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Abstract

Abundance and distribution of commercial marine resources are influenced by environmen-

tal variables, which together with fishery patterns may also influence their catchability. How-

ever, Catch Per Unit Effort (CPUE) can be standardized in order to remove most of the

variability not directly attributable to fish abundance. In the present study, Generalized Addi-

tive Models (GAMs) were used to investigate the effect of some environmental and fishery

covariates on the spatial distribution and abundance of the Norway lobster Nephrops norve-

gicus within the Pomo/Jabuka Pits (Central Adriatic Sea) and to include those that resulted

significant in a standardization process. N. norvegicus is a commercially important demersal

crustacean, altering its catchability over the 24-h cycle and seasons according to its burrow-

ing behavior. A historically exploited fishing ground for this species, since 2015 subject to

specific fisheries management measures, is represented by the meso-Adriatic depressions,

which are also characterized by particular oceanographic conditions. Both the species

behaviour and the features of this study area influence the dynamics of the population offer-

ing a challenging case study for a standardization modelling approach. Environmental and

catch data were obtained during scientific trawl surveys properly designed to catch N. norve-

gicus, thus improving the quality of the model input data. Standardization of CPUE from 2

surveys from 2012 to 2019 was conducted building two GAMs for both biomass and density

indices. Bathymetry, fishing pressure, dissolved oxygen and salinity proved to be significant

drivers influencing catch distribution. After cross validations, the tuned models were then

used to predict new indices for the study area and the two survey series by means of

informed spatial grids, composed by constant surface cells, to each of which are associated
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average values of environmental parameters and specific levels of fishing pressure,

depending on the management measures in place. The predictions can be used to better

describe the structure and the spatio-temporal distribution of the population providing valu-

able information to evaluate the status of such an important marine resource.

Introduction

Information about the distribution and abundance of marine species is usually derived from

fishery-dependent data (e.g. sampling on board commercial vessels) or fishery-independent

data (e.g. scientific surveys at sea) [1]. Catch Per Unit of Effort (CPUE), or catch rate, can be

used as an index of abundance and it is the primary source of information for many of the

most valuable and vulnerable commercial fishery resources [2] including several crustacean

species [3, 4]. However raw CPUE, intended as the total catch divided by an observable mea-

sure of associated effort, is rarely proportional to the real abundance of a resource over time

and space [5], because numerous factors can affect catch rates [6]. Indeed, the CPUE index

depends on the abundance of a resource, the fishing effort and also the catchability (intended

as the fraction of an available resource that is captured by one unit of effort) [6, 7]. Catchability

can be assumed as constant or changes in catchability can be modeled and removed from the

index [8]. Indeed, catchability is often spatiotemporally affected by environmental, biological,

and management (such as fishery technological and/or management strategy changes) factors

[2, 9, 10]. The process of removing the effect of factors that bias catch rate as an index of abun-

dance is commonly referred to as CPUE standardization [11] and it allows obtaining more

accurate estimates of abundance indices [12, 13] and related standard errors [14, 15]. In fact,

fishery-dependent raw CPUE commonly vary over both space and time showing coverages

mainly driven by fisheries patterns [16]. Even time series obtained from scientific surveys may

suffer for gaps in space and time (e.g. missing years, sampling stations allocation, etc‥) as well

as for discontinuities in the sampling intensity or strategy (e.g. change of protocol, vessel, gear

used). Therefore, it would be relevant to remove factors other than abundance that may influ-

ence CPUE variability before using an index as an indicator of population size [7, 17].

Moreover, ecological processes (both exogenous and endogenous) can affect the species dis-

tribution and density [18–20]. Such a spatio-temporal dependence has been traditionally

incorporated into CPUE standardization using spatial grids to predict the spatial distributions

and relative abundances of marine species [e.g. 21, 22]. Therefore, to accurately estimate the

total population, a standardization process should first of all account for spatial and temporal

differences in sampling rates, for example when the spatial pattern of the observation is not

adequate [23] or when statistical dependence arises from biological or sampling characteristics

(e.g shoals movement and extraordinary catch events) [24]. Second, the standardization

should account for the effect of covariates which could have an impact on the catch rates over

time and space [25]. Environmental conditions are among the factors that control the spatio-

temporal distribution of fish populations, therefore it is crucial to identify their relationships

with catch rates [26]. In addition, changes in fishing effort due, for example, to the establish-

ment of a temporary fishing ban or a no-take zone, may result in changes of catch rates in time

[27] and space (e.g. buffer areas [28, 29]). However, the standardization of a catch rate time

series must be designed to include only explanatory variables that significantly influence the

dependent variable (i.e. CPUE [30]). Too few explanatory variables will cause variation in

PLOS ONE Accounting for environmental and fishery management factors when standardizing survey CPUE data

PLOS ONE | https://doi.org/10.1371/journal.pone.0270703 July 14, 2022 2 / 30

Data Availability Statement: Datasets including

the oceanographic parameters used in this study to

develop the GAM approach have been published in

the SEANOE data repository and are available at the

following links: https://doi.org/10.17882/85925

(Penna et al. 2022a) and https://doi.org/10.17882/

86456 (Penna et al. 2022b). Furthermore maps

related to the specific bottom values used are

presented in the Supporting information (S6–S11

Figs in S1 File). The catch data and fishing activity

information related to each trawl haul carried out

during the considered surveys and used to

calculate CPUE values were for the most part

collected under stated confidentiality agreements

between the Italian Ministry of Agricultural, Food

and Forestry Policies (MIPAAF) and the Institute for

Marine Biological Resources and Biotechnologies

of the National Research Council (CNR IRBIM). A

small portion of the dataset was also collected

under similar conditions with the Croatian

Institutions. The authors received formal

authorization to use the data for scientific purposes

but no special access privileges were granted. All

data are stored at CNR IRBIM Ancona and can be

shared on reasonable request upon prior

authorisation by MIPAAF; the interest of qualified

researchers may be expressed to

pemac1@politicheagricole.it. Furthermore maps

for normalised CPUE values obtained for each

considered trawl haul are presented in the

Supporting information (S2–S5 Figs in S1 File)

Funding: Funding was provided for the collection

and processing of the data used in this study by

the Direzione Generale della Pesca Marittima e

dell’Acquacoltura of the Italian Ministry of

Agricultural, Food and Forestry Policies (through a

series of agreements with the Institute for Marine

Biological Resources and Biotechnologies of the

Italian National Research Council; CUP

J52I15003990001, J53C17000540001 and

J41F19000080001), the RITMARE Flagship Project

of the Italian Ministry of University and Research

and the FAO AdriaMed regional project. Michela

Martinelli received partial financial support from the

CNR Short-Term Mobility Program 2019.The

authors received no specific funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0270703
https://doi.org/10.17882/85925
https://doi.org/10.17882/86456
https://doi.org/10.17882/86456
mailto:pemac1@politicheagricole.it


catch rate to be wrongly attributed to the time series, while too many explanatory variables will

over-fit the model [11].

Historically, many efforts have been made to solve the difficulties associated with CPUE

standardization [7] promoting the flexibility and the availability of well-tested and user-

friendly tools such as Generalized Linear Models (GLMs) and Generalized Additive Models

(GAMs) to perform calculation [31]. However, while considering the nonlinearity of predic-

tors there is evidence that statistical models such as GAMs perform better than GLMs [32]

even if the survey area is not well covered due to the lack of sampling locations or biased

designs [33]. GAMs proved to be also helpful to understand the environmental processes

underlying species distributions [34]. Furthermore, with the aim to produce robust abundance

indices with associated standard errors [34], more sophisticated approaches such as Vector

Autoregressive Spatio-Temporal (VAST) model and Boosted Regression Tree (BRT) were also

recently implemented [35, 36].

