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Abstract

State-of-the-art light-sheet and confocal microscopes allow recording of entire embryos in

3D and over time (3D+t) for many hours. Fluorescently labeled structures can be segmented

and tracked automatically in these terabyte-scale 3D+t images, resulting in thousands of

cell migration trajectories that provide detailed insights to large-scale tissue reorganization

at the cellular level. Here we present EmbryoMiner, a new interactive open-source frame-

work suitable for in-depth analyses and comparisons of entire embryos, including an exten-

sive set of trajectory features. Starting at the whole-embryo level, the framework can be

used to iteratively focus on a region of interest within the embryo, to investigate and test spe-

cific trajectory-based hypotheses and to extract quantitative features from the isolated tra-

jectories. Thus, the new framework provides a valuable new way to quantitatively compare

corresponding anatomical regions in different embryos that were manually selected based

on biological prior knowledge. As a proof of concept, we analyzed 3D+t light-sheet micros-

copy images of zebrafish embryos, showcasing potential user applications that can be per-

formed using the new framework.

This is a PLOS Computational Biology Software paper.

Introduction

Development of animals is the result of an intricately orchestrated interplay of cell division,

migration, differentiation and death [1]. Mapping the origin and the fate of cells and their

descendants is essential to understand the developmental mechanisms underlying the self-con-

struction of complex metazoan body plans. Especially, a detailed qualitative and quantitative

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006128 April 19, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Schott B, Traub M, Schlagenhauf C,

Takamiya M, Antritter T, Bartschat A, et al. (2018)

EmbryoMiner: A new framework for interactive

knowledge discovery in large-scale cell tracking

data of developing embryos. PLoS Comput Biol

14(4): e1006128. https://doi.org/10.1371/journal.

pcbi.1006128

Editor: Dina Schneidman, Hebrew University of

Jerusalem, ISRAEL

Received: December 13, 2017

Accepted: April 8, 2018

Published: April 19, 2018

Copyright: © 2018 Schott et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The SciXMiner

software and the new trajectory analysis extension

package EmbryoMiner can be downloaded from

https://sourceforge.net/projects/scixminer. Sample

data to test the software can be obtained from

https://sourceforge.net/projects/scixminer/files/

EmbryoMiner/. Moreover, XPIWIT, which was used

for 3D image analysis can be obtained from https://

bitbucket.org/jstegmaier/xpiwit/downloads.

https://doi.org/10.1371/journal.pcbi.1006128
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006128&domain=pdf&date_stamp=2018-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006128&domain=pdf&date_stamp=2018-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006128&domain=pdf&date_stamp=2018-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006128&domain=pdf&date_stamp=2018-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006128&domain=pdf&date_stamp=2018-05-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006128&domain=pdf&date_stamp=2018-05-01
https://doi.org/10.1371/journal.pcbi.1006128
https://doi.org/10.1371/journal.pcbi.1006128
http://creativecommons.org/licenses/by/4.0/
https://sourceforge.net/projects/scixminer
https://sourceforge.net/projects/scixminer/files/EmbryoMiner/
https://sourceforge.net/projects/scixminer/files/EmbryoMiner/
https://bitbucket.org/jstegmaier/xpiwit/downloads
https://bitbucket.org/jstegmaier/xpiwit/downloads


analysis of cell behavior (e.g., migration, division) in space and time is key to understand the

steps in cell specification and fate determination that precede overt cellular differentiation and

organ formation [2–6].

To capture these dynamic developmental processes at the single-cell level in entire complex

biological systems, light-sheet-based microscopy platforms have been extensively used [7–11]

and are being further evolved to image fast, clearly and deep with improved illumination and

detection methods [12–14]. Imaging transgenic organisms that selectively express one or more

fluorescent reporters in cell nuclei or plasma membranes allow studying tissue morphogenesis

and cell dynamics in unprecedented detail [3, 13, 15–18]. These types of recordings, however,

generate an enormous amount of imaging data over time, which can easily accumulate data

sets of 10 terabytes and more, depending on the spatial and temporal resolution and the dura-

tion of recording. Thus, handling and analysis of terabytes of time-resolved 3D (3D+t) micros-

copy images and the building of representative virtual models of embryos for finding and

tracking biologically relevant groups of cells is a major technical issue [4, 6, 11].

