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Abstract: This work facilitates detection of bivalent copper ion by a simple Schiff base probe QNH
based on a quinoxaline−naphthaldehyde framework. The detailed study in absorption spectroscopy
and theoretical aspects and crystal study of the probe and probe−copper complex has been discussed.
The detection limit of the probe in the presence of Cu2+ is 0.45 µM in HEPES−buffer/acetonitrile
(3/7, v/v) medium for absorption study. The reversibility of the probe−copper complex has been
investigated by EDTA. The selective visual detection of copper has been established also in gel form.

Keywords: quinoxaline−naphthaldehyde conjugate; Cu2+ colorimetric detection; absorption study;
ab initio calculations

1. Introduction

Metals are unavoidable particulates in our surroundings and contain a wide panel of
industrial applications [1–3]. However, metals are also related to our living systems, those
of which include transition metals, alkali metals, and alkaline earth metals during biological
machinery [4,5]. They are present in environment as well as biological systems in a very
traceable form that is not easy to distinguish. The main concern about the metal ions is that
they may be toxic if present in a higher amount than their permissible limit [6]. Detecting
metal ions in very trace amounts seems to be a hurdle for researchers, so continuous
experiments are in progress on this particular topic.

Cu2+ was one of the most found elements after Fe3+ and Zn2+ on Earth’s surface. A
trace amount of Cu2+ is considered an essential nutrient for the human body [7]. Cu2+

is the main component of a variety of enzymes such as superoxide dismutase (SOD1),
cytochrome−c−oxidase (Cyt−O), tyrosinase, etc [8]. Its versatile role in chemistry, bio-
chemistry, industry, and the medicinal field allows it to easily contaminate our environ-
ment [9]. Excess consumption of Cu2+ in the human body can lead to serious health issues,
such as Wilson’s disease [10,11], Alzheimer’s disease [12], Menkes disease [13], Parkinson’s
disease [14], transmissible spongiform encephalopathy [15], etc. Due to its wide usage, it
is crucial to discover new strategies for detecting trace amounts of Cu2+ readily and in an
inexpensive way.

Colorimetric chemosensors are preferable for detection of analytes, as no expensive
tools are needed for the experiments which, in turn, results in a more effective and less
time–consuming detection than other methods [16,17]. This can be recognised by the
naked eye and easy monitoring can be possible. Several works have been reported for
colorimetrically Cu2+ detection (Table S1) [9,18–27].
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Quinoxaline moiety is one of the units that has recently grabbed our attention due to
its excellent colorimetric signalling unit behaviour [28,29]. The two N atoms present in the
ring not only extend the conjugation in the ring, but are also preferred as a good chelating
unit [28]. Schiff base moiety with extended conjugation and –OH and –NH binding sites
are effective for photoactive detection of metal ions [30,31].

Quinoxaline and naphthaldehyde-based Schiff base chemosensors (QNH) have been
reported in literature by Das and co-workers for colorimetric detection of Cu2+ in methanol/
aqueous HEPES−buffer (9/1, v/v) [31]. Aiming at further expanding the practical use of
that new probe, we herein perform a joint experimental and theoretical study of QNH in
HEPES−buffer/acetonitrile (3/7, v/v) medium for Cu2+. The reversibility of the QNH
with Cu2+ in the presence of EDTA has been also assessed. The QNH + Cu2+ complex was
further exposed to a different amino acid solution and shows a response in the presence
of histidine.

2. Results and Discussion
2.1. Synthesis and Characterization

The probe QNH was synthesized in two simple steps, as discussed in the experimental
section. In the first step, the heterocyclic quinoxaline moiety with ketone functionality
(compound 1) had been synthesized, and in the second step reaction with the 2–hydroxy–
1 naphthaldehydehydrazide (compound 2), the condensed product we found in orange
powder-like form in 73% yielded in methanol, as illustrated in Scheme S1. QNH crystallized
by layering technique in CHCl3 and diethyl ether solvent and the dark orange diamond-
shaped single crystal we obtained was further used in characterization and spectral studies.