Within the Mediterranean basin, the Norway lobster, Nephrops norvegicus (Linnaeus, 1758)

(hereafter referred to by genus alone), represents one of the main commercial species in terms

of value and is mainly targeted by bottom trawlers [37]. This demersal species lives at depths

from around 30 m to over 400 m [38, 39] with a preference for muddy grounds allowing the

formation of its characteristic burrows [40]. This species is mainly captured by bottom trawlers

when it emerges from its burrows [41–43]. Several studies provided evidence of a rhythmicity

in the burrow emergence pattern showing peaks that vary in time depending on depth [44–46]

and other ecological and demographic factors (i.e. food availability, size, sex, reproductive sta-

tus [47–49]). Literature put in evidence how changes in environmental parameters, such as

dissolved oxygen [40], salinity [50] and bottom temperature [51], proved to be fundamental

drivers influencing life cycle and emergence behaviour of wild populations of Nephrops.
Therefore, the emergence rhythm may cause marked fluctuations in CPUE over the 24-h cycle

[39, 52, 53] and seasons depending on sex (females rarely leave their burrows during the egg-

bearing period [40, 54]), which means that the trawl fishery exploits the population selectively

and in a different manner during the year. As suggested by Sardà and Aguzzi, accounting for

such an availability of Nephrops to trawlers, not only according to the time of the day but also

at a seasonal scale, may lead to more reliable estimates of population abundance [55]. Hence

these differences in Nephrops’ CPUE over different time scales (i.e. time of the day and season)

should be considered directly within the standardization process, when possible.

In the Adriatic Sea, Nephrops is subjected to high fishing pressure from fleets of different

countries [56]. Relevant concentrations of this species occur off Ancona, in the Pomo/Jabuka

Pits and in the Velebit Channel [53, 57–62]. There is evidence that Nephrops in the Adriatic

Sea is also characterized by distinct subpopulations which should be considered as separate

units [63, 64] especially from the fishery management point of view [65]. According to a recent

Scientific Technical and Economic Committee for Fishery report [66], in the Adriatic Sea this

species is considered overexploited; the fishery-independent data used to implement this stock

assessment derived from scientific surveys not specifically targeting Nephrops. However this

type of data source was already defined not fully appropriate to overcome the general issues

related to the catchability of this species, and the need for more detailed information from sur-

veys specifically targeting this resource, in order to support an accurate Nephrops manage-

ment, was already stated [65].

A sustainable use of fishery resources should be fostered by an ecosystem approach to fisher-

ies management [67, 68]. To move towards this, it is crucial to understand the impact of fisher-

ies and environmental factors on benthic communities and their dynamics [69, 70]. Angelini

et al. developed an ecosystem model for the Pomo/Jabuka Pits and highlighted the need of

improving it including environmental variables thus considering the influence of the
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hydrographic processes within the meso-adriatic depression on Nephrops distribution [71]. Fur-

thermore, starting from 2015, the Jabuka/Pomo area has been the object of a series of manage-

ment measures, which have greatly modified the spatial patterns of the fishing effort [28, 72].

Focusing on data obtained from two annual dedicated Nephrops surveys carried out in the

Pomo/Jabuka Pits, the present study proposes the use of GAMs as tools to: i) investigate how

the environmental variables and the different management strategies can influence abundance

and distribution of Nephrops, ii) produce standardized CPUEs, to be used as reliable inputs for

population dynamic and ecosystem models.

Materials and methods

The study area

The study area defined in Fig 1 is located in the Central Adriatic Sea and includes the three

meso-Adriatic depressions collectively known as Pomo/Jabuka Pits, that altogether have a

maximum depth of 270 m [73] and a seabed mainly composed by fine muddy substrates [74].

The depth range and sediment composition make the Pomo/Jabuka Pits an ideal habitat for

Nephrops [38–40] whose subpopulation is here characterized by high densities of individuals

smaller than those dwelling in nearby areas (e.g. off Ancona) [57, 63]. Furthermore, this area

was also identified as a nursery ground for the European hake, Merluccius merluccius (Lin-

naeus, 1758), which is another important commercial demersal species in the Adriatic Sea [77,

78]. Owing to the presence of essential habitats in a region exploited by both Italian and Croa-

tian fisheries, the Pomo/Jabuka Pits was subjected to several discussions regarding the possibil-

ity of establishing an area closed to fisheries to protect heavily exploited demersal stocks [79,

80]. The first partial closure of trawling activities was approved in July 2015 (D.M. 03/07/2015

and D.M. 20/07/2016; N.N. 20/07/2015 and N.N. 22/07/2016); then several decrees changed

the fishing restrictions over time and space (D.M. 19/10/2016; D.D. 7/12/2016; D.M. 01/06/

2017; N.N. 17/05/2017). Finally in 2018, a Fishery Restricted Area (FRA) was established iden-

tifying a fishery ban zone (S1 Fig in S1 File, zone A) and two buffer zones where the fishing is

limited to a specific number of authorized vessels and fishing days (S1 Fig in S1 File, zones B

and C) [81–83].

Data collection

The analyzed data originate from two fishery-independent surveys carried out annually within

the Pomo/Jabuka Pits: (i) the spring ’’Under Water TeleVision’’ (UWTV) survey, performed

jointly by the National Research Council—Institute of Marine Biological Resources and Bio-

technologies (CNR IRBIM) of Ancona (Italy) and the Institute of Oceanography and Fisheries

(IOF) of Split (Croatia) in the whole study area; (ii) the autumn ’’ScamPo’’ experimental trawl

survey, carried out by CNR IRBIM of Ancona western of the Adriatic midline [84]. The

’’UWTV’’ (hereafter referred to as spring) survey principally aims to quantify Nephrops bur-

rows through video analysis of seabed footage [85, 86] but during this also experimental trawl-

ing activities are carried out [63, 72, 87]; these latter data on trawling were those considered in

the context of this study. Instead, the ’’ScamPo’’ (hereafter referred to as autumn) survey is

mainly meant to monitor the effects of the management measures on commercially relevant

demersal species (including Nephrops) [72]. The time series considered within this study

ranges from 2012 to 2019 for the spring surveys, and from 2015 to 2019 for the autumn ones.

