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Abstract: Assessment of heart sounds which are generated by the beating heart and the resultant
blood flow through it provides a valuable tool for cardiovascular disease (CVD) diagnostics. The
cardiac auscultation using the classical stethoscope phonological cardiogram is known as the most
famous exam method to detect heart anomalies. This exam requires a qualified cardiologist, who
relies on the cardiac cycle vibration sound (heart muscle contractions and valves closure) to detect
abnormalities in the heart during the pumping action. Phonocardiogram (PCG) signal represents the
recording of sounds and murmurs resulting from the heart auscultation, typically with a stethoscope,
as a part of medical diagnosis. For the sake of helping physicians in a clinical environment, a range
of artificial intelligence methods was proposed to automatically analyze PCG signal to help in the
preliminary diagnosis of different heart diseases. The aim of this research paper is providing an
accurate CVD recognition model based on unsupervised and supervised machine learning methods
relayed on convolutional neural network (CNN). The proposed approach is evaluated on heart sound
signals from the well-known, publicly available PASCAL and PhysioNet datasets. Experimental
results show that the heart cycle segmentation and segment selection processes have a direct impact
on the validation accuracy, sensitivity (TPR), precision (PPV), and specificity (TNR). Based on
PASCAL dataset, we obtained encouraging classification results with overall accuracy 0.87, overall
precision 0.81, and overall sensitivity 0.83. Concerning Micro classification results, we obtained
Micro accuracy 0.91, Micro sensitivity 0.83, Micro precision 0.84, and Micro specificity 0.92. Using
PhysioNet dataset, we achieved very good results: 0.97 accuracy, 0.946 sensitivity, 0.944 precision,
and 0.946 specificity.

Keywords: CVD; heart sounds; PCG; denoising; segmentation; deep learning; convolutional neural
network

1. Introduction

Sudden heart failure caused by cardiovascular diseases (CVDs) is one of the top
causes of death globally. It causes about 17.3 million deaths per year, an amount that is
estimated to rise to more than 23.6 million by 2030 according to the latest WHO report [1].
Moreover, it causes 45% of deaths in Europe [2], 34.3% in America [3], and more than 75% in
developing countries [4]. In other words, due to unhealthy lifestyle, unavailability, financial
or even carelessness constraints, persons neglect regular heart screening, which can favor
the CVDs. Cardiovascular problems are considered as a potential medical emergency and
must be detected without delay [5]. Earlier diagnosis of CVDs helps patients to decrease
considerably the heart failure condition [6].

CVD diagnosis can be done by using the widely known auscultation methods based
on stethoscope, phonocardiogram, or echocardiogram. A cardiologist expert could use
phonocardiogram (or PCG) to visualize the recorded heart sound during a cardiac cycle
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based on a phonocardiograph device [7,8]. Also, they can use an echocardiogram (average
cost of 1500 as per current cost [9]) to visualize the heart beating and blood pumping.
Using a stethoscope, the cardiologist listens to the patient heart sound and tries to find out
clues of unusual heart sound (murmurs), which is symptomatic of cardiac abnormalities.
The recorded heartbeat sounds different between a normal heart sound and an abnormal
heart sound as their PCG signal differs significantly from each other with respect to time,
amplitude, intensity, homogeneity, spectral content, etc. [10].

Roughly, all of these heart screening procedures are expensive and require a lot of
experience. As stated previously, auscultation requires an experimented cardiologist to
obtain an accurate diagnosis [3]. According to some research, medical students and primary
care physicians can reach only 20 to 40% accuracy in the heart screening process [11–13],
and roughly 80% can be achieved when conducted by expert cardiologists [11,13]. In other
words, there is a lack of a reliable solution for earlier diagnosis of CVDs.

Developing an accurate, accessible, and easy-to-use solution enables the democra-
tization of the early heart screening, which can significantly help patients to stabilize or
even to heal cardiovascular disease. Therefore, the PCG heart screening is considered a
high-potential research topic that will expand and develop in the near future [11,13]. Many
of the existing research work generally focuses on automatic cardiac auscultation based on
classical machine learning methods [14,15] and deep learning models [16,17].

Relying on these ascertainments, this research aims at proposing a reliable CVD
screening based on PCG signal classification. Particularly, an automatic method for PCG
heart sounds analysis and classification, which is useful to detect heart pathology in
clinical applications. The main contribution of our work concerns the proposition of a new
and powerful preprocessing approach based on: infinite impulse response (IIR) filter for
automatic noise deletion, an automatic powerful heart cycle segmentation (HCS) method
based on envelop detection using Daubechie’s wavelet decomposition, a new HCS segment
selection approach based on PCG feature clustering relaying on Gaussian mixture model
(GMM). This new preprocessing approach is experimented on both Pascal and PhysioNet
datasets with an extensive experimental study based on 17 convolution neural network
(CNN) pretrained and fine-tuned models for the automatic PCG disease classification.

This paper is laid out as follows: Section 2 presents related work of existing methods,
then Section 3 introduces the proposed model. The experiment setting and implementation
are described in Section 4. Section 5 discusses the experimental results. Section 6 concludes
the paper and indicates future and related research directions.

Contributions

This research focuses on the e-health field and aims in providing a PCG classification
approach that may help to detect earlier heart abnormalities. Our aim is to design and
optimize an accurate algorithm to recognize the signatures of normal, murmur, and ex-
trasystole heart rhythms using available experimental dataset. In this contribution, we
focus on supervised machine learning techniques with the aim of extracting the signatures
that identify normal, murmur, and extrasystole PCG signal. Our main contribution con-
cerns the proposition of a new and powerful preprocessing approach that involves: IIR
filter for automatic noise deletion; an automatic powerful Heart Cycle Segmentation (HCS)
method based on envelop detection using Daubechies wavelet decomposition; a new HCS
segment selection approach based on PCG feature clustering relaying on Gaussian mixture
model (GMM), and an extensive experimental study based on 17 CNN pretrained and
fine-tuned models for the automatic PCG disease classification.

2. Related Work

A substantial amount of research studies was presented towards the identification
and classification of PCG signal, i.e., a digital heart sound signals recorded through an
electronic stethoscope. Processing and analyzing PCG signal is based on solving three
main challenges towards fully automatic heart sound identification and classification.
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The first is preprocessing and PCG signal denoising to detect the noncardiac sounds.
In this step, the additional noise is removed or reduced, and heart sounds are enhanced.
This is usually achieved by removing some undesired frequencies or frequency bands in
the signal, a process known as filtering.