The probe is fully characterized in terms of CHN analysis, FT−IR, 1H NMR, ESI−MS
spectral analysis (Figures S2, S3 and S5), and single–crystal XRD method before its applica-
tion. The FT−IR spectrum confirms the peak at 1623 cm−1 for the generation of imine bond
(C=N). The 1H NMR spectrum shows peaks at δH 8.2–7.3 for aromatic protons, δH 9.86
for aldehyde proton, and δH14.1 for the –OH proton. The ESI−MS spectrum shows peak
at 401.14 amu for the [C26H17N4O]+ species. The single crystal X–ray diffraction experi-
ment was also performed with the orange diamond–shaped single crystal to determine the
structure of the probe (Figure S1). The QNH crystallizes in tetragonal space group I 41/a.

2.2. Crystal Structure Description

The probe QNH has been crystallized by diffusion of diethyl ether into the chloroform
solution of QNH. The single crystal found was orange in colour and a diamond shape.
QNH crystallizes in tetragonal space group I 41/a. From the crystal structure we found that
the quinoxaline moiety and naphthalene moiety exist in the same plane and a chloroform
molecule found as solvent. The two-imine bond length C12–N2 is 1.321 Å and C11–N1
is 1.307Å, which we found to be similar to that reported in the literature. The bond angle
C12–N2–N1 is 113.40◦ and C11–N1–N2 is 112.39◦, which indicates the sp2 hybridized
the N1 and N2 atoms. All carbon and nitrogen atoms are sp2 hybridized and only one
oxygen is sp3 hybridized. From the supramolecular 2D structure, the moiety chain has been
progressed by intermolecular H–bonding between O1···H15–C15 (Figure S20, Table S4)
and a short interaction between two probe units, by quinoxaline and naphthaldehyde
moiety (Figure S20, Table S5). The extended supramolecular 2D packing diagram has been
shown in Figure S19. The QNH + Cu2+ complex crystallizes in triclinic space group P −1
and has two distinct units (labelled as A and B) (Figure S18). In both units Cu2+ binds in a
penta-coordinate way with one oxo oxygen (O1) of naphthalene moiety, one nitrogen (N1)
of imine bond, one nitrogen (N3) of quinoxaline moiety, and two DMF solvent moiety.

2.3. Naked Eye Sensing

After the characterization of the probe, the initial testing of the probe has been per-
formed in the presence of different metal ions (Mn+ = Na+, K+, Ca2+, Mg2+, Cr3+, Cd2+,
Hg2+, Pb2+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+ and Al3+) available in their chloride and
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perchlorate salts in HEPES−buffer/acetonitrile (3/7, v/v) medium at room temperature.
The probe shows a distinct colour change from colourless to purple, visible to bare eyes,
only in the presence of the Cu2+ ion in HEPES−buffer/acetonitrile (3/7, v/v) medium
(Figure 1). Depending on this response, the further spectral studies of the probe in the
presence of the Cu2+ ion has been performed further in HEPES−buffer/acetonitrile (3/7,
v/v) medium at room temperature.
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2.4. Photophysical Studies of QNH towards Cu2+

The UV–Visible spectra of the probe QNH (10–5 M) shows peak intensity at 477 nm
and 425 nm. The UV–Visible spectra of the probe in the presence of various metal ions (Na+,
K+, Ca2+, Mg2+, Hg2+, Ni2+, Fe3+, Cu2+, Co2+, Cd2+, Zn2+, Mn2+, Pb2+, Al3+, and Cr3+) are
recorded in HEPES−buffer/acetonitrile (3/7, v/v) medium. The probe QNH changes its
colour from colourless to purple (Figure 1) in the presence of the Cu2+ ion, and in spectral
behaviour a new peak at 552 nm had appeared (Figure S7). The probe QNH did not show
any selectivity towards anions in the UV–Visible spectrum.