As suggested by Kimura and Somerton, both surveys were designed to fulfill the basic

assumption of maintaining standard procedures during trawl sampling (e.g. standard unit of

time or distance) [88]. For this reason the surveys occurred in a consistent time period each

year: late spring for ’’UWTV’’ (i.e. April, May) and autumn for ’’ScamPo’’ (i.e. September,
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October, November). The surveys were all carried out on board RV Dallaporta (LOA 35.30 m,

258 GT, 1100 HP). The 2 seasonal surveys share the same survey design (originally random

stratified based on the bathymetric of 200 meters depth and following some legislative limita-

tions) in the common area (i.e. western side) [72, 87]; some additional hauls have been added in

both survey plans since 2016 (S2-S5 Figs in S1 File) [72]. Unfortunately, not all the planned

hauls could be performed every year and in 2018 the entire spring survey was cancelled due to

ship unavailability. However, the remaining performed hauls were equally allocated among

areas with different management regimes. The trawling protocols are as well the same for both

surveys [72, 87]: in accordance with the peak of Nephrops emergence [53, 60], hauls (1 hour

duration) were all conducted between 100 m and 270 m depth at sunset and sunrise using an

experimental net (mesh size of 22 mm in the body and 12 mm in the cod end) and trawl sensors

to calculate the swept area [72]. In order to investigate possible discrepancies over time and

space between indices trends, CPUE estimates for Nephrops for each haul were then calculated

as total weight of the caught individuals divided by swept area (kg/km2; hereafter referred to as

Fig 1. The study area. In the up-right rectangle the position of the study area within the Mediterranean basin is highlighted (red circle). The main map shows: the Pomo

Pits Bathymetry (source: [75]), the boundaries of the study area, with western (orange polygon) and eastern (green polygon) sides divided by the Adriatic midline

(source: [76]) and the trawl hauls planned for two considered surveys (green triangles).

https://doi.org/10.1371/journal.pone.0270703.g001
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biomass index) and number of caught individuals divided by swept area (N/km2; hereafter

referred to as density index) (S2-S5 Figs in S1 File) [72]. In fact, for species such as Nephrops
there could be possible differences due to the fact that density may be size dependent [89]. Fur-

thermore, some stock assessment tools can be fed alternatively by both biomass and density

indices (e.g. Stock Synthesis 3 and C++ algorithmic stock assessment laboratory [90, 91]).

Due to the oceanographic peculiarities of the study area, CTD (Conductivity Temperature

Depth) casts were also carried out during the surveys in order to capture spatio-temporal vari-

ations of environmental parameters at small scales [92, 93]. Relevant oceanographic parame-

ters (i.e. temperature, salinity and oxygen) measured as close as possible to the seabed

(hereafter bottom data) where Nephrops lives were thus used as proxy to assess environmental

variability over time and space. Therefore, to collect temperature and salinity data to be

directly associated with each obtained CPUE value, CTD casts (by means of a SBE19plusV2
probe) were performed as close as possible to the fishing location, before or after each haul

[72]. The CTD was also equipped with a SBE43 dissolved oxygen (concentration and satura-

tion) sensor. A SBE5T pump ensures a constant flow over time inside the sensors.

Model building

The effects of spatial and temporal variations of environmental parameters and fishery man-

agement measures on the CPUE indices were modeled by GAMs due to the high flexibility of

the latter [31, 94]. Preliminary analyses (not reported here) provided confidence that merging

the spring and autumn time series increased the model accuracy owing to a bigger sample size

and thus reducing overfitting, as shown also in Wisz et al. [95]. However, the two time series

were previously filtered only for observations including all the information to be tested in the

model. Indeed it was not possible to include all the available hauls in the model building pro-

cess because some of these were lacking values for some of the environmental parameters. All

hauls carried out within the 2012 spring survey were excluded due to lack of values for bottom

dissolved oxygen saturation. For the rest of the spring survey time series, some hauls for each

year were removed (including the only two cases for which CPUE was equal to 0; S2 and S4

Figs in S1 File): 5 hauls (50%) for 2013, 2 hauls (13.3%) for 2014, 1 haul (12.5%) for 2015, 3

hauls (21.4%) for 2016 and 2017, and 2 hauls (18.2%) for 2019 were excluded. For the “autumn

time series only one haul performed in 2017 was removed from the original dataset. A total of

56 (out of 89 available) hauls were selected within the spring time series from 2013 to 2019

(except for 2018), while in the autumn time series 36 (out of 37 available) hauls were selected.

The distribution of the response variables, i.e. biomass and density indices, appear not to be

symmetrically distributed around the average with positively-skewed values and some outliers

(e.g. highest values: 150 kg/km2 for the biomass index and 17281 N/km2 for the density index).

Therefore, in the GAMs, a Gamma distribution with logit link function was assumed for both

response variables; this distribution is one of the most used for environmental analysis [96],

works well for positive-skewed data [97] and, owing to the logit link function, makes the

model additive and therefore easier to interpret. To build the models, the covariates taken into

account were: latitude (Y), longitude (X), depth (D), year (Yr), week of the year (week), time of

the day (ToD), bottom temperature (BT), bottom salinity (Sal), bottom dissolved oxygen satu-

ration (Oxy), and a factorial covariate accounting for restrictions on fishery (Fishery). The spa-

tial scale is expressed by the “X” and “Y” covariates (in decimal degrees), which are the

geographical coordinates referred to planned starting point of each performed haul, and by the

“D” term (in meters) standing for the mean depth at which each haul was carried out. The spa-

tial covariates are very important for Nephrops CPUE due to its sedentary behaviour [98]. The

factor ’’Fishery’’ consists of 3 levels fitting with all the implemented managerial actions: fishery
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allowed (Y), limited fishery (L) (i.e. buffer zones regulation), and fishery ban (N). The tempo-

ral covariate “Yr”, expressed in numbers, was directly included as an interaction with the factor

“Fishery” (using the “by” argument in the smooth functions) in order to model potentially dif-

ferent trends over years for each of the different fishery management levels. The inclusion of

the intercept terms for categorical factor, as described in Wood [99], aims to increase the flexi-

bility of the model fitting overall intercept differences between factor levels, and avoids arti-

facts; therefore, the “Fishery” factor was expressed both as intercept and as interaction with the

covariate "Yr". Furthermore, the temporal scale was also expressed at different extents within

the model equation (i.e. Year, week and ToD) in order to investigate the variability in catches

between and within the seasons and times of day. Preliminary analyses (not presented here)

carried out on the available dataset showed evidence that the “week” term, expressed as the

number of the week within the year, is more suited (improves model performances) than

other possible temporal scales (i.e. season or month during which the survey was conducted)

to allow predictions by season (i.e. for the two survey seasons). The ’’ToD’’ covariate is instead

a categorical factor representing the hauling time with two levels: sunset and sunrise (moments

of the day at which correspond the peaks of maximum emergence from burrows of the species

[55]). The terms accounting for the possible effects of environmental parameters recorded in

correspondence of each trawl haul close to the seabed and already known to influence

Nephrops life cycle and emergence behaviour (such as dissolved oxygen [40], salinity [50] and

temperature [51], expressed as saturation percentage, practical salinity units, and degree Celsius
respectively) were as well included in the models.

Before fitting the models on the data, in order to avoid multicollinearity, a covariate selec-

tion through Variance Inflation Factor (VIF) with backward selection was firstly carried out

[100]. As a rule of thumb, the covariates with higher VIF should be excluded from the analysis

one by one, until all the remaining variables have a VIF < 3 [101, 102]. The analysis showed a

high multicollinearity value (VIF> 3) only for the longitude covariate; hence the ’’X’’ term

(mainly correlated with the latitude “Y”) was excluded from the considered models.

Model selection

According to the backward selection suggested by Zuur [100], a full model (hereafter referred

to as initial model or “modINITIAL”) featuring all previously listed explanatory variables was

formulated as follows for both density and biomass indices:

CPUE ¼ β0 þ s1 Yð Þ þ s2 Dð Þ þ s3 BTð Þ þ s4 Oxyð Þ þ s5 Salð Þ þ s6 weekð Þ

þ s7 Yr; by ¼ Fisheryð Þ þ f 1 Fisheryð Þ þ f 2 ToDð Þ þ ε ð1Þ

Where CPUE corresponds to Nephrops biomass or density indices, β0 is an overall intercept, si
are penalized cubic regression splines, fi indicate a categorical factor, the by symbol indicates

that a spline function is separately estimated for each level of the factor, and ε is the error term.