The second challenge is heart sound segmentation, which is used to localize the main
heart sound components. In this step, the heart sound signal is split into the following heart
cycles: first heart sound (S1), the systolic period (siSys), second heart sound (S2), and the
diastolic period (siDias). In the literature, there are several possible approaches to segment
PCG signal. One of the used approaches is to identify the time instant and duration of
the S1 and S2 heart sounds, by using some sort of a peak-picking algorithm. Advanced
approaches apply temporal statistical models to search for the most likely hidden state
sequence according to a set of observations.

The third challenge is feature extractions and classification of PCG signal into normal
and abnormal heart sounds classes. In this step, researchers usually apply standard
procedure that consists of the following steps: (1) extracting the features from the PCG
signal, (2) feeding the selected classifier with the extracted features, and (3) finally, the
classifier algorithm infers the presence or not of abnormal heart sounds.

Different survey papers discussed the PCG signal analysis challenges. A survey done
by Meziani et al. discussed the analysis of different PCGs signals using wavelet transform-
based methods (WT) only [18]. Another review was done by Chakrabarti et al. where the
authors compared different methodologies used in the PCG signal analysis. Based on their
comparative study, the authors suggested that empirical mode decomposition (EMD) is
better suited for noisy PCG signals. In addition, they suggested the use of hybrid machine
learning classifiers to improve the classification results [19].

Nabih et al. [20] reviewed research papers between 2004–2016 that cover intelligent
computer-aided diagnosis (CAD) systems based on PCG signal analysis. They concluded
that large databases are needed for use with different machine learning classifiers to
improve the heart sounds classification accuracy. Also, they suggested to look on deep for
more effective methods to reduce the heart sound signals noises.

2.1. PCG Signal Preprocessing, Denoising, and Enhancing

In the process of collecting the heart sounds recording, it is often disturbed by external
and internal noisy sources such as chest movements, respiration sounds, muscle contraction,
external noise from the surrounded environment, etc. All these noises may change the
characteristics of recorded PCG signal and can make the analysis more difficult. Therefore,
it is important to use appropriate denoising algorithm on PCG signal before any further
analysis. PCG signal denoising is generally achieved through the utilization of suitable
filter, most commonly infinite impulse response (IIR) or finite impulse response (FIR), to
separate the PCG signal from the attached noises as a simple denoising method [21].

Kwak and Kwon [5] applied the Wiener filter to reduce the background noise, while
Dewangan [22] developed an adaptive filter that can remove the noise from the signal
using least mean square (LMS) algorithm. In [23], PCG signals were denoised using the
maximally flat magnitude (Butterworth) filter. The authors in [24–27] applied wavelet trans-
formation (WT), a well-known denoising technique to identify true PCG signal components.
Another PCG signal denoising method can be achieved via EMD, where complicated data
are decomposed into a finite-small number of components [28]. A combined multilevel
singular value decomposition (SVD) and compressed sensing method is also proposed
by [29] for PCG signal noise removal. Moreover, in the [30], PCG signal denoising tech-
nique was proposed based non-negative matrix factorization (NMF) and adaptive contour
representation computation (ACRC).

2.2. PCG Signal Segmentation

Heart sounds segmentation is a fundamental step in PCG signal analysis. In this step,
the locations of S1 (beginning of the systole) and S2 (end of the systole) heart sounds in
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a PCG signal are identified. Heart sounds are created by blood flow and vibrations of
tissues during the cardiac cycle, and transient heart sounds can be classified into four heart
sounds (S1, S2, S3, and S4). In general, only the first S1 and the second S2 heart sounds can
be called as the main primary heart sounds, and the cardiac cycle can then be estimated
according to the locations of S1 and S2. Certain variations over S1 and S2 properties such
as their duration or intensities can be considered as the primal signs of cardiac anomalies.

For PCG signal segmentation, there exists various prior research works that proposed
different techniques: firstly, the envelope-based method, which is one of the popular
approaches in PCG segmentation. Choi and Jiang made a comparative study about the
most used envelope-based methods: Shannon energy, Hilbert transform, and the casdiac
Sound characteristic waveform (CSCW) [31]. Shannon energy and entropy envelope was
used by [25,26,32–36]. Other techniques use envelope extraction based on WT to gain
the frequency characteristics of of S1 and S2 sound components [15]. Various research
studies used different envelope extraction methods for segmentation including Hilbert
phase envelope [33], ensemble empirical mode decomposition (EEMD) [37], Hilbert
transform [38–40], and autocorrelation [41,42].

Recently, methods such as a hidden Markov model (HMM) and a hidden semi-Markov
model (HSMM) were used [43,44] for PCG segmentation. Gamero and Watrous [44] sug-
gested the use of HMM to identify the S1 and S2 sounds. They used a topology combining
two separate HMMs to model the Mel-Frequency Cepstral Coefficients (MFCC) of both
systolic and diastolic intervals, respectively. The method achieved a sensitivity of 95% and
positive predictivity of 97%. Schmidt et al. [43] proposed a method that extracts a range of
features that are then used to train a duration-dependent HSMM to segment the PCG heart
signals. Moreover, Logistic Regression-HSMM-based algorithm [45] is considered one of
the most advanced method that achieved reasonable results in heart sound segmentation.
Springer et al. [45] used the HSMM with the modified Viterbi algorithm to identify the start
and end state of the PCG heart sound signal. The proposed method achieved an average
F1 score of 95.63% on the testing dataset.

2.3. PCG Signal Feature Extraction and Classification

Feature extraction is a key step in PCG signal analysis as extracting the correct features
is the basis for a successful heart sounds classification. Most of the extracted features for
PCG heart signal are computed mainly using time, frequency, and statistical measures.
A list of the most used features are as follows: heart rate, duration of S1, S2, Systole or
Diastole, total power of the PCG signal, zero crossing-rate, MFCC, WT, Linear Predictive
Coding (LPC) coefficients, and Shannon entropy. After extracting PCG signal features,
the next step is to select suitable classifier to perform the classification process. Various
machine learning algorithms were proposed by researchers to complete the PCG heart
signal classification, such as artificial neural network (ANN), support vector machine
(SVM), K-nearest neighbors (KNN), and other blended classification methods.

ANN is one of the most widely used machine learning-based approaches for classi-
fication. However, there is relatively little work done on deploying this method in heart
signals identification. Eslamizadeh and Barati [46] used the ANN for heart disease classifi-
cation. Continuous wavelet transform (CWT) with Morlet wavelet function were used to
extract primary heart sounds S1 and S2 from the PCG signal. Features such as maximum
amplitude were first normalized and then used by the ANN classifier to detect the murmur
of heart sound signals.