To properly investigate the sensing behaviour of QNH in the presence of Cu2+, the
titration experiment was performed. Upon gradual addition of Cu2+, the 477 nm and
425 nm characteristic peaks of the probe are gradually decreased, and a new peak is
generated at 552 nm with an isosbestic point at 484 nm. The peak at 552 nm reached
its maxima upon addition of 5 equivalent of Cu2+ solution (Figure 2). The isosbestic
point indicates there is equilibrium between the probe and the probe in the presence of
Cu2+. It also indicates that only one species has been generated from the probe upon
binding with Cu2+. The shifting of peak maxima of the probe from 425 nm to 552 nm upon
addition of Cu2+ might be explained by intra ligand charge transfer (ILCT) process. The
quinoxaline moiety commonly acts as an electron withdrawing segment and the electron-
rich naphthalene moiety as a donor, so inside the probe, there may be electron densities in
motion. In the Cu2+ complex the absorption peak is the result of the ILCT band, due to the
fact that the colour change from colourless to purple occurred.
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(Upward arrow indicates gradual increase in absorption at 552 nm with increasing concentration of
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From the UV–Visible titration result, the limit of detection (LOD = 3σ/s, where σ is
the standard deviation of the blank solution and s is the slope of the calibration curve) [32]
calculated for Cu2+ was 4.5 × 10–7 M (Figure S9).

To check the selectivity of QNH with Cu2+ in the presence of other metal ions, a com-
petitive study had been performed with the probe in the presence of 5 equivalent of other
metal ions followed by addition of Cu2+ ion. In results, Cu2+ shows a selective response
among all the cations in HEPES−buffer/acetonitrile (3/7, v/v) medium (Figure S8). This
study indicates the probe can be a selective sensor for Cu2+ apart from the other metal ions
in semi-aqueous medium.

According to linear Benesi–Hildebrand expression, the measured absorbance [1/(A −
A0)] at 552 nm varied as a function of 1/[Cu2+] in a linear relationship. This indicates the
formation of 1:1 stoichiometry between Cu2+ and probe QNH. The association constant is
found 79.9 × 104 M–1 (Figure S11).

The stoichiometric ratio was further investigated by Job′s plot analyses. The molar
fraction of the ligand was shown the highest value 0.5 at 552 nm, which also indicates 1:1
stoichiometry between Cu2+ and probe QNH (Figure S10). The ESI–MS spectrum of QNH
in the presence of Cu shows the 100% peak at 462.06 amu for the species [C26H15CuN4O]+

(Figure S3). Both Job’s plot and mass spectrum, the binding stoichiometry of the probe and
the probe with Cu2+, can be concluded as 1:1 equivalent. The 1H NMR spectrum of the
probe with Cu2+ cannot be recorded due to the paramagnetic behaviour of Cu2+.

The optical phenomenon of probe QNH in the presence of Cu2+ was checked in
different pH levels from 4–10. The effectivity of the probe towards Cu2+ was observed from
pH range 6–8 and highest in pH 7. This indicates the probe most effectively detects Cu2+ in
physiological pH (Figure S12).

The absorbance of probe QNH has been checked in the presence of different anions of
Cu2+ salts and found that QNH effectively shows the same result for all the different forms
of Cu2+ ion (Figure S13).

The reversibility test of QNH + Cu2+ solution was checked in the presence of EDTA in
HEPES−buffer/acetonitrile (3/7, v/v) medium. In the presence of EDTA, the characteristic
552 nm peak of the QNH + Cu2+ complex had disappeared, and only peaks of QNH with
477 nm and 425 nm appeared, indicating reversible coordination between QNH and Cu2+
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(Figure S14). This reversibility experiment has been studied further in several cycles with a
sequential addition of QNH + Cu2+ solution and EDTA. From the result, it can be concluded
that QNH is not a chemodosimeter in the presence of Cu2+ and the probe can be recovered
even after the experiment.

