. To classify genes with 
similar expression patterns into distinct modules, a dynamic 
hybrid cutting method was applied by using a bottom-up algo-
rithm whose module minimum size cutoff is 10.

2.3. The prognosis analysis of genes

The prognostic genes and clinicopathological features were 
selected through univariate and multivariate Cox regression 
analyses. The survival differences between the 2 groups were 
calculated through Kaplan–Meier curves with a log-rank test. 
The prognostic signature was constructed through the least 
absolute shrinkage and selection operator (LASSO) regression 
algorithm based on the “lasso” R package.

2.4. The function enrichment analysis of genes

The functional enrichment analysis, including Gene Ontology 
and Kyoto Encyclopedia of Genes and Genomes, were carried 
out in the DAVID database (https://david.ncifcrf.gov), and the 
results were visualized by the “ggplot2” R package. Gene Set 
Enrichment Analysis (GSEA) which is often used to determine 
significantly correlated gene sets was performed based on the 
MSigDB database (http://www.gsea-msigdb.org/gsea/msigdb/
index.jsp). The number of permutations was set to 1000, and 
the permutation type was set to phenotype.

Figure 1.  Analysis of the infiltration level of Tregs in CRC tissues through scRNA sequencing. (A) The identified immune cells in CRC tissues and ANTs. (B) The 
infiltration levels of various immune cells in CRC tissues and ANTs. (C) The hallmark genes of Tregs. *P < .05; **P < .01. ANTs = adjacent normal tissues, CRC 
= colorectal cancer, Tregs = regulatory T cells.

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immunesinglecell.org
https://www.immunesinglecell.org
https://www.proteinatlas.org/
https://david.ncifcrf.gov
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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2.5. Analysis of immune and stromal cells infiltration

The ESTIMATE algorithm was implemented to assess the infil-
tration levels of immune cells and stromal cells according to 
cell-specific marker genes. The infiltration analysis was per-
formed by using the TIMER2 (http://timer.cistrome.org).

2.6. Statistical analysis

Statistical analysis was carried out using SPSS version 20.0 and 
GraphPad Prism Software 8.0. The student t test was used to 
compare the difference between the 2 groups. The Kaplan–
Meier curves with a log-rank test and univariate Cox regression 
model were used to determine the survival difference. A P value 
of <.05 was considered significant.

3. Results

3.1. The upregulated infiltration level of tregs in CRC 
tissues

To explore the infiltrated levels of immune cells in CRC tissues 
and adjacent normal tissues (ANTs), we first conducted scRNA 

sequencing and revealed 19 types of immune cells (Fig.  1A). 
Subsequently, we found more Tregs infiltrated CRC tissues com-
pared to ANTs (Fig. 1B). As expected, the specific markers of 
Tregs, including FOXP3, IL2RA, TIGIT, and CD3D, were sig-
nificantly upregulated in identified Tregs when compared to 
other cell lines (Fig. 1C).

3.2. Identification and analysis of tregs-associated genes 
in CRC

The TCGA CRC cohort was applied to establish a co-expression 
network through the “WGCNA” analysis to identify genes asso-
ciated with Tregs infiltration. First, β = 4 (scale-free R2 = 0.89) 
was identified as the soft-thresholding power to construct the 
scale-free network (Fig. 2A). Then a hierarchical clustering tree 
was built by using dynamic hybrid cutting among which each 
branch represents genes with similar expression and each leaf 
was a single gene (Fig. 2B). Finally, 15 modules were constructed, 
among which the turquoise module was most correlated with 
Tregs (R2 = 0.5, P < .001) (Fig. 2C). Therefore, these genes in 
the turquoise module were identified as Tregs-associated genes 
(TrAGs). Subsequently, we identified 3143 upregulated genes in 

Figure 2.  Identification and analysis of differentially expressed TrAGs in CRC. (A) The scale-free fit index of the soft threshold power. (B) Classify genes into different 
modules through hierarchical clustering. (C) Heatmap of the correlation of module eigengenes with Tregs infiltration level. (D) Heatmap of the significantly upregulated 
genes in CRC. (E) Overlapping upregulated genes and TrAGs in CRC. (F) Biological process analysis of upregulated TrAGs in CRC. (G) KEGG analysis of upregulated 
TrAGs in CRC. CRC = colorectal cancer, KEGG = Kyoto encyclopedia of genes and genomes, TrAGs = Tregs-associated genes, Tregs = regulatory T cells.