The models were all settled with Gamma error distribution with a logit link function and

REstricted Maximum Likelihood (REML) as smoothing parameter estimation method [102].

Based on preliminary analyses (not reported here) a limit of 6 was selected as the maximum

number of basis functions (k) due to the low number of data.

In the aim to investigate how including environmental variables and fisheries management

measures at the same time in the model would perform and influence the quality of the CPUE

derived estimations, three simplified models were as well tested and compared with the initial:

one model excluding from “modINITIAL” both the effects of environmental variables and

fishery management actions (“modNOEM”), one excluding the effect of the considered envi-

ronmental variables (“modNOE”) and another excluding only the effect of fishery
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management actions (“modNOM”). The three simplified models were as well applied both to

biomass and density; “modNOEM” was formulated as follows:

CPUE ¼ β0 þ s1 Yð Þ þ s2 Dð Þ þ s3 weekð Þ þ s4 Yrð Þ þ f 2 ToDð Þ þ ε ð2Þ

“modNOE” was formulated as follows:

CPUE ¼ β0 þ s1 Yð Þ þ s2 Dð Þ þ s3 weekð Þ þ s4 Yr; by ¼ Fisheryð Þþ

f 1 Fisheryð Þ þ f 2 ToDð Þ þ ε ð3Þ

while “modNOM” was as follows:

CPUE ¼ β0 þ s1 Yð Þ þ s2 Dð Þ þ s3 BTð Þ þ s4 Oxyð Þ þ s5 Salð Þþ

s6 weekð Þ þ s7 Yrð Þ þ f 1 ToDð Þ þ ε ð4Þ

In order to evaluate which of these four models was the best, intended as the most informa-

tive, a comparison among the Akaike Information Criterion (AIC) values was conducted for

both indices. Indeed, the AIC accounts both for the goodness of fit and the complexity of the

model allowing to select the best according to the lowest value [103]. As recommended by

Zuur, the expected result was to select the model featuring all explanatory variables introduced

according to the known biology and behaviour of the species (i.e. initial model), otherwise the

simplest model (fewest covariates) would have been the choice [100]. A 10 k-fold cross valida-

tion analysis was thus performed according to [104]. Therefore, for both CPUE datasets (bio-

mass and density indices) and for each of the four equations, 10 runs were carried out, using a

random defined 90% of the dataset to train a model. This operation was repeated 10 times,

each time excluding a different portion of the dataset (corresponding to 10%). Then the per-

formance of each trained model was evaluated using AIC. The obtained 100 AIC values for

each of the models (“modINITIAL”, “modNOEM”, “modNOE” and “modNOM”) were

assessed for homogeneity of the variance by the Levene’s test and then (in case of homoscedas-

ticity) analysed by means of a parametric one-way ANOVA with post-hoc Tukey test [105].

The ANOVA was conducted to evaluate if there was a significant difference within the means

of the AIC values across the four tested models (levels of the factor) for both indices.

The model selected by means of the above described AIC comparison was then further

refined excluding the non-significant terms. The significance of each covariate was verified

through an evaluation of the 100 p-values obtained from the cross-validation for both indices;

as a rule of thumb, if in 80% of cases the p-values was above 0.05, thus the covariate was

retained in the equation. After that, in order to evaluate the model prediction performance by

the Root Mean Squared Error (RMSE), a second 10 k-fold cross validation analysis repeated 10

times was again run for both initial and selected model. Once verified that the latter model,

including only the significant covariates, was the most reliable to conduct predictions on both

the CPUEs, this was further refined tuning it on the entire dataset. The adaptation of the mod-

els to the data was evaluated by computing the proportion of the null deviance explained (i.e.

percentage of deviance explained) and the adjusted R2 [97]. Furthermore, the deviance

explained by each term of the final model was estimated from the model outputs according to

Wood et al. [99]. The final model was meant to be used for indices predictions to be carried

out on the whole area of interest (see paragraph below). All the statistical analyses were carried

out using the statistical software R ver. 3.5.2 [106], the associated ’’mgcv’’ and “car” packages

[97, 107].
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Indices predictions

In order to carry out, through the final model, predictions of the CPUE indices over the study

area, a spatial grid of the Pomo/Jabuka Pits area, 2x2 nautical miles, was built by means of the

Geographic Information System (GIS) Manifold1 System Release 8 (http://www.

georeference.org/doc/manifold.htm). Each cell is identified by geographic coordinates

(Lat = Y, Lon = X) corresponding to its center; average depth values were as well assigned to

each cell by means of a source layer (available from: [75]) and the GIS Spatial Overlay function.

Furthermore, the grid was replicated for each survey/year combination according to their spa-

tial domain (i.e. autumn surveys are conducted only in the western side; Fig 1). The fishery

management measures in place (according to the regulations in force during the various sur-

vey periods) were as well assigned to each cell. In order to inform each cell of the grids, at sur-

vey (as a proxy of season) and yearly levels, with average bottom values for each considered

environmental parameter (i.e. BT, Oxy and Sal), it was taken advantage of the direct availabil-

ity of reliable data sets; the same values collected during each survey and previously used in

association to each recorded CPUE value to build the GAMs, were thus interpolated using a

kriging method by means of the Surfer software (Surfer1 11.6 from Golden Software, LLC:

www.goldensoftware.com). The obtained layers were then superimposed on the grids by

means of the GIS in order to assign average bottom values to each single grid cell (using again

the Spatial Overlay function; S6–S11 Figs in S1 File). Notwithstanding the dissolved oxygen

percentage was not measured in spring 2012, the values recorded in the same season of the fol-

lowing year (i.e. 2013) were assumed as proxy within this study; a similar assumption was

made for spring 2018 (missing year in the time spring series) for which all environmental val-

ues were simulated using those recorded in spring 2019. In fact, to pursue the aims of this

study it was decided not to include datasets derived from different sources that could possibly

introduce different estimation bias.

All predictions were then carried out by cell, also considering a selected level of the ’’ToD’’

term (sunrise) to standardize for the daytime temporal domain while at the same time model-

ling differences in CPUE within seasons/years. Since each cell had the same surface, predic-

tions obtained for each cell/survey/year combination by means of the final GAMs (see

paragraph above), for both biomass and density indices, were then averaged (according to the

spatial domain of each survey) to obtain new standardized indices that were then compared

with the mean observed CPUE (average of hauls values).

Results

Model selection and fitting

The Levene’s test indicated homogeneity of the variance for the AIC values obtained from all

the tested models (“modINITIAL”, “modNOEM”, “modNOE”, “modNOM”), both for the bio-

mass index (F = 0.2296; df = 3.396; p-value = 0.8757) and density index (F = 1.0907; df = 3.396;

p-value = 0.352). The results of the parametric one-way ANOVA showed a significant differ-

ence in the means of the AIC values (calculated on 100 values through cross-validation) across

the different tested models (grouping variable) both for biomass index (F = 501.7; p-

value = 2e-16) and density index (F = 176.1; p-value = 2e-16; S1 and S2 Tables in S1 File). The

Tukey post hoc test on the mean AIC showed significant differences for all the compared pairs

of models both for biomass and density indices (S3 and S4 Tables in S1 File). “modINITIAL”

has the statistically lowest average AIC value than “modNOE”, “modNOM” and “modNOEM”

(respectively not including environmental parameters, fishery management factors and both;

S5 Table in S1 File); “modINITIAL” may thus be considered the best model. Indeed
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“modINITIAL” resulted to be the most informative among the four tested GAMs, including at

the same time the effect of environmental and fishery factors. The number of significant p-val-

ues obtained by the first cross validation analysis for all the covariates included in “modINI-

TIAL” is shown in Table 1.