2.5. Theoretical Study and the Elucidation of a Proposed Model

DFT and time-dependent DFT (TD−DFT) calculations were performed to assess the
nature of the excited states that govern the observed changes in the absorption spectra.
In the implemented computational protocol, the structure of the QNH probe was fully
optimized in the absence and the presence of Cu2+. To be consistent with the experimental
evidence, the latter chemical model accounts for the probe in its deprotonated form. The
theoretical absorption wavelength for the QNH (471 nm) and the QNH−Cu2+ counterpart
(525 nm) agrees with the experimental profile. It is known that the interaction of the
metal ions with sensors might yield metal-to-ligand charge transfer (MLCT), ligand-to-
metal charge transfer (LMCT), and intra-ligand charge transfer (ILCT) mechanisms. The
analysis of the vertical transitions reveals that in both systems, these two characteristic
peaks correspond to the HOMO→ LUMO transition, which is associated with an ILCT
transition (see Figure 3).
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Figure 3. The left panel shows the computed absorption spectra of QNH and QNH in the presence of
Cu2+, plotted with blue and black lines, respectively. The right panel shows computed frontier molec-
ular orbitals (HOMO and LUMO) for QNH and QNH−Cu2+ model systems. Values in parenthesis
are the theoretical absorption wavelengths in nm. Surfaces are generated with an isovalue of 0.02.

2.6. Absorption Spectroscopic Studies of QNH–Cu2+ Complex towards Histidine

Amino acids are the main building block of proteins. Several works have reported
about the affinity of Cu2+ with different amino acids [25,33]. Therefore, we have studied
the effect of amino acid towards our Cu2+ complex. The absorption study of the complex
has been carried out in the presence of different amino acids (Gly, Ala, Phe, Val, Ser, Cys,
Leu, Ile, Pro, Lys, His, Trp) in HEPES−buffer/acetonitrile (3/7, v/v) medium (Figure 4). In
the presence of histidine, the absorption peak of Cu2+ complex at 552 nm has disappeared
and the absorption spectra has a similarity with the QNH probe itself. The colour changes
from purple to colourless, visible to the naked eye.
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Figure 4. Absorption spectrum of QNH–Cu2+ complex in the presence of different amino acids in
(3:7 v/v) HEPES buffer: acetonitrile medium.

Furthermore, we have performed the UV–Visible titration experiment of QNH–Cu2+

complex in the presence of histidine to investigate the binding properties. Upon gradual
addition of histidine, the complex peak at 552 nm gradually decreases. The isosbestic
point at 488 nm indicates the presence of an equilibrium between QNH–Cu2+ complex
and histidine (Figure S15). The detection limit (LOD = 3σ/s, where σ is the standard
deviation of the blank solution and s is the slope of the calibration curve) for histidine has
been found 1.35 × 10−6 M (Figure S16). From the UV–Visible experiments, we noticed the
similarity between the probe and QNH–Cu2+ complex with histidine. Due to high affinity
between Cu2+ and histidine, the Cu2+ binds readily with histidine residue, leaving the
probe molecule free. The schematic representation has been depicted in Scheme 1.
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2.7. Application

To check the feasibility of the probe in other solvent mediums, we also checked our
probe in solid and gel mediums. The gel has been prepared as the method described in
literature using Poloxamer–407 [34,35]. Furthermore, in both the phases, the probe QNH
shows a colour change from colourless to purple in the presence of Cu2+. The result, visible
to the naked eye, has been shown in Figure S17.

2.8. Proposed Sensing Mechanism of Cu2+ by QNH

Quinoxaline moiety has been known for its good colorimetric sensing behaviour.
From the experimental findings, there are 1:1 interactions present between the probe
QNH and Cu2+, and the colour change appears from colourless to purple. From the
molecular structure of the complex, we found that the deprotonation of −OH group
of QNH happened and the Cu2+ ion bind in a penta-coordinate way by two nitrogen,
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one oxygen and two solvent molecule in 1:1 ratio. Upadhyay et al. also reported a
quinoxaline−salicylaldehyde based probe for Cu2+ in ethanol: H2O medium [28]. Here,
due to the presence of naphthalene moiety, the electron density of the overall molecule
resides from naphthalene to quinoxaline. Therefore, the presence of naphthalene moiety
increases the donor acceptor extended conjugation between the probe, which affects binding
with the Cu2+ ion; a strong intra ligand charge transfer (ILCT) band appears at 552 nm
(Figure 5) in agreement with the theoretical value predicted by TD-DFT (525 nm).
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3. Conclusions