Another successful machine learning algorithm that used mostly for heart sounds
classification is SVM. Zheng et al. [15] used SVM to identify automatically the coronary
heart diseases. Wavelet decomposition methods were utilized firstly on the PCG signal,
and then the total energy and the sample entropy of each sublevel are used as input features
for the SVM classifier. A classification accuracy of 97.17%, with a specificity of 98.55% and
a sensitivity of 93.48%, were reported using the proposed method.
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Research done by Kang et al. [47] also used SVM and ANN classifiers to detect Still’s
murmur in children. They used the following features for classification: time domain
features, including the average Shannon energy and envelope detection in addition to the
frequency domain features, specifically the spectral width and peak frequency of the main
heart sounds S1 and S2. They achieved to 84–93% sensitivity and 91–99% specificity using
the proposed classification method. On other hand, Deng and Han [48] reached to accuracy
equal to 91% using SVM classifier and autocorrelation features such as the sub-band auto-
correlation function. Discrete wavlet transform (DWT) was used to identify the sub-band
envelopes derived from the sub-band coefficients of PCG signal which then was used to
extract autocorrelation features. Later, these features were fused using diffusion maps to
get unified features and fed to the SVM classifier. To extract the discriminative features,
Zhang et al. [32] used Partial Least Squares Regression (PLSR) to reduce the dimension of
the scaled spectrograms. Afterword, SVM was used with the extracted features for classifi-
cation. The proposed method was able to differentiate heart murmur from extrasystole
with precision reached 91% using two public datasets offered by the PASCAL classifying
heart sounds challenge. Another research study from the same authors Zhang et al. [49]
proposed a method to analyze the heart signals based on scaled spectrogram and tensor
decomposition. They used the following steps: (1) scaling the heart signal spectrograms
into a defined size; (2) reducing the dimension of the scaled spectrograms; (3) extracting
the intrinsic structure of the scaled spectrograms using tensor decomposition method, and
finally, (4) classifying the heart signals using SVM and extracted features. The proposed
method is evaluated on PASCAL and 2016 PhysioNet challenge, and the highest normal
precision was 96%.

Redlarski et al. [50] combined SVM and modified cuckoo search algorithm with linear
predictive coding (LPC) coefficients as input feature to build heart sounds diagnostic
system. The developed system achieved accuracy of 93% for separating innocent murmur
(S1, S2, S3, and S4) and organic murmur. Güraksin and Uguz [51] proposed the use of Least-
squares SVM (LS-SVM) for heart sound signal classification. The wavelet Shannon entropy
feature vectors were extracted and inputted to the classifier. A classification accuracy of
96.6% was obtained using their proposed technique. Patidar and Pachori [52] reported a
method for cardiac sound signals features extraction using constrained tunable-Q wavelet
transform (TQWT). LS-SVM was used then for classification with various kernel functions.
An classification accuracy of 94.01% was registered using their proposed model.

Other research studies proposed the use of KNN algorithms to classify abnormal
heart sounds. Oliveira et al. [53] utilized KNN algorithms to detect cardiac murmurs using a
combination of time-frequency domain and perceptual and fractal analysis. Hamidi et al. [54]
suggested two techniques to distinguish between normal and abnormal heart sound
signals. In the first proposed technique, the power spectrum for the fitted signal curve was
calculated and used as the first feature. In the second technique, the cardiac signal was
divided into segments and the fractal dimension was calculated for each segment then the
resultant signal was considered as another feature. Both features were used as inputs into
KNN classifier and an overall accuracy of 92%, 81% and 98% were achieved, respectively,
for three used datasets.

Potes et al. [55] used both the Adaboost and Convolutional Neural Network (CNN)
classifiers to classify the heart sounds into normal and abnormal for the PhysioNet/CinC
Challenge 2016. A group of time-frequency extracted features was used for PCG signal
classification and their accuracy was 86%. A study by Bozkurt et al. [56] suggested the
use of MFCC, Mel-Spectrogram, and sub-band envelopes features to automatically detect
heart abnormality from PCG signal. They reported 81.5% accuracy, 78.5% specificity, and
84.5% sensitivity detection rate after inputting the proposed features into the CNN learning
algorithm.

Messner et al. [57] detected the positions of S1 and S2 in heart sound signals using deep
recurrent neural network (D-RNN) along with spectral and envelope features. They used
virtual-adversarial training (VAT) dropout and data augmentation for regularization. They
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achieved an average score of F1 around 96% on an independent test set. Yaseen et al. [58]
proposed heart sound automatic classification based on several extracted features. MFCC
and DWT were used to extract the features of heart sound signals. While for classification,
deep neural network (DNN), SVM, and centroid displacement-based KNN were selected
for the classification stage. Their proposed methodology was proven to diagnose heart
disorders in patients with 97% accuracy.

Chen et al. [59] used regression tree-based classification scheme with a CWT to dif-
ferentiate organic from functional murmurs. They reported 90% classification accuracy in
their research paper. For feature extraction, SVD and QR-Factorization were used on the
time-frequency matrix attained using the CWT. In addition, features based on Gini index
and the Shannon entropy were calculated as well on the decomposition process. To reduce
the computational complexity, only number of features was selected using the Sequential
Forward Floating Selection (SFFS) algorithm for the classification system.

Safara et al. [60] used BayesNet classifier to identify cardiac valve disorders, and they
reached 96% classification accuracy. New wavelet packet entropy feature was introduced
in their research paper to classify of five types of heart sounds and murmurs. Wavelet
packet transform was employed for heart sound analysis, and the entropy was calculated
for deriving feature vectors.

Guillermo et al. [61] proposed a Radial Wavelet Neural Network (RWNN) with
Extended Kalman Filter (EKF) model for heart disease classifications. CWT was used
to segment PCG signal and identify primary heart sounds, S1 and S2. The dimensional
features that were extracted from the cardiac cycles are then used as inputs into the
proposed model. They reported 98.04% classification accuracy rate using the proposed
learning model.

Safara et al. [62] considered the use of multilevel basis selection (MLBS) method for
signals with a small range of frequencies. Their method based on preserving only the
most useful bases of a wavelet packet decomposition tree through applying the following
elimination criteria: frequency range, noise frequency, and energy threshold. In classifying
heart sounds, an accuracy of 97.56% was achieved using the MLBS method.