Existing approaches to cope with such large-scale data sets essentially comprise methods for

automatic detection, segmentation and tracking of fluorescently labeled cell nuclei or plasma

membranes. These tools enable quantitative reconstructions of cell shape changes [15, 19, 20]

and to create digital cell lineages of entire embryos [4, 8, 21–28]. Furthermore, software tools

like TeraFly, BigDataViewer or ParaView offer nice visualizations of large-scale image data

sets but the possibilities to quantitatively analyze cell movement trajectories are limited [29–

31]. Most of these workflows are available as open-source software and can be used to recon-

struct cell lineages, to visualize the results and to quantitatively analyze morphogenesis in the

early embryo [4, 9, 21, 28, 32–35]. Although these workflows were already successfully applied

to different biological organisms, such as fruit fly, zebrafish or mouse embryos [4, 19, 33], the

analyses were mostly constrained to test particular hypotheses including predefined region

of interest selections and, due to a lack of interactivity, on-the-fly analyses were impossible.

Moreover, despite the recent breakthroughs in 3D+t microscopy of biological organisms,

state-of-the-art segmentation and tracking algorithms still struggle with producing error-free

lineages in the presence of high cell density, requiring manual corrections of identified track

fragments [4, 33, 35, 36]. Hitherto, resulting cell lineages were thus mostly analyzed by using a

few manually curated selections and offline visualizations, which is time consuming and is not

suitable for experiments comprising multiple biological repeats. An interactive and systematic

approach that allows identifying groups of interest based on available prior knowledge and

that can be easily transferred to other data sets is still missing.

Based on preliminary ideas in our previous work [37, 38], we developed the new software

tool EmbryoMiner to make huge 3D+t tracking data sets accessible in a user-friendly and intu-

itive way, which we believe provides a solution to numerous manual lineage analyses con-

ducted in the past [39–56]. EmbryoMiner can be used to navigate and focus within the wealth

of cell trajectories, to derive new hypotheses on the fly, to interactively group the data on the

foundation of existing prior knowledge and to apply data mining methods such as clustering

and classification for automatic group identification. Following the idea of linking and brush-

ing [57], the possibility to select and analyze detected cell trajectories at arbitrary time points

or based on trajectory features among multiple synchronized visual representations makes

new types of experiments possible. For instance, the new framework enables interactive retro-

spective cell fate mapping or a virtual dissection of an entire organism that are impossible

using conventional fate mapping and dissection approaches. A set of interactive editing tools

is provided that can be used for efficient data curation of erroneous tracks and we provide data

importers to integrate with the existing segmentation and tracking solutions. As a proof of

principle, we provide application examples for all developed components and demonstrate the
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capabilities of our framework by interactively separating and analyzing hypoblast and epiblast

cells during zebrafish gastrulation in four different wild-type embryos and by semi-automati-

cally repairing tracks of precursor cells of the olfactory epithelium of a zebrafish embryo. We

anticipate that our framework will significantly increase the possibilities of interactively ana-

lyzing huge amounts of trajectory data in an efficient new way and will help gathering new

quantitative insights in embryonic development easily and fast.

Design and implementation

We developed EmbryoMiner, a new interactive analysis framework featuring responsive 3D

visualizations, semi-automatic selection strategies, data curation possibilities and a powerful

data analysis back end in order to interactively visualize, annotate and analyze huge amounts

of cell tracking data in a user-friendly and intuitive way as described in the following sections.

To demonstrate the capabilities of EmbryoMiner, we prepared two data sets that were acquired

using 3D+t light-sheet microscopy, one for analyzing cell movement trajectories at the whole

organism level and another one for focusing on neural crest cell development, a subset of the

cell population (see S1 Note for a brief overview of the sample data sets and S2 Note for

detailed materials and methods).

Ethics statement

Zebrafish (Danio rerio) wild-type embryos expressing a fluorescent marker in the cell nucleus

Tg(h2afva:h2afva-GFP)kca66Tg and neural crest reporter line Tg(-7.2sox10:h2afva-Eos)were

used in this study. Zebrafish husbandry and experimental procedures were performed in

accordance with German animal protection regulations (Regierungspräsidium Karlsruhe, Ger-

many, AZ35-9185.81/G-137/10).

Implementation details

EmbryoMiner was implemented on the foundation of the open-source data mining

toolbox SciXMiner for MATLAB [58, 59]. For improved user-friendliness, all methods are

accessible through a graphical user interface that allows analyzing data in an efficient way. Due

to the limited interactivity of MATLAB visualizations when dealing with large-scale 3D+t data

sets, we developed a new visualization framework based on the Visualization Toolkit (VTK,

http://www.vtk.org/). The framework is based on a new bidirectional interface between

MATLAB and VTK using local TCP sockets and custom callbacks that allows interactive 3D+t

trajectory data exploration directly from SciXMiner. Application-specific data visualizations

can be easily created to handle user interaction and to process inputs. SciXMiner provides full

analytical power to explore the data and the VTK interface is optimally suited to visualize huge

amount of complex 3D data. The bidirectional interface allows one to create and control 2D

and 3D visualizations in an interactive way. To get a modular and easily expandable software

interface for the visualization tasks, the VTK dependencies are separated in a C++ interface.