http://timer.cistrome.org
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CRC (Fig. 2D) and overlapped them with TrAGs, and selected 
123 significantly elevated TrAGs (Fig. 2E). Biological process 
analysis showed that these elevated TrAGs were mainly asso-
ciated with inflammatory response, angiogenesis, and immune 

response (Fig. 2F). Kyoto Encyclopedia of Genes and Genomes 
analysis showed that these genes mainly participated in sev-
eral pathways in cancer, such as PI3K-AKT, Rap1, MAPK, Ras, 
JAK-STAT, and TNF signaling pathways (Fig. 2G).

Figure 3.  Dividing CRC patients into 2 novel clusters based on prognostic TrAGs. (A) Overlapping upregulated genes, TrAGs, and prognostic genes in CRC. 
(B) The forest plots of elevated prognostic TrAGs calculated by univariate Cox analysis. (C) The optimal number of clusters according to the consensus index. 
(D) The subclusters of CRC patients divided by consensus clustering analysis. (E) The Kaplan–Meier curves of CRC patients in cluster 1 and cluster 2. CRC = 
colorectal cancer, TrAGs = Tregs-associated genes.
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3.3. Reclassifying CRC patients into 2 novel subgroups 
with distinct prognosis

To explore whether these TrAGs could reclassify CRC patients 
into novel clusters, we first identified 535 prognostic genes in 
CRC, overlapped them with differentially expressed TrAGs and 
selected 26 significantly elevated TrAGs with prognostic values 
(Fig. 3A and B). Then a consensus clustering analysis was imple-
mented based on the “Consensus ClusterPlus” R package, and 
the lowest proportion of ambiguous clustering was identified as 
2 (Fig. 3C). Based on the unsupervised clustering, CRC patients 
were eventually reclassified into 2 novel subgroups (Fig.  3D). 
The Kaplan–Meier curves exhibited that CRC patients in cluster 
2 suffered worse overall survival than in cluster 1 (Fig. 3E).

3.4. Constructing a Tregs-associated prognostic signature 
for CRC patients

Considering that Tregs are significantly associated with the 
prognosis of patients, we intended to construct a signature for 
CRC based on the above 26 upregulated TrAGs with prognos-
tic values. As shown in Figure 4A, after these genes were sub-
jected to LASSO regression analysis, 7 (PGF, ADAM8, RGS16, 
TIMP1, SIX4, SLC39A13, and ELFN1) were selected to con-
struct the prognostic model. The risk score was calculated by 
using the following formula: (PGF × 0.014) + (ADAM8 × 0.02
1) + (RGS16 × 0.027) + (TIMP1 × 0.057) + (SIX4 × 0.085) + (S
LC39A13 × 0.21) + (ELFN × 0.27) (Fig.  4B). According to the 
median value of risk scores, CRC patients were reclassified into 
low- and high-risk score subgroups. The Kaplan–Meier curves 
analysis showed that the CRC patients in the high-risk score 
group underwent worse overall survival than that in the low-
risk score group (Fig. 4C). The time-dependent receiver operat-
ing characteristic (ROC) analysis exhibited that the area under 
the ROC curve was 0.72, 0.70, and 0.75 for 1-, 3-, and 5-year 
survival (Fig. 4D). In addition, univariate and multivariate Cox 

regression analysis determined that the risk score was an inde-
pendent prognostic factor for CRC patients (Fig. 4E and F).