Thiyagaraja et al. [63] presented patient-centered device system that can monitor pa-
tient’s cardiac status. The reported system helps on recording, processing, and classification
heart sounds signals. In their system, they used both MFCC and HMM for heart signals
classification into normal/murmur with accuracy of 92.68%.

Choi et al. [64] proposed to segment the cardiac spectral using multi-Gaussian (MG)
fitting technique to detect abnormal heart sounds. The following measurements of the
Gaussian peaks: spectral profiles, maximum frequency, amplitude, half-width, area portion,
and loss of area were examined to segment the cardiac spectral curve of different heart
sounds.

In another work proposed by Varghees and K.I. [65], the PCG signal was initially
decomposed by the experimental wavelet transform (EWT). The boundaries of the heart
sounds were detected using the Shannon entropy and instantaneous phase. The accuracy
results for the proposed system was 91.92%.

Choi et al. [66] proposed the use of wavelet packet (WP) technique for heart sounds
analysis. They use the upper-limit peak frequency, the WP coefficient position related to the
upper-limit peak frequency, and the wavelet energy fractions and entropy information fea-
tures to detect the heart murmurs. Their murmur detection method yielded a classification
efficiency of 99.78% specificity and 99.43% sensitivity.

In 2012, Xiefeng et al. [67] used a family of wavelets to develop their model, after
that, they extracted features of heart sounds by using of the heart sounds linear band
frequency cepstral (HS-LBFC). For heart sound identification, they used the similarity
distance method.

Abo-Zahhad et al. [68] introduced an approach for human recognition using heart
sounds. The proposed method is based on adopting wavelet packet cepstral coefficient
(WPCC) as features for heart sound signal identification. The proposed features employ a
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nonlinear wavelet packet filter banks that were constructed to match the acoustic nature of
the heart sound. After evaluated against an open dataset HSCT-11, their proposed method
reported 91.05% classification accuracy.

3. The Proposed Model

In this paper, a method that combines both supervised and unsupervised learning
approaches was developed. The proposed model implements a classification approach that
enables the recognition of both normal and abnormal heartbeat rhythms. Figure 1 gives a
general overview of the proposed model. In the next subsections, we explain each step in
more detail.

Figure 1. Proposed heart sound detection model.

3.1. Preprocessing

In this paper, the preprocessing step comprises four parts, namely, denosing, automatic
heart cycle segmentation, Mel-Frequency spectrum images, and segment selection by
clustering.

3.1.1. Noise Filtering

In practice, PCG signals are often corrupted by different types of noise that may
decrease the detection accuracy. Therefore, IIR filter was first utilized to separate the noise
from the signals [69]. Figure 2 shows the original heart sound signal versus the denoised
signal.
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Figure 2. Heart sound signals after applying Infinite Impulse Response (IIR) filter.

3.1.2. Automatic Heart Cycle Segmentation

After IIR filtering, we proceed with heart cycle segmentation. Firstly, signals were
downsampled to 2 kHz since most low heart sound signal frequency is 25–120 Hz, whereas
our signal sampling frequency was 44.1 kHz. Then signals were normalized according to
Equation (1).

NS(t) =
S(t)

max(|S(t)|) (1)

where NS(t) and S(t) denote the normalized heart signal and the original heart signal,
respectively.

After that, we performed envelope detection using Daubechies wavelet decompo-
sition. To get low frequency signals, we computed adaptive threshold using wavelet
decomposition coefficients C, thr = µ(C) + f ∗ σ(C). After calculating adaptive threshold,
we set wavelet decomposition coefficients smaller than threshold and larger than threshold
assign as zero as seen in Equation (2).

c̃i =

{
ci, if ci < thr.
0, otherwise.

(2)

where ci is wavelet decomposition coefficient.
After that, we performed the wavelet reconstruction to extract the low-frequency

heart sound. Finally, we computed Shannon entropy (see Equation (3)), then, the average
Shannon entropy is standardized as seen in Equation (4) [70]. The envelope of input signals
is shown in Figure 3.

SE(t) = − 1
N

N

∑
j=1

LS(j) log LS(j) (3)

where LS(j), N and SE(t) denote the low-frequency heart sound segment, the number of
signal samples per segment, and the Shannon entropy, respectively.

NLSt =
SE(t)− µt

σt
(4)
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where NLSt is the the normalized Shannon energy, µt is the mean of energy SE(t) of the
signal t, and σt is the standard deviation of energy SE(t) of the signal t.

The final step is to identify the heart sound segments. Given the semiperiodic nature
of heart sounds, this step can be accomplished more efficiently if the cardiac cycle is
calculated. In this study, we used a cardiac cycle calculation approach based on the
unbiased autocorrelation function (UACF) [70,71]. After defining the cardiac cycle, the
components of the sound of the heart can be identified and segmented. A single heart cycle
segment is shown in Figure 4.
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Segment Envelope Detection

Figure 3. Heart sound signals envelope detection.

Figure 4. A single heart cycle segment.

3.1.3. Mel-Frequency Spectrum Images

MFCC is considered as a powerful acoustic feature extractor generating essential
information from any audio signal. This technique proved its robustness especially in
speech recognition field Dave [72], Han et al. [73], Al Marzuqi et al. [74] through the ability
to represent the signal amplitude spectrum in a compact form. In our case, we used MFCC
technique for the aim to extract PCG spectrum features to be stored in PNG image (see
Figure 5). In fact, Figure 6 shows the different processing steps related to MFCC:
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1. By performing a Hamming windowing at fixed interval of 1024 (in our case), the
PCG signal is divided into acoustic chunks. The outcome of this step is a vector
representing the cepstal features related to each chunks.

2. Applying discrete Fourier transform (DFT) to each window chunk.
3. For each DFT chunk, it retains only the amplitude spectrum logarithm to conserve

the signal loudness property, which was found to be approximately logarithmic.
4. To obtain essential frequency features, MFCC technique is based on spectrum smooth-

ing process.
5. By applying discrete cosine transform to the fourth step output, we obtain the MFCC

features of our PCG signal.

Figure 5. Overview of extrasystole-mumur-normal MFCC features represented in PNG images.

Figure 6. MFCC steps.