This interface is completely independent from MATLAB, allowing to reuse the algorithms also

for possible other interfaces or in other programming languages. All visualized objects are

accessible using unique IDs, in order to access and change properties of the objects and to cre-

ate arbitrary selections of groups of interest. The generic design of the visualization framework

permits integrating new visualization windows that are automatically connected to all other

existing windows with custom-tailored data representations. To integrate with existing track-

ing approaches, we implemented importers for tracking data obtained with TGMM [4], BioE-

mergences [33], TrackMate [60] and any algorithm that produces results in the Cell Tracking

Challenge format [24, 36] (S1 Video).
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Visual analysis of spatiotemporal cell migration patterns

Identifying spatiotemporal patterns in large-scale trajectory databases is an almost impossible

challenge without a convenient tool at hand that allows one to focus on a particular region or

phenomenon of interest. As a cornerstone of our newly developed framework, we thus imple-

mented a set of highly interactive trajectory data visualizations that enable an effective interac-

tion with huge 3D+t data sets. The different types of visualization allow focusing on various

aspects of the data and the most suitable or multiple complementary data representations can

be selected to optimally support the respective analysis task.

We implemented (1) a maximum intensity projection overlay of the raw images and the

tracking results, (2) the tracks of the moving cells in 3D, (3) a window containing only the

selected tracks in 3D for a more detailed analysis of an isolated group of cells and (4) a GPU-

accelerated volume rendering module that allows to view the tracking data directly in the

spatiotemporal 3D+t context of the raw images. In Fig 1 and S2 Video, we show maximum

intensity projections (Fig 1A) and 3D volume renderings (Fig 1B) of the neural crest cells of

Fig 1. Different possibilities to visualize 3D+t cell tracking data. (A) Temporally scrollable maximum intensity projection with superimposed

centroids of detected cell nuclei (red dots) allows following development over time. (B) Similar to the maximum intensity projections, detected nuclei

can be superimposed on interactive 3D volume rendering of the original data. (C) Tracks of all cells can be analyzed from arbitrary orientations in an

interactive and highly responsive 3D visualization using plain colors (C1) or quantitative trajectory features (C2, color-code indicates time). The panels

show neural crest cells of a zebrafish embryo at 20 hpf (A, B) and the trajectories spanning the entire experimental duration from 12.5 − 28 hpf (C). Scale

bar: 100 μm.

https://doi.org/10.1371/journal.pcbi.1006128.g001
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a zebrafish embryo (20 hpf) and the corresponding 3D+t cell migration trajectories (Fig 1C).

In the maximum projection view and the 3D volume rendering view, detected cell centroids

at each time point or the tracks are superimposed on a 2D projection of the raw images along

the x-, y- or z-axis, or directly rendered on the original 3D microscopy data. In both visuali-

zation modes, the user can easily scroll through all time points of the data set and zoom to a

specific region of interest to visually analyze cell migration patterns from a global scale down

to the single-cell level. The possibility of visualizing cell tracks in 3D additionally provides

insights into the global movement of the cells to investigate the movement paths spanning

the entire experimental duration. The user can interact with the data from different perspec-

tives and points in time to get familiar with the characteristics of the data, to derive new

hypotheses on the fly or to interpret morphological changes in the embryo. Moreover,

selected trajectories can be visualized in a separate 3D window to focus on a subset of the

trajectories.

Quantitative description of cell movement behavior

In addition to the qualitative visual analysis of the trajectory data, a major advantage of the dig-

ital representation of cell tracks is the possibility to quantitatively characterize the movement

behavior of individual cells or groups of cells. We provide a set of single features (one scalar

value or vector per track) that comprises global measures including length, center of gravity of

all spatial locations, average movement angle change or average speed, to name just a few. Fur-

thermore, time series features (one separate scalar value for each time point of a track) may be

used to analyze temporally changing properties of a track, such as speed, density, directional

changes, distance to a reference point and the like. An overview of trajectory features that we

re-implemented in the SciXMiner-based extension package is provided in [25, 35]. Once a

project has been loaded to SciXMiner, all implemented features can be added to the project via

the graphical user interface and will be computed instantly.

Calculated single features and time series can be used for colorization of cell trajectory data

in one of the visualization windows to visually analyze quantitative properties on top of the

original data (S3 Video). Moreover, we implemented a 2D scatter plot window to visualize

selected trajectory features and to apply feature-based data selection strategies. As a simple

example, Fig 2A and 2B shows how neural crest cells of a zebrafish embryo may be split into

different spatial regions using the end points of tracks in the investigated time interval and Fig

2C shows the feature-based separation of hypoblast and epiblast cells in a cross-section of a

whole-embryo data set.