The “BT” covariate was seldom significant in “modINITIAL” both for biomass and density

indices (respectively 18 and 9 times out of 100), while the “week” covariate was never signifi-

cant (0 out of 100). Accordingly, these two covariates (i.e. “BT” and “week”) were not included

in the final models. Although the p-values obtained for the interaction between the covariate

"Yr” and the factor "Fishery" were 0 and 1 (respectively for biomass and density indices) when

the “Fishery” level was “L”, this term was retained in both the final models because, for the two

other levels of the factor (“Y” and “N”), the p-values were 100% of the times significant. There-

fore, the final model (“mod FINAL”) for both CPUE indices was formulated as follows:

CPUE ¼ b0
þ s1 Yð Þ þ s2 Dð Þ þ s4 Oxyð Þ þ s5 Salð Þ þ s7 Yr; by ¼ Fisheryð Þþ

f1 Fisheryð Þ þ f2 ToDð Þ þ ε ð5Þ

The RMSE of the final model evaluated by running a second time the 10 k-fold cross valida-

tion analysis repeated 10 times resulted in lower averages than the initial model both for bio-

mass and density indices (S6 Table in S1 File); it was thus considered as the one with the best

prediction performance. The final model (Eq 5) included only significant explanatory terms;

most of them were retained as single effects (i.e. Y, D, Oxy, Sal, Fishery, ToD) except for the

interaction between ’’Yr’’ and ’’Fishery’’ factors. Tables 2 and 3 show the model parameters as

tuned on the whole dataset. The final model explained 63.4% of the deviance (with an adjusted

R2 of 0.544) for the biomass index; while the explained deviance for the density index model

was 66.9% (with an adjusted R2 of 0.543). Percentages of deviance explained by each covariate

of the final models both for biomass (kg/km2) and density (N/km2) indices are shown in the

Supporting Information (S7 Table in S1 File). No specific issue emerged from the analysis of

the residuals: they showed homogeneity of variance and a mean around zero (S11 and S12 Figs

in S1 File).

Tables 2 and 3 also show the summary of the outputs of the final models for both the

response variables. About the single categorical covariates, both tables show that the ToD term

was significant and its effect was that average CPUE were lower at sunset than at sunrise

Table 1. Number of significant p-values for each term of “mod INITIAL". Number of significant p-values (< 0.05)

out of 100 p-values in the 10 k-fold cross validation repeated 10 times for each covariate in the initial model for biomass

and density indices.

Covariate Biomass index (kg/km2) Density index (N/km2)

Y 99 97

D 100 100

BT 18 9

Oxy 96 100

Sal 98 91

Week 0 0

ToD 100 100

FisheryL 95 99

FisheryN 89 57

Yr:FisheryY 100 100

Yr: FisheryL 0 1

Yr: FisheryN 100 99

https://doi.org/10.1371/journal.pone.0270703.t001
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(about 32% and 30% lower in case of biomass and density indices, respectively). Also the Fish-

ery covariate had a significant impact and its effect was that with limited fishery (level ’’L’’)

average CPUE were 92% and 58%, respectively for biomass and density indices, higher than

when fishery was allowed; on the other hand, with no fishery (level ’’N’’) the average CPUE

were 93% and 105%, respectively for biomass and density indices, higher than when fishery

was allowed (Tables 2 and 3). The partial contribution of each continuous covariate for both

biomass and density models are shown in Figs 2 and 3, respectively. The trend of Fishery inter-

action with the temporal variable (i.e. ’’Yr’’) (Figs 2 and 3, upper panels) showed a positive

effect on catches when fishing effort was absent (level ’’N’’), on the other hand a negative

impact was highlighted in presence of an unmanaged fishing effort (level ’’Y’’); no significant

effect was detected with limited fishery (level ’’L’’). As regard to the spatial terms, the spline of

latitude (i.e. ’’Y’’) (Figs 2 and 3, middle left panel) had a slight influence on both models; the

catch rates slightly decreased from the South to the North of the Pomo/Jabuka Pits area. The

plots of both models indicated the ’’D’’ term (depth) as one of the covariates with the most

Table 2. Summary of the outputs of the final GAM for the biomass index (kg/km2). Explanatory variables included the single effect of factor Time of the Day (ToD)

and Fishery, Year-Fishery interaction (Yr:Fishery) for each level of the factor (“Y” fishery allowed, “L” limited fishery, “N” fishery ban), longitude (Y), depth (D), percent-

age of dissolved oxygen (Oxy) and salinity (Sal); “SE”, standard error; “edf”, estimated degrees of freedom; “df”, degrees of freedom.

Parametric coefficients: Estimate SE t-value Significance level

Intercept 3.29 0.10 31.93 p<0.05

f(ToD)sunset -0.39 0.10 -3.74 p<0.05

f(Fishery)L 0.65 0.22 2.99 p<0.05

f(Fishery)N 0.66 0.23 2.88 p<0.05

Smooth terms: edf df F

Yr: FisheryY 0.96 5 5.29 p<0.05

Yr: FisheryL 0.60 3 0.51 0.11

Yr: FisheryN 1.58 3 7.35 p<0.05

Y 0.90 5 1.88 p<0.05

D 3.88 5 16.15 p<0.05

Oxy 1.57 5 1.66 p<0.05

Sal 0.92 5 2.20 p<0.05

https://doi.org/10.1371/journal.pone.0270703.t002

Table 3. Summary of the outputs of the final GAM for the density index (N/km2). Explanatory variables included the single effect of factor Time of the Day (ToD) and

Fishery, Year-Fishery interaction (Yr:Fishery) for each level of the factor (“Y” fishery allowed, “L” limited fishery, “N” fishery ban), longitude (Y), depth (D), percentage of

dissolved oxygen (Oxy) and salinity (Sal); “SE”, standard error; “edf”, estimated degrees of freedom; “df”, degrees of freedom.

Parametric coefficients: Estimate SE t-value Significance level

Intercept 7.61 0.11 72.43 p<0.05

f(ToD)sunset -0.35 0.10 -3.39 p<0.05

f(Fishery)L 0.46 0.20 2.24 p<0.05

f(Fishery)N 0.72 0.20 3.64 p<0.05

Smooth terms: edf df F

Yr: FisheryY 1.71 5 9.34 p<0.05

Yr: FisheryL 0.44 4 0.20 0.169

Yr: FisheryN 0.94 4 3.62 p<0.05

Y 0.85 5 1.24 p<0.05

D 4.02 5 22.21 p<0.05

Oxy 2.05 5 3.31 p<0.05

Sal 0.92 5 2.26 p<0.05

https://doi.org/10.1371/journal.pone.0270703.t003
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evident impact (Figs 2 and 3) showing a positive effect up to about 175 m, then the CPUE indi-

ces decreased since almost 225 m after which they become constant (Figs 2 and 3, central

panel). The effect of ’’Oxy’’ for both CPUE indices (Figs 2 and 3, middle right panel) indicated

a slightly negative impact on catch rates until almost 85% after which it becomes strongly posi-

tive, leading to a consequent increase in the CPUE indices. The effect of the ’’Sal’’ term (Figs 2

and 3, bottom left panel) showed a negative impact on catch rates when salinity values

increase; these effects were observed for both models.