3.1.4. Segment Selection by Clustering

The main objective of our heartbeat segmentation method is to divide PCG signal
into different heartbeat cycles with the aim of improving CVD recognition. However,
it is well-known that PCG signal is very noisy, which means we can find noise even in
one or multiple heart cycle segments. Therefore, the CVD training process is affected by
this constraint, causing a CVD signature extraction failure. The idea behind our segment
selection method is to apply clustering technique to eliminate the undesired segments;
those that influence on the recognition result. We start with the hypothesis that the majority
of obtained heart cycle segments are correlated and contain less noise, which means it
could be adopted for CVD signature extraction. Firstly, we proceed to a biclustering by
applying a parametric clustering method. Then, we ignore the cluster having the minimal
number of segments (noisy segments). In other words, the segment selection process are
based on the segments belonging to the bigger cluster.

We chose to use mixture Gaussian model (GMM) [75], which is a parametric unsuper-
vised clustering method. This method could be used for partitioning data into different
groups according to the probabilities of belonging to each Gaussian. GMM is based on
a mixture of Gaussian’s relying on learning the laws of probability that generated the
observation data xn (See Equation (5)).

f (xn|θk) =
M

∑
k=1

πk N(xn|µk, σ2
k ) (5)
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With N(xn|µk, σ2
k ) =

1
(2π)d/2σ1/2 e

(− 1
2σ2

k
(xn−µk)

2)
, πk ∈ 1 . . . M : the probability of belong-

ing to a Gaussian k with k ∈ 1 . . . M ), µk ∈ 1 . . . M : the set of the M Gaussian averages, σ2
k ∈

1 . . . M: the set of covariances matrices and θk = πk, µk, σ2
k . Similarly, the multidimensional

version of the Gaussian is as follows: N(xn|µk, Σk) =
1

(2π)d/2Σ1/2 e(−
1
2 (xn−µk)

T−Σ−1
k (xn−µk)).

The best-known method for estimating the GMM parameters (πk, µk and σ2
k ), is the itera-

tive method of maximum likelihood calculation (expectation-maximization algorithm or
EM [76]). The EM algorithm could be defined through 3 steps:

- Step 1: Parameter initialization θk : πk, µk, σ2
k

- Step 2: Repeat until convergence

• Estimation step: calculation of conditional probabilities tik that the sample i

comes from the Gaussian k. t(i,k) =
πk N(xi |µk ,σ2

k )

∑m
j=1 πk N

(
xi |µj ,σ2

j

) with j ∈ 1, . . . , m: the set of

Gaussians.
• Maximization step: update settings θestim

k = argmaxθk

(
θk, θold

k

)
and πestim

k =

1
n ∑N

i=1 ti,k , σ2estim
k =

∑N
i=1 ti,k(xi−µestim

k )
2

∑N
i=1 ti,k

, µestim
k = ∑N

i=1 ti,kxi

∑N
i=1 ti,k

The time complexity of EM algorithm for GMM parameters estimation McLachlan
and Peel [75], McLachlan and Krishnan [76], Bishop [77], Hastie et al. [78], is as following:
If X: is the dataset size, M: the Gaussian number and D: the dataset dimension.

EM Estimation step O(XMD + XM).
EM Maximization step O(2XMD).

3.2. CNN Classification

The technological progress of deep learning paved the way for boosting the use of
computer vision, especially by using CNN. Much research was conducted to recognize
objects [79], speech emotion [80], gestures [81], or even visual speech recognition [82]. In
fact, CNN using transfer learning techniques was extremely exploited [83–86], especially
when it comes with a small training set. Due to the lack of publicly available big training
set of labeled PCG signals, we chose to adopt CNN transfer learning technique [87]. By
fine-tuning the existing pretrained CNN models that were already trained on ImageNet,
we can just train our model on new classification layer. After applying the different
preprocessing steps presented in Figure 1 on pascal PCG dataset, we obtain a set of PNG
images containing visual representation of MFCC features that are trained by our fine-tuned
CNN model.

We used CNN input shape equals to (480, 640, 3), and we conserved the pretrained
convolutional layers used for feature extraction. We proceeded to fine-tuning by adding
4 layers. For a better feature vector representation, we added GlobalAveragePooling2D,
which uses a parser window moving across the feature matrix and pools the data by
averaging it (to take the corner cases into the account). Then, we added two dense lay-
ers, respectively, 1024 and 512, to allow learning more complex functions, and therefore,
for better classification results. To be able to classify the results, we added dense layer,
with Softmax as activation function. Figure 7 gives an overview of the input training
images segments.
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Figure 7. Overview of our CNN input training images issued from preprocessing steps.

4. Performance Evaluation

In this section, we first present the experimental setup. Secondly, the used dataset
is explained.

4.1. Experimental Setup

In our pretrained CNN experimental setup, we preserved all the convolutional layers
related to all the used Keras pretrained models and we added 4 layers as described in the
section (CNN classification). We used Stochastic gradient descent optimizer for weight
update with learning rate = 0.0001 and Keras default momentum, batch size = 5 and
epochs = 100.

The CNN training process was performed on Google Colab platform allowing the use
of a dedicated GPU: 1xTesla K80, having 2496 CUDA cores, compute 3.7, 12 GB (11.439 GB
Usable) GDDR5 VRAM. Table 1 presents the details related to the different Keras Pretrained
CNN models used in this work.

4.2. Dataset

Our work is based on the publicly available pascal Bentley et al. [88] and Physionet
datasets [89]. As shown in Table 2, which summarizes the structure of this dataset, we used
231 samples obtained by merging the Normal samples from training set A and training set
B without considering Btraining_noisynormal (samples). Concerning the Murmur class,
we merged 34 samples from training set A with 95 samples issued from merging 66 samples
from training set B and 29 samples from noisy_murmur folder. Considering Extrasystole
class, we relayed on 65 samples issued from merging 19 samples from training set A and
46 samples from training set B. Concerning PhysioNet [89] dataset, it contains 665 normal
samples, and 2575 abnormal samples in WAV format, and the majority of PCG samples are
concentrated in the duration range between 8 and 40 s for normal and abnormal class.
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Table 1. Keras pretrained CNN models.

Model Citation Layers Size Parameters

Xception Chollet [90] 71 85 MB 44.6 millions

VGG19 Simonyan and Zisserman [91] 26 549 MB 143.6 millions

VGG16 Simonyan and Zisserman [91] 23 528 MB 138.3 millions

ResNet152V2 He et al. [92] - 98 MB 25.6 millions

ResNet152 He et al. [92] - 232 MB 60.4 millions

ResNet101V2 He et al. [92] - 171 MB 44.6 millions

ResNet101 He et al. [92] 101 167 MB 44.6 millions

ResNet50V2 He et al. [92] 98 MB 25.6 millions

ResNet50 He et al. [92] - 98 MB 25.6 millions

NASNetMobile Zoph et al. [93] - 20 MB 5.3 millions

MobileNetV2 Sandler et al. [94] 53 13 MB 3.5 millions

MobileNet Howard et al. [95] 88 16 MB 4.25 millions

InceptionV3 Szegedy et al. [96] 48 89 MB 23.9 millions

InceptionResNetV2 Szegedy et al. [97] 164 209 MB 55.9 millions

DenseNet201 Huang et al. [98] 201 77 MB 20 millions

DenseNet169 Huang et al. [98] 169 57 MB 14.3 millions

DenseNet121 Huang et al. [98] 121 33 MB 8.06 millions

Table 2. Overview of pascal dataset structure.