Feature-based selections can either be based on manually specified thresholds or by using

the MATLAB-based SciXMiner back end of the framework to apply data mining methods

such as clustering, interactive filtering and classification. Fig 2B shows the result of searching

four clusters in the neural crest data set based on the spatial x- and y-coordinates of the cells at

a single time point. Fig 2C shows a custom-tailored cell trajectory feature, where we separate

hypoblast (magenta) and epiblast (green) cells in a cross-section of the whole-embryo data set

based on the ratio of effective displacement (distance between start and end point) vs. the inte-

grated path length (sum of the velocity vector magnitudes). Two groups of cells were identified

using a clustering algorithm and the final grouping is indicated by the color code. To cope

with potentially imperfect single-cell measurements (e.g., caused by discretization artifacts or

inhomogeneous marker expression), the SciXMiner back end allows to combine single-cell

measurements of selected groups of cells to more robust measures such as the median, quan-

tiles or mean time series.

Interactive knowledge discovery in large-scale cell tracking data of developing embryos
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Virtual dissection of large-scale cell tracking data

To visualize and analyze specific parts of the embryo in isolation, the user needs the ability to

interactively extract groups of interest in any of the data representations, i.e., a possibility to

virtually dissect the embryo is required. In addition to the quantitative feature-based descrip-

tion of cell properties, manual selection possibilities in arbitrary visualization windows are

required to interact with the data in an intuitive and efficient way. The trajectory database can

be globally truncated to a fixed spatial region and by specifying the time interval of interest if

the spatiotemporal occurrence of the groups of interest is known in advance. To manually

refine the region of interest, we equipped all visualization windows with various selection pos-

sibilities. Fig 3A and S4 Video exemplarily illustrate different selection possibilities applied on

the neural crest data set using a maximum intensity projection view, a 3D trajectory view and

a 2D scatter plot. All data visualization windows are synchronized such that the effect of a

Fig 2. Feature-based extraction of groups of interest. (A) Quantitative features associated with each of the cell tracks allows feature-based selections.

The left and right part of an embryo was separated along the anteroposterior axis using the end point coordinates of each track. (A1) and (A2) show the

identified groups of *1400 neural crest cells as a scatter plot (x coordinate of the trajectory end points versus the unique track ID) and a 3D rendering of

all trajectories. (B) Cluster algorithms can be used to automatically group the data. The example shows four identified clusters using the end point

locations in the XY-plane at a selected time point as a 3D rendering (B1) and a scatter plot (B2). (C) Special trajectory features can be used to

characterize particular cell movements in the early embryo. (C1) schematically illustrates the ratio of effective displacement (distance between start and

end point) versus the spatial length (integrated path length) that was used to automatically identify two clusters corresponding to hypoblast cells

(magenta) and epiblast cells (green) visualized as scatter plot (C2) and 3D rendering (C3). Panels (A) and (B) show neural crest cells of a zebrafish

embryo (12.5 − 28 hpf) and panel (C) is based on a slice cut from a whole-embryo zebrafish data set (5 − 7.25 hpf). Scale bar: 100 μm.

https://doi.org/10.1371/journal.pcbi.1006128.g002
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selection or deselection is instantaneously updated in all visualization windows (see consistent

color code for selected groups in Fig 3A and S4 Video). A freehand tool allows selecting and

deselecting single cells at a specific point in time or entire 3D cell tracks from an arbitrary per-

spective in any of the views (Fig 3B, S4 Video). For increased objectivity, it is possible to per-

form the selection based on any of the precomputed quantitative features using a 2D scatter

plot visualization or by using automatic methods such as clustering (S4 Video).

To keep track of different selections and operations applied on the data, the results of all

intermediate analysis steps can be recorded and visualized in a hierarchical selection tree

structure as demonstrated in Fig 3C and S4 Video for the neural crest data set. As for the other

visualizations, all windows are connected to each other and modifications are automatically

propagated through the whole tree. To be able to perform multiple analysis tasks simulta-

neously, operations can be selectively applied on specific branches of the tree, e.g., to separately

focus on anterior/posterior or left/right parts of the embryo as shown in Fig 3C. Besides

Fig 3. Interactive selection possibilities complement the automatic feature-based group selections. Tracking data

from cranial neural crest cells of a zebrafish embryo during 14-20 hpf are shown. (A) All visualization windows allow

selecting groups of interest using freehand selection tools. From the left: maximum intensity projection overlay of the

raw images and cell centroids for two time points of the neural crest data set at 12.5 hpf and 14 hpf (A1, A2); tracks of

all cells in 3D (A3); subset of selected tracks in 3D (A4); scatter plot of track-based features (A5). All visualization

windows (A1-A5) are synchronized to obtain consistent selections in all views (see corresponding color-code of panels