Predictive distribution maps

Figs 4–7 show the annual predictions of Nephrops biomass and density CPUEs per cell, within

the spatial domains previously defined by means of grids (in the Pomo/Jabuka Pits study area),

for the spring and autumn time series.

Maps of the related standard errors (per cell) are available in the Supplementary Material

(S14–S17 Figs in S1 File). Overall, the predicted distribution in space and time of the biomass

CPUE (kg/km2) seems to follow the same patterns of the density one (N/km2), even if the

Fig 2. Partial effects plots of GAM on Nephrops CPUE (kg/km2). Partial effects (y axis) of spatial (Y, D), environmental (Oxy, Sal), and fishery management

variables (Yr:Fishery) selected for the final GAM. Grey shaded regions indicate the 95% confidence intervals, dots are the residuals.

https://doi.org/10.1371/journal.pone.0270703.g002
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numerical predictions are of course different. The highest estimates for the spring time series in

the period 2012–2017, were obtained for the cells localised around the Pomo/Jabuka Pits at

depths from about 150 m to 200 m and in the south-eastern part of the study area. By contrast the

distribution of Nephrops indices in the last two modelled years (i.e. 2018 and 2019) was almost

pooled within the boundaries of the fishing ban zone (i.e. zone ’’A’’). For the autumn time series,

the highest predictions were centered in the southern part of the study area as well, with the

exception of 2017, 2018 and 2019 for which the highest predicted catches were within the bound-

aries of the FRA zone ’’B’’, from about 180 m to 200 m of depth. All the modelled indices showed

very low or even no predicted values for the cells in the north-west zone of the study area.

Standardized CPUE values

Fig 8 shows a comparison between mean observed CPUEs (average of hauls values per year

and survey) and mean values obtained by means of the final GAMs (average of values obtained

for each cell/survey/year combination), for both biomass and density indices.

For the biomass models, the maximum difference between observed and predicted mean

values in the spring survey time series was found in 2012 with an increment of about 65%

Fig 3. Partial effects plots of GAM on Nephrops CPUE (N/km2). Partial effects (y axis) of spatial (Y, D), environmental (Oxy, Sal), and fishery management variables

(Yr:Fishery) selected for the final GAM. Grey shaded regions indicate the 95% confidence intervals, dots are residuals.

https://doi.org/10.1371/journal.pone.0270703.g003
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from 24.6 kg/km2 to 71.3 (± 19) kg/km2 (Fig 8, panels a); in the autumn survey time series an

important difference was found in 2015 with an increment of about 33% from 24.9 kg/km2 to

37.33 (± 9.1) kg/km2 (Fig 8, panels b). Apart from these two exceptions, the mean predicted

values for the biomass index were always within the interquartile range (i.e. middle 50% of the

observed data) (Fig 8, panels a and b). For the density models, the highest discrepancy in the

spring survey time series was as well detected in 2012, with a huge increment from about 2704

N/km2 to 5723.27 (± 1910.1) N/km2 (Fig 8, panel c). Differently from the biomass models, for

density indices in the autumn survey time series the maximum differences of about 50% were

Fig 4. Predicted spatial distributions of Nephrops biomass index (kg/km2) for the spring time series. Maps were made using the ggmap package [108] for R.

Bathymetry layer source: [75]. Map tiles by Stamen Design, under CC BY Data by OpenStreetMap, under ODbL.

https://doi.org/10.1371/journal.pone.0270703.g004
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found in 2015 and 2017, with an increment from 2129 N/km2 to 3263.3 (± 773.2) N/km2 and a

decrement from 2188 N/km2 to 1134.9 (± 237.3) N/km2 respectively (Fig 8, panel d). Exclud-

ing these cases, all the mean predicted values were always within the interquartile range of the

observed data (Fig 8, panels c and d). With the exception of 2018, the mean values of the pre-

dicted CPUE for the spring survey time series are higher than those for the autumn survey

time series (Fig 8). A concordance between the observed CPUE trends and the predicted ones

was confirmed for the majority of the years within both time series. The mean predicted spring

CPUE trends showed the highest peaks for both abundance and density indices in 2012 and

2015, together with the highest mean standard errors, and a slight increase of estimates in 2019

(Fig 8A and 8C). For the mean predicted autumn CPUE trends, the highest peaks and standard

errors for both indices were detected in 2015 and in 2018 (Fig 8B and 8D). In general, for both

the spring and autumn time series, biomass and density trends seem to agree over time, apart

from a slight difference between 2018 and 2019, when biomass slowly increases (Fig 8A and

8B) while density remains stable in spring (Fig 8C) and weakly decreases in autumn (Fig 8D).

Fig 5. Predicted spatial distributions of Nephrops biomass index (kg/km2) for the autumn time series. Maps were made using the ggmap package [108] for R.

Bathymetry layer source: [75]. Map tiles by Stamen Design, under CC BY Data by OpenStreetMap, under ODbL.

https://doi.org/10.1371/journal.pone.0270703.g005
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Discussion

In this study, GAMs were applied to produce specific standardized Nephrops indices account-

ing for both the effects of environmental variables and fishery management actions in place

within the Pomo/Jabuka Pits (central Adriatic Sea). The raw CPUE time series treated in this

work were never included in an official stock assessment before, thus the information here

provided could also be relevant to feed future robust population dynamics models for this spe-

cies. The slight difference between the trend of biomass and that of density from 2018 to 2019

may indicate a possible size effect (i.e. larger individuals leading to higher biomass and lower

Fig 6. Predicted spatial distributions of Nephrops density index (N/km2) for the spring time series. Maps were made using the ggmap package [108] for R.

Bathymetry layer source: [75]. Map tiles by Stamen Design, under CC BY Data by OpenStreetMap, under ODbL.

https://doi.org/10.1371/journal.pone.0270703.g006
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density), possibly induced by the latest management regime; further studies on the size struc-

ture of the population would therefore be worth noting.

Filling the gaps of a time series through standardization with GAMs

Poor weather conditions, limited shiptime, unavailability of vessels, equipment failures and

other occasional issues could lead to shortcomings due to data unequally distributed in space

and time along the survey time-series [88]. It is well known that in case of fishery-dependent

data, sampling strategies inadequate to the extension of the study area may result in ostensibly

stable catch rates (i.e. hyperstability) or in not reliable trends changes (e.g. hyperdepletion)

[109]. In case of fishery-independent surveys, spatial stratification could be adopted to mini-

mize such bias in the abundance estimates so long as each stratum has an approximately

homogeneous density [110]. Moreover, when the study area is not uniformly surveyed due to

biased sampling design (e.g. an occasional lack of data in some planned sampling locations)

standardization of catch rates is recommended to remove most of the variability not directly

Fig 7. Predicted spatial distributions of Nephrops density index (N/km2) for the autumn time series. Maps were made using the ggmap package [108] for R.