Training Set Class

Normal Murmur Extrasystole

A 31 34 19

B 200 95 46

Total 231 129 65

In fact, after performing the preprocessing step, we obtained a set of PCG samples
(heart cycle) that represent the selected heart cycles. These PCG heartbeat cycles are then
transformed into PNG images to be trained by our CNN models. As shown in Table 3,
our segment selection process selects only the segments having close MFCC features and
ignores the others. For example, 323 of Normal PCG segments are selected and 33 are
ignored from a total of 356 PCG segments. Except the Extrasystole class, we notice that
the training set size of Normal and Murmur class increases. The total number of Normal
class samples goes from 231 to 323 samples; Murmur goes from 129 to 317 samples, and
Extrasystole goes from 65 to 62 samples. In other words, the CNN model is trained only on
heart cycle segments and not on the overall PCG signal.
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Table 3. Overview of selected PCG segments according to each class.

Training Set Class Segments

Normal Murmur Extrasystole

Selected 323 317 62

Ignored 33 14 44

Total segments 356 331 106

5. Results and Discussion

In this section, we present and discuss our experimental results. The main objective
behind this experimental study is to analyze the effect of the segment selection process
on the classification results. After performing our preprocessing steps, we experimented
17 Keras pretrained CNN models with and without the use of our segment selection
process.

As shown in Figure 8 and Table 4, the best average validation accuracy = 0.81 is
obtained using VGG16 and VGG19 through 3 cross validation folds. The training time
plots seen in Figure 9 gives us an idea about the VGG16 and VGG19 ranking, which is
respectively VGG16_rank = 6 and VGG19_rank = 9. By using Fold1, VGG16 and VGG19
reached their best validation accuracy respectively in Epoch 55 and Epoch 58. Considering
Fold2, respectively in Epoch 80 and Epoch 62, VGG16 and VGG19 reached their best
validation accuracy, and using Fold3, VGG16 and VGG19 reached their validation accuracy
peaks in Epoch 60 and Epoch 48, respectively. Concerning TPR results, VGG19 reached the
best average TPR = 0.73 value (as seen in Table 5).

Table 4. Validation accuracy of CNN models using 3 class 3 folds without segment selection.

Model Accuracy

Fold1 Fold2 Fold3 AVG

VGG16 0.77 0.82 0.80 0.81

VGG19 0.78 0.81 0.83 0.81

Xception 0.56 0.58 0.58 0.57

ResNet152V2 0.66 0.69 0.68 0.68

ResNet152 0.73 0.73 0.71 0.72

ResNet101V2 0.66 0.67 0.69 0.67

ResNet101 0.69 0.72 0.74 0.72

ResNet50v2 0.68 0.69 0.64 0.67

ResNet50 0.72 0.73 0.72 0.72

NasNetMobile 0.63 0.62 0.60 0.62

MobileNetV2 0.68 0.67 0.63 0.66

MobileNet 0.66 0.67 0.67 0.67

Inceptionv3 0.68 0.68 0.68 0.68

InceptionResNetV2 0.59 0.66 0.61 0.62

DenseNet201 0.71 0.74 0.69 0.71

DenseNet169 0.68 0.70 0.70 0.69

DenseNet121 0.69 0.73 0.70 0.71
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Figure 8. Overview of CNN VGG16-VGG19 validation accuracy curve without selection process.
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Figure 9. Overview of CNN models average training time vs average validation accuracy without
selection process.

Table 5. Validation true positive rate (TPR) of CNN models using 3 classes (E: Extrasystole; M: Murmur; N: Normal) and
3 folds without selection process.