A1-A5). (B) Exemplary manual selection of a group of interest. Freehand selection tools allow intuitive and interactive

selection/deselection of groups of interest. (C) All performed selection steps can be recorded in a hierarchical selection

tree view and arbitrary nodes of the tree can be combined to new groups of interest. The hierarchical selection tree

view serves as a template to reproduce a particular selection on other data sets including the possibility of refinements

to adapt to biological variation of different data sets. The panels show neural crest cells of a zebrafish embryo (12.5 − 28

hpf). Scale bar: 100 μm.

https://doi.org/10.1371/journal.pcbi.1006128.g003
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visualizing intermediate results, all performed steps can be interactively modified and it is pos-

sible to combine different nodes to obtain a joint selection. The interactive visual tree structure

tool provides a complete overview of the whole analysis pipeline and allows users to concen-

trate only on subset of the data by interactively choosing the desired tree branch. Moreover,

the interactive visual tree structure serves as a template of the complete analysis pipeline and

helps to efficiently reproduce selections on another embryo to extract the same information

across different data sets. The comprehensive selection possibilities allow one to virtually dis-

sect an entire embryo, to quantitatively analyze a subset of the data and to perform analyses

like retrospective cell fate mapping by propagating the cell group associations back in time

[61].

Handling fragmented cell tracking data

Even though fluorescent dyes and microscopy techniques are constantly evolving, automatic

approaches to detect, segment and track cell nuclei are still error-prone and it is almost impos-

sible to obtain error-free lineages. Especially in highly complex biological data sets with high

cell density, inhomogeneous expression of fluorescent markers, limited spatial or temporal

image resolution, a lot of tracking errors may occur. To cope with potentially erroneous track-

ing data, a subsequent manual curation step is often inevitable in order to obtain longer tracks

that ideally cover the entire experimental duration. Particularly, the analysis of global spatio-

temporal characteristics of the moving cells or cell lineage analyses rely on the availability of

complete tracks.

Based on our visualization framework, we implemented a guided track correction tool that

can either be applied on selected groups of tracks or on the entire data set (S2A Fig, S5 and S6

Videos). Possible successor and predecessor tracks are automatically identified based on spatial

distance and additional features such as fluorescence intensity difference of potential linking

candidates (S2 Note). The measure can be used as an automatic curation heuristic that links

fragmented tracks if the distance is below a user-defined threshold. Moreover, the distance

measure is used to identify the most likely linking candidates during manual tracking, to effi-

ciently guide the user through the manual curation process with minimal effort (S2 Note, S4

Fig). Different correction modes such as depth-first and breadth-first in both temporal direc-

tions help to focus only on the specific corrections required for a particular analysis task or the

current group of interest. Moreover, the corrections are supported by interactive maximum

intensity projections along all major axes and 3D volume rendering views that focus on the

region of interest required for the current correction task. The region of interest used for the

3D volume rendering can be interactively adjusted, to either analyze the cells in the global con-

text or to focus only on a few cells that are required to resolve the respective linking decisions

(S5 Video). In cases where only a few representative tracks are corrected manually, the remain-

ing track fragments can be automatically assigned to the groups of interest based on a majority

voting of validated tracks in the spatial proximity (S2 Note).

Results

Interactive separation of hypoblast and epiblast cells in zebrafish

To demonstrate the capabilities of the introduced framework, we analyze the first major gas-

trulation event in zebrafish development, namely the involution of cells at the germ ring

margin at about 5.5 hours post fertilization (hpf) [62]. Therefore, we interactively separate

hypoblast (involuting) and epiblast (non-involuting) cells in trajectory data of four wild-type

zebrafish embryos in an efficient, intuitive and reproducible way. The individual steps per-

formed to separate the two groups of interest are summarized in Fig 4. Starting with the
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Fig 4. Steps that were performed for extracting hypoblast cells in four different wild-type zebrafish embryos with

developmental time ranging from 2–14 hpf (A). The knowledge discovery process was designed interactively on Embryo

01. First, the embryo was filtered temporally (5–7.25 hpf) and spatially (region around the blastoderm margin) to focus on

the region of interest (B, C). The two groups of cells were separated using a feature-based clustering approach (D-F). The

whole analysis pipeline was then applied to Embryos 02-04 resulting in the extraction of the same internalizing cells in all

embryos. The color code in panels (A-E) indicates time from 2–14 hpf and the group association to hypoblast (magenta) or

epiblast (green) in panel (F).