Our contribution touches upon a problem of interest in analytical chemistry, e.g., the
design of selective and sensitive determination methods of copper (II) [36–42]. We have
performed the follow-up work of quinoxaline–naphthaldehyde-based probe QNH and its
selective detection of Cu2+ in HEPES−buffer/acetonitrile (3/7, v/v) medium. The probe
has been characterized by IR, NMR, and ESI–MS spectroscopy. This work is the elaborate
description of the affinity of QNH towards Cu2+. The spectral and theoretical findings
suggest the binding of Cu2+ enhance the ILCT mechanism pathway. The reversibility of
probe QNH was also studied as it can be easily recovered and reused. The affinity towards
histidine is also discussed here. The crystal structure of probe QNH in CHCl3 and QNH
+ Cu2+ complex has been produced and characterized by single crystal X-ray diffraction
method. The tune of the absorption band by the interaction of the probe with Cu2+ ion is
reproduced through TD–DFT, which further supports the proposed sensing mechanism.
That agreement confirms DFT as a valuable tool in the design of more efficient probes in
the future.

4. Experimental Section
4.1. Materials and Physical Methods

Ninhydrin, o–phenylenediamine, 2−hydroxy naphthaldehyde, and hydrazine hydrate
were purchased from Sigma–Aldrich, Kolkata, India and used as received. The salts of
cations were also purchased from Sigma–Aldrich, Kolkata, India. Solvents for the syntheses
were purchased from commercial sources and used as received. 1H NMR spectra were
recorded in CDCl3 with TMS as internal standard on a Bruker, AV300 Supercon Digital
NMR system with dual probe. The FT–IR spectra were recorded from KBr pellets in the
range of 400−4000 cm–1 on a Perkin−Elmer Spectrum 100 spectrometer (Perkin-Elmer,
Shelton, CT, USA). Elemental analyses for C, H, and N were performed on Perkin–Elmer
2400 II analyzers (Perkin-Elmer, Waltham, MA, USA). The ESI-MS experiments were
performed on a Waters Xevo G2-S QTOF mass spectrometer (Waters, Milford, CT, USA).
The crystallographic data was recorded on a Bruker Nonius Apex II CCD diffractometer
(Bruker, Karlsruhe, Germany). The absorption spectral studies were performed on a Hitachi
UV–Visible U–3501 spectrophotometer (Hitachi, Fukuoka, Japan).
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4.2. Single-Crystal X-Ray Crystallography

A high-quality single crystal of QNH was chosen and mounted on a Bruker No-
nius Apex II CCD diffractometer equipped with a graphite monochromator and Mo-
Kα (λ = 0.71073Å) radiation. The diffraction data were collected with exposure time
of 5 s/frame and at 296 K. The structure was solved by direct methods and refined by
full–matrix, least–squares techniques based on F2, using SHELXL−2016/6software pack-
age [43]. A multi–scan empirical absorption correction was applied using the SADABS
program [44]. All non–hydrogen atoms were refined in the anisotropic approximation
against F2 of all reflections and determined from the difference Fourier maps. All the
hydrogen atoms are isotropically refined. The crystallographic figures have been generated
using Mercury 3.9 and Diamond 3.0 codes [45]. The structure refinement parameters and
crystallographic data of ligand QNH and its copper complex are listed in Tables S2 and
S3. CCDC 2156635 and 2156636 contain the crystallographic data in CIF format. This
data can be obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/datarequest/cif.