Model

TPR

Fold1 Fold2 Fold3 Avg
E M N Avg E M N Avg E M N Avg

VGG16 0.36 0.77 0.90 0.68 0.62 0.80 0.89 0.77 0.31 0.83 0.93 0.69 0.72

VGG19 0.44 0.80 0.88 0.70 0.54 0.81 0.89 0.75 0.4 0.88 0.91 0.73 0.73

Xception 0.0 0.52 0.77 0.43 0.0 0.41 0.91 0.44 0.0 0.46 0.88 0.44 0.44

ResNet152V2 0.25 0.81 0.65 0.57 0.11 0.69 0.86 0.55 0.28 0.7 0.78 0.59 0.57

ResNet152 0.27 0.70 0.89 0.62 0.25 0.69 0.91 0.62 0.14 0.77 0.83 0.58 0.61

ResNet101V2 0.02 0.63 0.88 0.51 0.14 0.64 0.86 0.55 0.25 0.73 0.79 0.59 0.55

ResNet101 0.16 0.81 0.74 0.57 0.25 0.79 0.80 0.61 0.0 0.79 0.91 0.56 0.58

ResNet50v2 0.33 0.77 0.71 0.60 0.17 0.75 0.79 0.57 0.05 0.56 0.89 0.50 0.56

ResNet50 0.19 0.74 0.85 0.59 0.2 0.73 0.89 0.60 0.17 0.7 0.90 0.59 0.59

NasNetMobile 0.22 0.58 0.81 0.54 0.0 0.6 0.82 0.47 0.0 0.56 0.83 0.46 0.49

MobileNetV2 0.16 0.66 0.84 0.56 0.11 0.67 0.83 0.53 0.14 0.7 0.72 0.52 0.54

MobileNet 0.22 0.65 0.80 0.56 0.22 0.59 0.87 0.56 0.08 0.74 0.78 0.53 0.55

Inceptionv3 0.0 0.65 0.91 0.52 0.0 0.63 0.94 0.52 0.02 0.6 0.95 0.52 0.52

InceptionResNetV2 0.0 0.44 0.91 0.45 0.0 0.69 0.84 0.51 0.0 0.6 0.81 0.47 0.48

DenseNet201 0.25 0.69 0.88 0.60 0.34 0.73 0.86 0.64 0.17 0.73 0.81 0.57 0.60

DenseNet169 0.25 0.67 0.82 0.58 0.11 0.82 0.77 0.57 0.08 0.70 0.88 0.55 0.57

DenseNet121 0.19 0.72 0.83 0.58 0.4 0.72 0.84 0.65 0.17 0.79 0.78 0.58 0.60

Concerning the classification results using the selection process, there is a significant
improvement in the average validation accuracy and the average TPR results. As seen
in Figure 10, Tables 6 and 7, the best validation accuracy average and TPR average are
obtained using VGG19. The validation accuracy average and TPR average improvement
in VGG19 respectively goes from 0.81 to 0.87 and from 0.73 to 0.83. In other words, the
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additional three convolutional layers for VGG19 depth = 26 (as seen in Table 1), compared
to the depth = 23 for VGG16, have a direct impact on the validation accuracy related to this
configuration. Despite the deep architecture used in DenseNet201 with a number of layers
equal to 201, we can see that the validation accuracy (as seen in Table 6) is equal to 0.75 but
is less than VGG16 and VGG19, which argues that the depth of the model has a random
impact on the validation accuracy.

Table 6. Validation accuracy of CNN models using 3 class 3 folds after segment selection.

Accuracy Folds

Fold1 Fold2 Fold3 AVG

VGG16 0.85957 0.8383 0.84483 0.85

VGG19 0.84255 0.89711 0.86207 0.87

Xception 0.65106 0.61277 0.67241 0.64

ResNet152V2 0.72766 0.68287 0.69397 0.70

ResNet152 0.75745 0.74468 0.83621 0.78

ResNet101V2 0.75745 0.69787 0.73276 0.73

ResNet101 0.77447 0.74894 0.77155 0.76

ResNet50v2 0.72766 0.69362 0.73707 0.72

ResNet50 0.75745 0.73191 0.78017 0.76

NasNetMobile 0.69362 0.69787 0.68966 0.69

MobileNetV2 0.69787 0.65957 0.69397 0.68

MobileNet 0.74043 0.69787 0.71552 0.72

Inceptionv3 0.70638 0.68511 0.66379 0.68

InceptionResNetV2 0.69787 0.70213 0.67241 0.69

DenseNet201 0.77447 0.7234 0.76293 0.75

DenseNet169 0.74894 0.68085 0.75431 0.73

DenseNet121 0.7234 0.70213 0.72414 0.71

As shown in Figure 9, despite the same validation accuracy results without the use of
the selection process, VGG16 requires less training time compared to that of VGG19. On
the other hand, Figure 11 shows that by using the selection process, the training time of
VGG19 is considerably less than VGG16 training time, which is the worst one compared to
all the used models.

We also conducted a comparative study to compare our classification results with that
of some recent related works that are based on Pascal 2011 Dataset. As seen in Table 8,
except the work of Zhang et al. [32], the majority of these works don’t exploit the entire
Pascal dataset samples. For example, in the work of Malik et al. [99], the authors used
31 signals. Similarly, Chakir et al. [100] relayed on 52 signal, Chakir et al. [101] exploited
14 signals from dataset A, and 127 from dataset B. Pedrosa et al. [41] used 111 signals,
and in Sidra et al. [102] work, the authors relayed on 24 signal for normal class and
31 for abnormal class. This selection strategy can be explained by the fact that Pascal
Dataset contains too much noisy signals (with background noise), which influences the
classification results. The fact that we exclude the noisy signals means the classification
result improves immediately, which explains the good results obtained by Malik et al. [99]
with overall accuracy = 0.89, overall precision = 0.91, and overall TPR = 0.98. By applying
our methodology on the totality of signals in Pascal dataset, we just select the useful
heart cycle segments and ignore those with noise without ignoring the overall sample.
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Due to the use of our segmentation and selection process, we obtained more accurate
classification results compared to that of Zhang et al. [32] and Balili et al. [103] works. Also,
as seen in the Table 9, we obtained encouraging results in term of micro_accuracy = 0.91,
micro_sensitivity = 0.84, micro_precision = 0.84 and micro_specificity = 0.92.

Figure 10. Overview of CNN VGG16-VGG19 validation accuracy curve with selection process.

We experimented with our approach also on PhysioNet data set (two class dataset). We
adapted the classification layer of all of the 17 CNN models to be able to recognize 2 classes
(Normal and Abnormal). Figure 12 gives an overview of training and validation accuracy
with model loss related to VGG19, VGG16, DenseNet169 and InceptionResNetV2. As seen
in Table 10, VGG19 outperforms all the other Keras 16 models with excellent classification
results: accuracy = 0.97, TPR = 0.946, Precision = 0.944 and Specificity = 0.946. On the
other hand, we performed a comparative study with relevant state of the art approach
summarized in Table 11. As seen in this table, we achieved excellent classification results
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with an accuracy equal to 0.97, a sensitivity equal to 0.946, a precision equal to 0.944, and
specificity equal to 0.946.

Figure 11. Overview of CNN models average training time VS average validation accuracy with
selection process.

Table 7. Validation TPR of CNN models using 3 class (E: Extrasystole; M: Murmur; N: Normal) 3 folds with selection
process.