https://doi.org/10.1371/journal.pcbi.1006128.g004
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whole embryo data sets (Fig 4A), we cropped a time range of 5 – 7.25 hpf to cover the initial

gastrula period (Fig 4B). Furthermore, to focus on the region where involution happens, the

embryos were spatially filtered to a region containing the germ ring margin with sufficient

coverage of the surrounding tissue towards the animal and the vegetal pole (Fig 4C). The

involution happening at the germ ring margin causes the tracks of hypoblast cells to be U-

shaped, i.e., their effective displacement is much lower than the integrated path they travel

during the gastrula phase (Fig 2E). Using this criterion, we automatically identify two clus-

ters of tracks that were longer than 70% of the total time span and assign all remaining

shorter tracks to one of these two classes based on the most common class memberships of

labeled tracks in their spatial proximity (Fig 4B–4F, S2 Note, S3 Video). Extracted hypoblast

cells are shown in Fig 4D and 4E and the shield region appears as a region of increased cell

density at the future dorsal side of the embryo (highlighted in Fig 4D). The color-coded visu-

alizations of both cell groups shown in Fig 4F qualitatively illustrate the localization of both

groups within the embryo. The selection pipeline was developed on the first embryo and sub-

sequently reproduced on all other embryos. The possibility to interactively refine all selection

steps allowed us to cope with natural variability of the data sets and to easily adapt parameter

settings appropriately. Visual comparison of the four columns in Fig 4 indicates that the

extracted groups are highly similar.

Quantitative analysis of tissue deformation during zebrafish gastrulation

To quantify the movement behavior of the separated epiblast and hypoblast cells, we use the

mechanical deformation features proposed in [35]. For mathematical details on the feature

computations, we refer the reader to the original publication. All features are based on analyz-

ing local deformations of groups of cells with respect to a reference cell in the center of the

respective region. Before calculating the mechanical deformation features, we applied a Butter-

worth low-pass filter with an order of two and a normalized cutoff frequency of 0.01 that pre-

served the global characteristics of the tracks while efficiently suppressing local noise [63].

In Fig 5 and S3 Fig, the quantitative features obtained for hypoblast and epiblast are plotted.

We analyzed the speed of each cell (magnitude of the velocity vector), the volume change rate

denoted by P (values larger/smaller than zero indicate expansion/compression of the tissue),

the rotation discriminant D (values larger than zero indicate rotation around a reference cen-

troid) and the distortion rate Qd (indicates that objects contained within a small neighborhood

change their relative positions while the surrounding volume remains constant).

At 5 hpf, the hypoblast cells move slightly faster than the epiblast cells. This behavior

changes as soon as the involution of the hypoblast starts, i.e., cells located at the interior side of

the germ ring change direction and move towards the animal pole of the embryo. In addition,

the rotation discriminant D peaks between 5.5 hpf and 5.9 hpf, indicating an increased rota-

tional movement at the germ band margin. By contrast, both the speed and the rotation dis-

criminant of the epiblast cells remain more or less constant throughout the analyzed time

interval. As one would expect, the volume change rate P is larger than zero for the epiblast cells

indicating extension movements of this cell group. The time course of P measured for the

hypoblast cells remains largely around zero with a short negative phase right before the rota-

tion discriminant peaks. Thus, the hypoblast cells seem to temporarily compress at the germ

ring margin before involution starts. At 7.25 hpf, the P time courses of hypoblast and epiblast

converge on each other and remain small but positive, suggesting similar extension move-

ments in both groups of cells. The increased Qd values of the hypoblast cells peaking at 5.75

hpf may imply that many of those cells change their neighbors without changing the enclosing

volume, i.e., suggesting an increased amount of cell intercalations occurring in the hypoblast

Interactive knowledge discovery in large-scale cell tracking data of developing embryos
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group. However, this has yet to be confirmed by further analyses, as these quantitative features

only provide an initial indicator for this hypothesis.

We note that Embryo 03 physically moved during image acquisition and, thus, the plots for

the speed feature depicted in Fig 5 and S3 Fig are globally affected. We intentionally left these

Fig 5. Quantitative comparison of selected tissue deformation features recently published by [35] measured for hypoblast (blue) and epiblast

(magenta) cells. Each column contains the results obtained on one of four wild-type zebrafish embryos in a time interval spanning early gastrulation

from 5 − 7.25 hpf. The selected features comprise speed, the rotation discriminant D, the volume change rate denoted by P and the distortion rate Qd as

described in the main text. Note that Embryo 03 physically moved during image acquisition, which caused the increased total speed. Despite this global

speed difference, all other quantitative features were nicely captured and revealed comparable patterns among all analyzed embryos.

https://doi.org/10.1371/journal.pcbi.1006128.g005
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panels for demonstration purposes, as these subtle movements were not identified during

visual inspection of the maximum intensity projections. Of course, automatic alignment of the

data sets before the actual feature extraction would easily get rid of such global movements of

the specimens. Nevertheless, only the speed feature was affected by this global movement of

Embryo 03. The qualitative behavior of the remaining features is in accordance with the other

three wild-type embryos.