4.3. Computational Details

Ab initio calculations have been previously used for both copper (I) and copper (II)-
based compounds [46–48]. Herein, we adapt a similar protocol by using the Gaussian
16 suite of programs [49]. The geometries of both the QNH and QNH−Cu2+ model
systems were fully optimized within the DFT framework. These model systems used
crystal structures as the starting material. The M06 functional [50] was implemented in
combination with the def2−SVP basis set to describe all the atoms except the Cu2 centre,
which was treated with def2−ECP [51]. That latter basis set replaces the core electrons
with the effective core potentials to account for scalar relativistic effects without increasing
the computational cost [52]. A vibrational analysis is subsequently conducted to ensure
that all optimization processes correctly lead to stable minima (no imaginary frequencies).
The optimized structures are eventually used to simulate vertical transition energies and
compute the frontier molecular orbitals. Solvent effects were included to account for the
effect of the acetonitrile environment. An implicit approach was used, the well-known
Polarizable Continuum Model (PCM) [53]. We stress that a systematic assessment of the
TD-DFT performance is a prerequisite for mimicking chemosensor, as model systems need
to be designed with a heterogenic series of metallic centres. However, the selection of that
specific level of theory is guided by an available benchmarking [54], and consequently M06
is accurate enough for our purposes.

4.4. Synthesis of the Ligand (QNH)

Indeno[1,2−b]quinoxalin−11−one (compound 1) and 2−hydroxy naphthaldehyde
hydrazide (compound 2) were prepared from the literature procedure [28,55]. In methanolic
solution (10 mL) of indeno[1,2–b]quinoxalin–11–one (116 mg, 0.5 mmol), 2−hydroxy
naphthaldehyde hydrazide (93 mg, 0.5 mmol) in methanol was added dropwise and
refluxed for 2 h (Scheme S1). The orange-coloured precipitate was filtered through suction
filtration and air dried, yield = 73% (146 mg, 0.36 mmol). Anal. calc. for C26H16N4O: C,
77.99; H, 4.03; N, 13.99; Found: C,77.2; H,4.02; N,13.1; 1H NMR (300 MHz, CDCl3, 290 K,
TMS) δH (ppm): 14.14 (s, −OH), 9.86 (s, 1H), 8.27−7.78 (m, 8H), 7.64−7.33 (m, 6H); FT–IR
(KBr, cm−1): 3066, 2945, 1903, 1623, 1576, 1528, 1460, 1392, 1336, 1288, 1233, 1185, 1113,
1073, 1025, 958, 870, 818, 734, 535; ESI−MS (m/z), ion: Calculated: 400.13 amu, Found:
401.14 amu [QNH + H+].

4.5. Synthesis of the Cu2+ Complex (QNH)

0.01 mmol (4 mg) QNH was dissolved in 5 mL 1:1 DMF:methanol. Then, 0.01 mmol
(3.7 mg) copper perchlorate hexahydrate was added. The colour changes from light yellow
to purple instantly. The solution was then refluxed for 4 h. Afterwards, the reaction mixture
was cooled to room temperature and was layered with diethyl ether as solvent. After

www.ccdc.cam.ac.uk/datarequest/cif
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4 weeks, rectangular cuboid-shaped black bronze-coloured crystal came on the side walls
of the layering tube. ESI−MS (m/z) Calculated: 462.06 Found: 462.061 [C26H15CuN4O]+

(Figure S4). FT–IR (KBr, cm−1): 3054, 1606, 1522, 1451, 1423, 1346, 1198, 1114, 1072, 1030,
763, 619. (Figure S6)