Model

TPR

Fold1 Fold2 Fold3 Avg
E M N Avg E M N Avg E M N Avg

VGG16 0.71 0.87 0.87 0.82 0.57 0.84 0.87 0.76 0.6 0.83 0.89 0.77 0.79

VGG19 0.80 0.83 0.86 0.83 0.57 0.89 0.93 0.80 0.9 0.87 0.84 0.87 0.83

Xception 0.0 0.59 0.83 0.47 0.0 0.39 0.94 0.44 0.0 0.61 0.85 0.48 0.47

ResNet152V2 0.61 0.72 0.75 0.69 0.62 0.71 0.72 0.68 0.75 0.68 0.69 0.70 0.70

ResNet152 0.80 0.66 0.83 0.77 0.42 0.73 0.81 0.65 0.6 0.83 0.87 0.77 0.73

ResNet101V2 0.66 0.69 0.83 0.73 0.09 0.63 0.87 0.53 0.7 0.73 0.73 0.72 0.66

ResNet101 0.61 0.73 0.84 0.73 0.47 0.76 0.78 0.67 0.7 0.80 0.74 0.75 0.72

ResNet50v2 0.47 0.66 0.84 0.65 0.19 0.61 0.87 0.55 0.4 0.72 0.81 0.64 0.62

ResNet50 0.66 0.78 0.75 0.73 0.28 0.77 0.77 0.61 0.45 0.75 0.86 0.69 0.68

NasNetMobile 0.23 0.57 0.89 0.57 0.0 0.78 0.75 0.51 0.3 0.66 0.78 0.58 0.55

MobileNetV2 0.28 0.61 0.86 0.58 0.09 0.55 0.87 0.50 0.3 0.54 0.91 0.58 0.56

MobileNet 0.76 0.61 0.86 0.74 0.38 0.95 0.50 0.61 0.6 0.8 0.65 0.68 0.68

Inceptionv3 0.0 0.63 0.91 0.51 0.0 0.68 0.81 0.50 0.15 0.69 0.72 0.52 0.51

InceptionResNetV2 0.0 0.65 0.87 0.51 0.0 0.75 0.78 0.51 0.0 0.63 0.83 0.48 0.50

DenseNet201 0.71 0.68 0.87 0.75 0.19 0.78 0.76 0.58 0.8 0.70 0.81 0.77 0.70

DenseNet169 0.76 0.78 0.71 0.75 0.33 0.82 0.61 0.58 0.45 0.69 0.86 0.67 0.67

DenseNet121 0.42 0.78 0.72 0.64 0.47 0.82 0.62 0.64 0.7 0.63 0.81 0.71 0.67
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Table 8. An overview of our model results compared to that of some related works.

Works PASCAL 2011 Signal Statistics Classes Overall Accuracy Overall PPV Overall TPR

Our method Full labeled dataset Normal, murmur, and extrasystole 0.87 0.81 0.83

Malik et al. [99] 31 signals Normal, murmur, and other sounds 0.89 0.91 0.98

Chakir et al. [100] 52 signals Normal and abnormal sounds - 0.63 -

Zhang et al. [32] Full dataset Normal, murmur, and other sounds - 0.67 -

Chakir et al. [101] 14 from A and 127 from B Normal and murmurs - 0.78 -

Balili et al. [103] Full dataset Normal, murmur, and other sounds 0.48 - -

Pedrosa et al. [41] 111 signals Normal heart sounds and murmurs - 0.986 0.892

Sidra et al. [102] 24 normal and 31 abnormal normal and abnormal 87.7 - 96.7

Table 9. Detailed average results of our model (VGG19) in terms of micro accuracy, micro TPR, micro precision, and micro
specificity.

Folds
Accuracy TPR (Sensitivity) Precision (PPV) TNR (Specificity)

Extra Murmur Normal Extra Murmur Normal Extra Murmur Normal Extra Murmur Normal

Fold1 0.95 0.89 0.84 0.81 0.83 0.86 0.71 0.92 0.81 0.97 0.94 0.83

Fold2 0.96 0.92 0.89 0.57 0.90 0.93 0.92 0.92 0.85 0.99 0.94 0.86

Fold3 0.95 0.91 0.87 0.9 0.88 0.84 0.64 0.92 0.86 0.95 0.94 0.88

Folds avg 0.95 0.91 0.87 0.76 0.87 0.88 0.76 0.92 0.84 0.97 0.94 0.86

Classes avg 0.91 0.84 0.84 0.92

Table 10. 3 Folds Average CNN test results using PhysioNet dataset.

Average Accuracy TPR (Sensitivity) Precision (PPV) TNR (Specificity)

VGG16 0.966 0.930 0.946 0.930

VGG19 0.970 0.946 0.944 0.946

Xception 0.828 0.877 0.732 0.877

ResNet152V2 0.824 0.873 0.730 0.873

ResNet152 0.490 0.667 0.640 0.667

ResNet101V2 0.438 0.665 0.422 0.665

ResNet101 0.690 0.592 0.812 0.592

ResNet50v2 0.698 0.736 0.728 0.736

ResNet50 0.620 0.763 0.685 0.763

NasNetMobile 0.203 0.489 0.350 0.489

MobileNetV2 0.228 0.497 0.526 0.497

MobileNet 0.671 0.679 0.673 0.679

Inceptionv3 0.659 0.791 0.686 0.791

InceptionResNetV2 0.863 0.908 0.765 0.908

DenseNet201 0.571 0.725 0.719 0.725

DenseNet169 0.493 0.675 0.606 0.675

DenseNet121 0.601 0.734 0.714 0.734
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Figure 12. An overview of our approach using VGG19, VGG16, DenseNet169 and InceptionResNetV2
training and validation curves on PhysioNet dataset.
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Table 11. Comparative analysis of our method with state-of-the-art methods using PhysioNet 2016.

Average Accuracy TPR (Sensitivity) Precision (PPV) TNR (Specificity)

our approach 0.970 0.946 0.944 0.946

[104] 0.8697 0.964 - 0.726

[55] - 0.942 - 0.778

[105] 0.824 - - -

[106] - 0.8095 - 0.839

[107] - 0.84 - 0.957

[108] 0.852 - - -

[109] - 0.885 - 0.921

[110] 0.879 0.885 - 0.878

[38] 0.97 0.932 - 0.951

[111] 0.915 0.983 0.846

[112] 0.892 0.90 - 0.884

[113] 0.88 0.88 - 0.87

[114] 0.85 0.89 - 0.816

[115] 0.826 0.769 - 0.883

[116] 0.801 0.796 - 0.806

[117] 0.9 0.93 - 0.9

[118] 0.79 0.77 - 0.8

6. Conclusions and Future Work

In this work, we presented an AI-based approach for automatic phonocardiogram
(PCG) signal analysis to help in the preliminary diagnosis of different heart diseases. The
discussed method is considered as a new cardiovascular disease recognition approach
experimented on two PCG datasets: Pascal and PhysioNet. Firstly, we performed pre-
processing steps through the use of infinite impulse response (IIR) filtering followed by a
robust heart cycle segmentation technique. Secondly, we presented our segment selection
process, which enables the automatic selection of the maximum correlated segments. Fi-
nally, we fine-tuned pretrained model to be trained on the heart cycle mfcc spectrogram
images. We obtained encouraging classification results for both Pascal and PhysioNet
datasets with overall accuracy 0.87, overall precision 0.81, and overall sensitivity 0.83 using
Pascal, and accuracy 0.97, sensitivity 0.946, precision 0.944, and specificity 0.946 using
PhysioNet dataset. To our knowledge, these results can be considered the best classification
results compared to that of the majority of previous works, which relied on the entire
PhysioNet and Pascal dataset signals. We plan to combine both mask RCNN for object
detection and CNN models to improve the classification results based on models voting.
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