Reconstructing trajectories of precursor cells of the olfactory epithelium in

zebrafish

Fig 6 and S6 Video show a typical workflow and the results of the track correction steps. A set

of about 100 precursor cells of the olfactory epithelium were selected at 23 hpf in the neural

crest cell data set (blue selection in Fig 6A). The tracks were interactively corrected using a

depth-first search strategy based on the predefined selection of cells of interest. A recent study

in zebrafish showed that neural crest cells provide major contribution to microvillous sensory

neurons in the olfactory epithelium [64]. The authors elegantly demonstrated the contribution

of neural crest cells by photoconversion-based fate mapping and time lapse imaging, however,

the origin and their migration path remained not investigated. Here, the trajectories of the

olfactory neural crest cells revealed by our retrospective tracking (Fig 6, S6 Video) show bilat-

eral origin of the neural crest cells in the olfactory placode and high directionality toward the

anterior direction. The latter high directionality is consistent with the chase-and-run behavior

of neural crest cells toward olfactory placodal cells [65].

Availability and future directions

The open-source MATLAB toolbox SciXMiner and the new trajectory analysis framework

EmbryoMiner presented in this contribution can be downloaded from https://sourceforge.net/

projects/scixminer. We provide a quickstart guide containing installation instructions and

details on how to test the application in S3 Note. A general introduction to SciXMiner can be

found in [59] and a detailed documentation of the individual components of EmbryoMiner

are shipped with the extension package. Moreover, we provide sample data that can be used to

Fig 6. Interactive tracking correction of neural crest cells of a zebrafish embryo. (A) To analyze the precursors of the olfactory epithelium, a

particular subgroup of neural crest cells of a zebrafish embryo, a set of about 100 cells was interactively selected at 23 hpf (blue). The corrected tracks are

shown in the global context (B) as well as in isolation using time for coloring (C). Scale bar: 100 μm.

https://doi.org/10.1371/journal.pcbi.1006128.g006
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understand the presented components of the framework including all visualization modules,

selection possibilities, application of data mining methods and data import.

In future releases, we plan to further facilitate the transfer of the analysis pipelines to new

embryos, e.g., by automatically detecting and registering corresponding anatomical regions of

interest or by training a classifier on the first data set and by automatically classifying all tracks

of the remaining data sets automatically using the pretrained classifier. Moreover, we plan to

add more sophisticated curation heuristics that potentially can go back to the original image

data to resolve ambiguous matches or to add missing links automatically.

Supporting information

S1 Note. Image acquisition, segmentation and tracking in brief.

(PDF)

S2 Note. Materials and methods.

(PDF)

S3 Note. Quickstart guide.

(PDF)

S1 Fig. Preprocessing steps to automatically detect, segment and track fluorescently

labeled nuclei in light-sheet microscopy images of a zebrafish embryo. (A) Maximum inten-

sity projection of a single time point of an entire zebrafish embryo at early somitogenesis stages

[11, 66]. (B) Maximum intensity projection of a 3D light-sheet microscopy image with super-

imposed centroids of detected cell nuclei in red. (C) Volume rendering of segmented cell

nuclei using a random color code. (D) Exemplary movement paths for 25 arbitrarily selected

neural crest nuclei of a zebrafish embryo that were automatically tracked using a nearest neigh-

bor algorithm [58, 59]. Dorsal view of the anterior half of the embryo (anterior up). All data

sets were aligned prior to the analysis, to obtain a common reference orientation. (E) Whole-

embryo data sets were oriented such that the animal-vegetal axis was aligned with the y-axis

(animal pole on the positive y-axis) and the dorsoventral axis was aligned with the x-axis (dor-

sal part on the positive x-axis). (F) The embryos highlighting neural crest cells were oriented

such that the anteroposterior axis formed a left-right symmetry axis with the head region on

the positive y-axis (dorsal view, anterior up). Circled regions in (F) indicate the positions of

the prospective eyes and the olfactory epithelium of the embryo, respectively. The green rect-

angle in panels (A) and (E) indicates the neural crest cell region visualized in (F). Panels (A)-

(D) were adapted from [67] and panel (E) was adapted from [11]. Scale bar: 100 μm.

(TIF)

S2 Fig. Interactive and semi-automatic strategies to correct and analyze fragmented cell

tracks. (A) Erroneous tracks can be interactively repaired to obtain a set of corrected full-

length tracks. The curation mode features interactive maximum intensity projections and 3D

volume rendering with superimposed cell tracks. Moreover, link candidate predictions and

different curation modes like breadth-first or depth-first curation strategies minimize the

required manual correction effort. (B-F) As an alternative to manually correcting the entire

tracking database, we propose to select only a subset of sufficiently long tracks (B, e.g., select

only tracks spanning over 70% of the time interval of interest), to perform the region of inter-

est selection on these corrected tracks (C-E) and to finally assign all unlabeled tracks to the

predominating group of their spatiotemporally nearest neighbors (F). Panel (A) shows a C. ele-

gans embryo of the Cell Tracking Challenge that was imported to EmbryoMiner (data set by

the Waterston lab, The George Washington University, Washington D.C., USA) [24, 36] and
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panels (B-F) show cropped regions of a whole-embryo zebrafish data set (S2 Note).