Bathymetry layer source: [75]. Map tiles by Stamen Design, under CC BY Data by OpenStreetMap, under ODbL.

https://doi.org/10.1371/journal.pone.0270703.g007
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attributable to changes in abundance [30]. Distribution models including environmental

effects should thus be preferred to predict species distributions and abundances at local scales

[111, 112]. However, when dealing with gaps in the spatiotemporal distribution of marine

resources GAMs are more convenient than GLMs because they can easily incorporate the non-

linear responses of catches to geographic factors by smoothing rather than stratifying [32, 33].

On the other hand, GAMs are likely to cause overfitting, especially with small sample sizes,

because they allow the use of several fixed effects in nonlinear smoothing functions, which

often reduce the predictive ability [113]. In this study, GAMs were selected as a suitable tool

for filling the gaps inside the time series and at the same time explain the influence of environ-

mental processes on the species distribution. In the future, it would be interesting to compare

this standardization modelling approach with other spatio-temporal models which also

include autoregressive processes [35, 114].

Spatio-temporal distribution of estimated CPUE

Given that the seasonal emergence rhythmicity of Nephrops is historically demonstrated in the

Adriatic Sea [57], an intra-annual temporal term (i.e. “week”) was thus included in the model

building process: unfortunately no significant differences between catch rates from the 2

Fig 8. CPUE indices. Boxplots for the unstandardized time series over years represented with mean values (horizontal black lines), third and

first quartiles (top and bottom vertical black lines, respectively) and outliers (black dots) plotted against the mean of predicted annual CPUE

obtained for each cell of the grid (red dots) with standard errors (red lines). The spring time series is on the left (a and c panels), the autumn

time series is on the right (b and d panels). Biomass index is represented in the upper panels (a and b panels), while density index in the

lower panels (c and d panels).

https://doi.org/10.1371/journal.pone.0270703.g008
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surveys were found. Moreover, the available data set was probably too little extended over the

years to allow the detection of intra-annual CPUE variability. However the informed grids

allowed to predict seasonal indices relying on the availability of environmental data for spring

and autumn. Seasonal differences in emergence patterns were addressed for different stock of

a similar species, Metanephrops challengeri (Balss, 1914), by using assessment models able to

include seasonal abundance indices [115]. Therefore, it would be advisable to develop in the

near future similar solutions also for Mediterranean Nephrops stock, as suggested by Aguzzi

et al. [51]. Hence, it would be important to maintain the consistency of the 2 Nephrops targeted

seasonal time series in order to improve the understanding of spatio-temporal dynamics and

to provide increasingly accurate stock assessment inputs. Furthermore, when dealing with

small data sets it is not possible to select a large number of predictors, otherwise this could lead

to an increase in the uncertainties [99]. Hence, in the model building process, only the main

effects for all the covariates were tested with the exception of the managerial factor which was

expressed both as intercept and as interaction with the covariate "Yr". As recommended by

Wood, an intercept term needs to be included when using ordered factors because smooths

with factors are affected by the centering constraints [99]. As might be expected, both GAMs

estimate increasing catch rates when fishery is absent (level "N") and decreasing ones when

fishery is allowed (level "Y"); on the other hand it is interesting to note that in presence of par-

tial fishery restriction measures (level "L") the catches do not increase but remain stable. This

could be explained by: (i) a time-series not long enough to observe significant changes in the

abundance; (ii) a too little reduction of fishing effort in order to observe an increase in the

catch rates. However, following the implemented regulations and their changes in time and

space, the levels of the "Fishery" factor for fishing ban ("N") or limitations ("L") were fixed in

the grid from autumn 2015 forward; given the actual explanatory power of "Fishery" factor, it

is therefore plausible that since then the managerial actions influenced the distribution of the

estimated indices. This is also supported by some recent studies showing a clear alteration of

size and density in crustacean species when a no-take-zone or fishery ban periods are estab-

lished [116–118]. Indeed, considering the predictions for the cells set at level "N" for the Fish-

ery factor from 2018 onwards (corresponding to the fishery ban area "A") an increment in

CPUEs was found. Furthermore, the highest values of catches are mainly concentrated in the

cells positioned around the Pits at a bathymetric range from about 180 m to 200 m. Actually,

the depth variable proved to be one of the main factors influencing the spatial distribution of

Nephrops. Both models presented here show that there is a positive effect on the catch rates for

the above mentioned bathymetric range, suggesting the presence of higher values of density

and biomass indices along the borders of the Pits rather than within the Pits (< 200 m).

Overall, a slightly positive spatial gradient from the North to the South of the Pomo/Jabuka

Pits area is supported by the spline of the “Y” term. Such an effect can be easily observed in the

predictions for the period before the implementation of the first management measure (i.e.

spring 2015) for which the spatial distribution of the indices within the maps were mostly cen-

tered in the south-east zone of Pomo/Jabuka Pits. A pretty similar distribution of Landings Per

Unit of Effort (LPUEs) was previously estimated by a model developed by Russo et al. [56]

which estimates Nephrops landings per fishing ground combining landings per harbor and

fishing vessels routes from VMS (Vessel Monitoring Systems [119]). Besides, a displacement

model by Bastardie et al. showed a possible redistribution of the fishing effort toward sur-

rounding areas in case of establishment of a fishing ban within the Pomo Pits [28]. This could

therefore support the reduction of catches in the southern part of the prediction area (not sub-

ject to fishery limitations) after the implementation of the management measures. The agree-

ment with the local (i.e. Pomo/Jabuka Pits) spatio-temporal distribution of Nephrops is an

evidence of the great spatial accuracy of the models presented here.
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Roles of environmental variables in the standardization models

Changes in biomass and density over time and space are the results of interactions among

individuals and between individuals and their environment; hence, understanding of adaptive

behaviours in response to changes in the environment helps to explain the complexity in spa-

tiotemporal distribution [109]. One of the main processes influencing the environmental con-

ditions in the Pomo/Jabuka Pits is the periodical, though occasional, water mass renewal

caused by dense water formation over the northern Adriatic shelf [73, 120, 121]. The Middle

Adriatic Deep Water (MAdDW), that resides throughout the year in the bottom layer of the

Pomo/Jabuka Pits, is periodically renewed by Northern Adriatic Densev Water (NAdDW) at

one to three years intervals but occasionally at longer intervals [73, 120], leading to a density

and oxygen increase and to a temperature and nutrient decrease [122]. Such renewals have an

effect on the local biodiversity and on the trophic status of benthic communities [123].

In the model selection section, the initial model was built and then compared to other three

models derived firstly by removing both the environmental covariates and the terms related to

the fishery management actions, secondly by removing only the environmental covariates and

finally by removing only the fishery management terms. The aim was to statistically under-

stand if the environmental and fishery covariates could effectively improve the model perfor-

mances. The results of statistical analysis provided evidence that the model including both

environmental and fishery covariates perform better than the other three. In both final models,

a positive impact on catch rates was estimated for dissolved oxygen values greater than 85%.