4.6. Sample Preparation for Spectroscopic Studies

All the stock solutions were prepared using spectroscopy graded acetonitrile and
working solutions were prepared using spectroscopy graded acetonitrile and HEPES buffer.
The spectral studies of the probe QNH was carried out in 3:7 HEPES buffer (pH = 7.4,
25 mM): acetonitrile medium. All experiments were carried out at room temperature of
298 K. The stock solutions of the cations were prepared by the perchlorate salts. In the
UV–Visible experiment, a stock solution of 10−3 (M) QNH was filled in a quartz optical
cell of 1.0 cm optical path length to achieve a final concentration of the solution of QNH
(10−5 (M) in 2000 µL. After 1 min, each spectral data was recorded with the addition of
cation solution by using a micropipette.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27092908/s1, 1H NMR, ESI-MS, FT-IR spectrum of probe QNH, spectrophotomet-
ric study, and Cartesian atomic coordinates for all model structures. Scheme S1: Synthetic procedure
of QNH; Figure S1: Molecular structure of QNH. Color code: C = pista green; N = blue; O = red;
H= gray; Cl = bright green; Figure S2: 1H NMR spectrum of QNH in CDCl3; Figure S3: ESI-MS
spectrum of QNH; Figure S4: ESI-MS spectrum of QNH + Cu2+ complex; Figure S5: FT-IR spectrum
of QNH; Figure S6: FT-IR spectrum of QNH + Cu2+ complex; Figure S7: Absorbance spectra of QNH
(10–5 M) in presence of 5 equiv. of various cations (Na+, K+, Ca2+, Mg2+, Hg2+, Ni2+, Fe3+, Cu2+,
Co2+, Cd2+, Zn2+, Mn2+, Pb2+, Al3+, Cr3+) in (3:7, v/v) HEPES buffer: acetonitrile medium; Figure S8:
Absorption intensity of QNH (10–5 M) in the presence of 5 equiv. of different cations in absence of
same equiv. of Cu2+ in solution [the green bar portion]. Absorption intensity of a mixture of QNH
(10–5 M) with 5 equiv. of other cations followed by addition of 5 equiv. of Cu2+ to the solution (λabs
= 552 nm) [the orange blue bar portion]; Figure S9: Determination of the detection limit of QNH in
presence of Cu2+ in (3:7, v/v) HEPES buffer: acetonitrile medium at 552 nm; Figure S10: Job’s plot for
the identification of stoichiometry using absorbance values at 552 nm; Figure S11: Benesi-Hildebrand
plot for determination of binding constant of QNH with Cu2+; Figure S12: Absorbance of QNH in
absence and in presence of Cu2+ at different pH values; Figure S13: Absorbance spectra of QNH
in present different anion Cu2+ of salts. (Inset: Bar plot of QNH in present different anion Cu2+ of
salts); Figure S14: (A) Absorption spectrum of QNH shows reversibility towards Cu2+ in presence
of EDTA in (3:7, v/v) HEPES buffer: acetonitrile medium. (B) The reversible colorimetric switch
by alternate addition of Cu2+ and EDTA into the (3:7, v/v) HEPES buffer: acetonitrile medium. (C)
Visual color change of QNH showing reversibility towards Cu2+ in presence of EDTA; Figure S15:
(A) UV–Visible titration of QNH–Cu2+ complex (10–5 M) in the presence of various concentration
of histidine. (Downward arrow indicates gradual decrease of absorption at 552 nm with increasing
concentration of externally added histidine) (Inset: Visual color change of QNH in presence of Cu2+

followed by histidine). (B)Absorbance of QNH–Cu2+ complex at 552 nm as a function of [histidine]);
Figure S16: Determination of the detection limit of Histidine in (3:7, v/v) HEPES buffer: acetonitrile
medium at 552 nm; Figure S17: Visual change of QNH in presence of Cu2+ in A) paper strip and B)gel
form; Figure S18: Crystal structure of QNH + Cu2+ metal complex. (Inset: The geometry of the two Cu
centre of the complex in unit A and unit B). Color code: C = pista green; N = blue; O = red; H= gray;
Cl = bright green; Cu = cyan; Figure S19: The supramolecular 2D packing diagram of the QNH
showing the propagation via H–bonding and short ring–interactions, forms a 2D sheet like structure;
Figure S20: The supramolecular 1D packing diagram of QNH via (A) H–bonding interaction along b
axis with enlarged version and c axis view of the interaction; (B) short ring–interactions with enlarged
version and c axis view of the interaction; Table S1: Colorimetric Cu2+ sensing receptors found in
the literature; Table S2: The crystallographic data for QNH; Table S3: The crystallographic data for
QNH + Cu2+; Table S4: Analysis of X–I···J (H bonding) interactions in QNH. (Bond lengths (Å), bond
angles (◦)); Table S5: Analysis of short ring–interactions with Cg···Cg distances (Å) in QNH.

https://www.mdpi.com/article/10.3390/molecules27092908/s1
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