3.5. Validating the utility of prognostic signature by an 
independent GEO dataset

To validate the utility of our prognostic signature, an indepen-
dent GEO dataset (GSE17536) was used.[11] After calculating the 
risk scores, 79 and 98 CRC patients were reclassified into low-
risk and high-risk subgroups, respectively (Fig. 5A). As expected, 
CRC patients with high-risk scores underwent more deaths than 
those with low-risk scores (Fig.  5A). The KM curves analysis 
showed that the CRC patients with high-risk scores underwent 
worse overall survival than those with low-risk scores (Fig. 5B). 
The time-dependent ROC analysis showed that the area under 
the curve was 0.71, 0.67, and 0.73 for 1-, 3-, and 5-year survival 
(Fig. 5C). Besides, univariate and multivariate Cox regression 
analysis validated that the risk score was an independent prog-
nostic factor for CRC patients (Fig. 5D and E). Taken together, 
the results proved that our prognostic model can be well applied 
to predict the overall survival of CRC patients.

3.6. The different tumor immune microenvironments 
between CRC patients in the high-risk score group and the 
low-risk score group

Subsequently, GSEA analysis was implemented to explore 
the difference between CRC patients in the high-risk 
and low-risk score groups. Intriguingly, immune-asso-
ciated gene sets, such as HALLMARK_IL2_STAT5_
SIGNALING, HALLMARK_INFLAMMATION_RESPONSE, 
HALLMARK_INTERFERON_ALPHA_RESPONSE, HALLMARK_TNFA_
SIGNALING_VIA_NFKB, HALLMARK_COMPLEMENT, 
HALLMARK_INTERFERON_GAMMA_R ESPONS 

Figure 4.  Constructing a prognostic signature for CRC based on elevated prognostic TrAGs. (A) The coefficient profile plot was generated against the log 
(lambda) sequence. (B) The coefficiency of genes in the LASSO Cox regression model. (C) The Kaplan–Meier curves of CRC patients with high- or low-risk 
scores. (D) Time-dependent ROC analysis of the prognostic signature. (E) Univariate Cox regression and (F) multivariate Cox regression analysis of CRC patients’ 
risk score and other clinicopathological characteristics. CRC = colorectal cancer, LASSO = least absolute shrinkage and selection operator, ROC = receiver 
operating characteristic, TrAGs = Tregs-associated genes.
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HALLMARK_IL6_JAK_STAT3_SIGNALING, HALLMARK_
ALLOGRAFT REJECTION, and HALLMARK_
INFLAMMATORY_RESPONSE, were positively enriched in 
the low-risk score group (Fig. 6A). Then we further analyzed 
the infiltrated stroma and immune cell levels between 2 risk 
score groups through 3 algorithms (QUANTISEQ, XCELL, and 
CIBERSORT-ABS). As shown in Figure 6B to D, the infiltered 
levels of Tregs, cancer-associated fibroblasts, tumor-associated 
macrophages, and eosinophils were significantly upregulated in 
the TME of CRC patients with high-risk scores. On contrary, 
the infiltered levels of CD4 + T cell and CD8 + T cell were signifi-
cantly downregulated in the TME of CRC patients with low-
risk scores. In addition, most immune checkpoint genes, such as 
LAG3, PD-L1, and NRP1, were significantly upregulated in the 
high-risk group compared with the low-risk group (Fig. 6E).

3.7. Validating the expression of genes in the prognostic 
signature

To validate the expression of genes in the prognostic signature 
in CRC, the GSE9438 dataset was enrolled,[12] and the result 
showed that these 7 genes were significantly upregulated in CRC 
tissues compared to normal tissues (Fig. 7A). Moreover, the pro-
tein levels of SIX4, RGS16, SLC39A13, TIMP11, and ADAM8 
were analyzed through immunohistochemistry. As shown in 
Figure 7B to F, the protein levels of SIX4, RGS16, SLC39A13, 
TIMP11, and ADAM8 were significantly elevated in CRC tissues.