An exceptional dense water formation was reported during winter 2012 in the Central Adriatic

Sea [124, 125]. An average bottom dissolved oxygen saturation of 91% was recorded in late

March 2012 in a transect carried out in the western side of the Pomo/Jabuka Pits area, while

an average of 81% was recorded for the same stations in April 2013 (CNR IRBIM unpublished

data); thus the use of the 2013 dissolved oxygen values as a proxy for 2012 could probably have

led to underestimation of the modeled indices in 2012 if not coupled with other explanatory

environmental variables (i.e. salinity; see below). On the other hand, relatively high catches

were estimated also for dissolved oxygen values lower than 60%. Laboratory studies show that

low percentages of dissolved oxygen saturation within the substratum may force Nephrops
individuals out of their burrows in an attempt to ventilate on the bottom surface [126]. In the

Pomo/Jabuka Pits the bottom oxygen depletion caused by local ’’ageing’’ consequent on

reduced ventilation could even lead to sediment hypoxia (less than 40% [122]). Historically,

extraordinary hypoxic conditions in the Central Adriatic Sea associated with a sharp decline in

both Nephrops landings and experimental catches were reported during the 1980’s [127]. Such

a stressful environmental condition could influence the catchability and the natural mortality

of this species [40, 128, 129] even affecting the strength of recruitment [130]. Similarly, eutro-

phication events affecting the Kattegat and Skaggerak fishery in the mid-1980s led to a steep

decrease of catch rates, as a consequence of high mortality [131, 132]. No values attributable to

hypoxic conditions were recorded along the time series presented here. However, very low lev-

els of dissolved oxygen saturation were recorded in the area before the exceptional dense water

formation in winter 2012 (e.g. 55–52% in 2010 and about 47% in 2011; CNR IRBIM unpub-

lished data). Raw catch rates showed an increase of mean indices from 2012 to 2013, by con-

trast the model estimated a decreasing trend while maintaining high standard errors. Actually,

the discordance between mean observed CPUE and the averaged prediction in 2012 for both

indices could potentially also be influenced by the low level of oxygen saturation in the previ-

ous years which could have already reduced the abundance of Nephrops, similarly to what hap-

pened during 80’s [127]. Given the fact that key environmental stressors could affect Nephrops
at different life stages [133], future models should also be tested for the dissolved oxygen
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saturation recorded in previous years in correspondence with recruitment times (in Adriatic

hatching happens yearly in late winter [40]), as suggested for sea surface temperature and pink

shrimp (Parapenaeus longirostris) in Colloca et al. [134].

Nevertheless oxygen is not the only environmental parameter that could affect Nephrops
catch rates; salinity stress conditions as hypercapnia and salinity fluctuations may as well alter

abundance of recruits [135]. However, literature on salinity influence on Nephrops is poor and

mainly focusing on survival studies, generally showing an increase in mortality in low salinity

ranges (around almost 15 in Harris and Ulmestrand [50]; and from about 24 to 29 in Fox et al.

[136]). Within this study, in both models slight variations in salinity ranges resulted in relevant

impacts on CPUE values, despite the measured range being really narrow. Both in spring 2012

and autumn 2015 (the periods in which the maximum CPUE predicted mean values were

obtained for the two surveys) salinity showed generally lower estimates for the whole study

area extent, if compared with those related to the respective following year/season combina-

tions (S6 and S7 Figs in S1 File), suggesting that such high estimates in the prediction could be

influenced by these low salinity concentrations. However, the reasons behind these discrepan-

cies in predictions, associated with high standard errors, could also be due to an insufficient

amount of collected data, in particular for 2012. On the other hand, a negative impact of high

salinity levels as the one observed within this study has never been reported in literature, thus

further studies on salinity variation effects on Nephrops populations are suggested. As stated

before, in this work it was not possible to test more than one interaction at a time; it is thus rec-

ommended that future studies will also take into account interactions between different envi-

ronmental variables during the model building process. Further model developments should

also include and investigate the role of other parameters known to potentially affect the CPUE

of Nephrops such as sediment composition, tide level and the lunar cycle [45, 48, 137].

The importance of targeted sampling protocol for Nephrops
A common objective of population dynamics models is to employ observed CPUE indices to

estimate the population abundance through time [109]. According to Cook [138], data col-

lected by means of trawl surveys are a more accurate source of information for estimating

stock abundance than observations from commercial landings. Despite that, owing to the tem-

poral variation in Nephrops emergence behaviour, catch data from all survey activities may not

be representative of the real population [55, 85]. For example, the MEDiterranean Interna-

tional Trawl Survey (MEDITS [139]) which is the main index of abundance available for Medi-

terranean demersal resources, is not properly designed to catch Nephrops (e.g. hauls start one

hour after dawn and stop one hour before dusk every day), indeed its estimates are also

affected by its rate of emergence as for commercial trawl fishery [140, 141]. In order to over-

come these kinds of issues, in several European countries a specific methodology (namely

UWTV) based on the use of a camera system for the detection of burrows numbers and deriva-

tion of density indexes was developed [142]. In trawl surveys to reach an adequate level of pro-

portionality a representative portion of the population have to be sampled and the efficiency of

the net have to be experimentally measured [143]. Both conditions are easily achievable during

a fishery-independent survey thanks to a well-known and standard procedure [88, 144]. It is

the case of the 2 Adriatic trawl surveys reported here which were specifically designed to target

Nephrops; indeed the trawl hauls are all conducted at the peak of emergence of the species (i.e.

sunset and sunrise [55]) and the experimental net was designed to catch a representative por-

tion of the population including juvenile individuals [72, 87]. The reliability of the collected

data is also proved by the almost total absence of zeros in the time series; such a condition is

rarely confirmed in other demersal trawl surveys within the Adriatic Sea (e.g. MEDITS survey
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[145]). Furthermore, the presence from 2015 of another Nephrops targeted survey carried out

during autumn season (i.e. “ScamPo”; [72]) allowed to collect information about population

structure at a finer timescale. Such a level of information is an important tool for stock assess-

ment purposes as it allows to consider the different availability of Nephrops sexes during the

year [40, 72, 146] improving the input quality of population dynamics models.

Conclusions

The overarching goals of this study were to analyze how drivers such as environmental changes

over time and alterations of fishing effort influence CPUE estimates and to use these outcomes

to standardize the abundance indices from fishery-independent trawl surveys. The Nephrops
subpopulation inhabiting the Pomo/Jabuka Pits was selected as a case study mainly due to

behavioural characteristics of this species that may affect catches, the oceanographic peculiari-

ties of the study area and the implementation and subsequent change in time and space of dif-

ferent fisheries management measures. The availability of trawl survey data collected along

with environmental parameters allows to include in the model environmental effects directly

related to the capture event. Among the investigated covariates the most explanatory ones

resulted to be fishery and depth, while dissolved oxygen and salinity showed a relevant effect

on catch rates. The standardization of CPUE from the targeted surveys allows predicting reli-

able indices for a sedentary species with a high variability in catch rate as Nephrops. In addi-

tion, through the use of GAMs, it was possible to fill the gaps within the historical time series,

thus being able to provide a biomass or density index for all the considered time frame. Indeed,

an informed grid was built in order to predict the indices at different spatial scales. The stan-

dardization for the two different time series led to estimate CPUE indices for each of the two

seasons (i.e. spring and autumn) allowing to model the differences in the availability of

Nephrops during the solar year. This is of relevant importance from the management point of

view and, in future analyses, this standardized CPUE might improve the evaluation of the sta-

tus of the resource at different temporal and spatial scales. Moreover, the achieved knowledge

on the impact of fisheries and some environmental factors on Nephrops communities and

their spatio-temporal dynamics in Pomo/Jabuka Pits could be of extreme relevance while

developing an ecosystem approach to fishery management.
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