(TIF)

S3 Fig. Quantitative comparison of selected tissue deformation measured for all hypoblast

cells of all embryos (first column), all epiblast cells (second column), all cells present in

selected time window of 5 − 7.25 hpf (third column) and the spatially cropped data selec-

tion (fourth column). The extracted features are identical to the ones depicted in Fig 5 but

all embryos are shown in a single plot for easier comparison. Except for the speed feature of

Embryo 03 that was affected by the movement during image acquisition, all other quantitative

features were nicely captured and revealed comparable patterns among all analyzed embryos

and groups. The group selections in the last two columns show that properly selected regions

are crucial to avoid the superposition of different movement behaviors.

(TIF)

S4 Fig. Quantitative assessment of the manual curation module. (A) Distribution of the

selected correct link candidate, where Candidates 1-3 are the automatic suggestions computed

by the framework and Candidate 4 indicates that the user selected an alternative link candidate

to be correct. (B) Box plots of the distance in pixel of the selected link candidate. (C) Box plot

of the time in seconds that was required by the manual annotator to perform the decision. For

box plots in (B) and (C), the median is indicated by red bar and the 25% and 75% quantiles are

indicated by the lower and upper extents of the box, respectively. (D) Scatter plot of time in

seconds versus the distance of the linked candidate. Color and symbols indicate, which candi-

date has been selected. (E) Selected trajectories of the neural crest data set before (left) and

after the manual curation (right). Time is indicated by the color-code from blue to red.

(TIF)

S1 Video. Importers for the tracking algorithms implemented in the TGMM, BioEmer-

gences, TrackMate or Cell Tracking Challenge format. These importers allow applying the

proposed interactive analysis approaches on tracking results obtained by other existing pipe-

lines. The video demonstrates how, e.g., data extracted with the BioEmergences workflow [33]

can be imported and analyzed using the presented framework.

(MP4)

S2 Video. Overview of the provided visualizations to interactively analyze 3D trajectory

data. The visualized sample data shows neural crest cell development of a zebrafish embryo

from 12.5 − 28.0 hpf as a 3D trajectory rendering and an overlay on a 2D maximum intensity

projection. The final part of the video shows an interactive 3D volume rendering visualization

with superimposed detections of a C. elegans embryo that was imported to EmbryoMiner

(Cell Tracking Challenge data set by the Waterston lab, The George Washington University,

Washington D.C., USA, [24, 36]).

(MP4)

S3 Video. Exemplary trajectory feature visualization. Single features, time series and selec-

tions can be used for colorization of the visualized trajectories. The video shows the density

(calculated as the number of neighbors within a fixed sphere of 40 μm surrounding each

nucleus). Furthermore, we show the hypoblast (magenta) and epiblast (green) cells that were

automatically identified.

(MP4)

S4 Video. Overview of the selection possibilities provided by the framework. Selections can

be performed on trajectory level in 3D, at a specific point in time in a 2D projection or based

on trajectory features (manual selection in a scatter plot or using feature-based clustering and
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classification). All views and selections are synchronized and a hierarchical selection tree

allows combining arbitrary groups and to apply a selection pipeline to other data sets.

(MP4)

S5 Video. Demonstration of the trajectory curation framework. Erroneous tracks can be

interactively repaired to obtain a set of corrected full-length tracks using maximum intensity

projections and 3D volume rendering of the raw image data with superimposed detections

and tracks. The curation process is assisted using link candidate predictions and different cura-

tion modes like a breadth-first or a depth-first curation strategies. In addition to the full data

set view, it is possible to shrink the visualized region of interest to minimize distraction from

the current link candidate by the surrounding tissue. The video shows a C. elegans embryo of

the Cell Tracking Challenge that was imported to EmbryoMiner (data set by the Waterston

lab, The George Washington University, Washington D.C., USA) [24, 36].

(MP4)

S6 Video. Application of the trajectory curation framework to precursor cells of the olfac-

tory epithelium in zebrafish. For demonstration purposes, we selected about 100 precursor

cells of the olfactory epithelium at 23 hpf and corrected the corresponding tracks using a

depth-first strategy. The video illustrates the selection of the group of interest, some exemplary

linking actions and the final results of the curation.

(MP4)
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image Informatics Platform for Extended Reproducible Research. Nature Methods. 2012; 9(7):690–

696. https://doi.org/10.1038/nmeth.2075 PMID: 22743774
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