4. Discussion
Tregs are part of the CD4 + T cell population and are generally identi-
fied by a combination of surface markers together with the transcrip-
tion factor FOXP3.[13] The interaction between Tregs and cancer cells 
has been widely reported.[14] For example, CRC could educate γδ 
T cells into Tregs to promote tumor progression and metastasis.[15] 
Although mounting evidence revealed that the level of tumor-infil-
trating Tregs was negatively correlated with patients’ survival, some 

studies reported that increased Tregs were associated with improved 
prognosis in specific tumors.[16,17] Salama et al demonstrated that 
FOXP3 + Treg density was higher in CRC tissue compared to the 
normal colonic mucosa, and intra-tumoral FOXP3 + Tregs show 
strong prognostic significance in CRC.[18] Based on scRNA sequenc-
ing data, we consistently validated that more Tregs infiltrated the 
TME of CRC tissues compared to that of adjacent normal tissues. 
However, there was no report about Treg-associated gene signatures 
to determine the prognosis of CRC patients. In the present study, we 
were the first to construct a prognostic signature for CRC based on 
TrAGs. Furthermore, we proved that our prognostic model can be 
well applied to predict the clinical outcomes of CRC patients after 
training and validating in 2 independent cohorts.

Intriguingly, we uncovered that the poor prognosis of CRC 
patients with high-risk scores was partly attributed to the 
immune-suppressing microenvironment, because of the signifi-
cantly upregulated anti-immunity cells in CRC patients with 
high-risk scores, such as tumor-associated macrophages (TAMs), 
and cancer-associated fibroblasts (CAFs). On contrary, only a few 
CD8 + T cells infiltrated the TME of CRC patients with high-risk 
scores. Accumulating evidence has proved that Tregs carry out 
anti-tumor immunity ability by suppressing T cell responses and 
activities of antigen-presenting cells.[8,19] For instance, Tregs can 
regulate the tumor-suppressing role of cytokine-induced killer 
cells in CRC through secreting IL-10 and TGF-β.[20] CAFs and 
TAMs are the most abundant nonmalignant cell types in the TME 
of cancers.[21] The crosstalk between Tregs and other immune cells 
has also been investigated.[22] For example, CD70-positive CAFs 
stimulate migration and significantly increase the frequency of 
naturally occurring Tregs.[23] Besides, Kos and colleagues demon-
strated that TAMs promote the intra-tumoral conversion of con-
ventional CD4 T cells into Tregs via PD-1 signaling.[24] Therefore, 
we hypothesized that targeting multiple immune cells simultane-
ously may improve the therapeutic effect of CRC.

Immune checkpoint genes are highly expressed on T cells, anti-
gen-presenting cells, and cancer cells, and modulate the homeosta-
sis of co-stimulatory and co-inhibitory signals.[25] In recent decades, 
immune checkpoint inhibitor treatment has revolutionized the 

Figure 5.  Validating the utility of prognostic signature by an independent GEO dataset. (A) The survival time of CRC patients with high- and low-risk scores. 
(B) The Kaplan–Meier curves of CRC patients with high- and low-risk scores. (C) Time-dependent ROC analysis of the prognostic signature. (D) Univariate Cox 
regression and (E) multivariate Cox regression analysis of CRC patients’ risk score and other clinicopathological characteristics. CRC = colorectal cancer, GEO 
= gene expression omnibus, ROC = receiver operating characteristic.
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therapeutic paradigms of solid tumors. For example, inhibitors 
of programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) have been 
approved by the American FDA to manage lung cancer.[26] In this 
study, we discovered that immune checkpoint genes, such as PD-1, 
were also significantly upregulated in CRC patients with high-risk 
scores, which suggested that these patients may be more suitable 
for immune checkpoint inhibitor treatment.

We have to admit that several limitations exist in the pres-
ent study. First, scRNA sequencing data revealed that several 
immune cells differentially infiltrated CRC tissues compared 
to normal tissues. It may improve the prognostic value of our 
signature to enroll other immune cell-associated genes, such 
as mast cells. Second, the expression levels of genes in our sig-
nature ought to be validated by more clinical tissue samples. 
Third, our hypothesis should be further verified before clini-
cal application that CRC patients in the high-risk score group 
are more suitable for immune checkpoint inhibitor treatment.

5. Conclusion
In conclusion, we were the first to construct a prognostic signa-
ture for CRC patients based on Treg-associated genes, according 

to which patients were well reclassified into 2 subclusters with 
different clinical outcomes. Besides, our study further revealed 
that the poor prognosis of CRC with high-risk scores was mainly 
attributed to the anti-tumor immunity microenvironment and 
elevated immune checkpoint genes in tumor tissues.
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