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ABSTRACT: Air quality and climate change are substantial and linked sustainability challenges, and there is a need for improved
tools to assess the implications of addressing these challenges together. Due to the high computational cost of accurately assessing
these challenges, integrated assessment models (IAMs) used in policy development often use global- or regional-scale marginal
response factors to calculate air quality impacts of climate scenarios. We bridge the gap between IAMs and high-fidelity simulation
by developing a computationally efficient approach to quantify how combined climate and air quality interventions affect air quality
outcomes, including capturing spatial heterogeneity and complex atmospheric chemistry. We fit individual response surfaces to high-
fidelity model simulation output for 1525 locations worldwide under a variety of perturbation scenarios. Our approach captures
known differences in atmospheric chemical regimes and can be straightforwardly implemented in IAMs, enabling researchers to
rapidly estimate how air quality in different locations and related equity-based metrics will respond to large-scale changes in emission
policy. We find that the sensitivity of air quality to climate change and air pollutant emission reductions differs in sign and magnitude
by region, suggesting that calculations of “co-benefits” of climate policy that do not account for the existence of simultaneous air
quality interventions can lead to inaccurate conclusions. Although reductions in global mean temperature are effective in improving
air quality in many locations and sometimes yield compounding benefits, we show that the air quality impact of climate policy
depends on air quality precursor emission stringency. Our approach can be extended to include results from higher-resolution
modeling and also to incorporate other interventions toward sustainable development that interact with climate action and have
spatially distributed equity dimensions.
KEYWORDS: air quality, climate, integrated assessment, co-benefits, public health, global modeling

1. INTRODUCTION
Air quality and climate are coupled problems but are still
typically managed separately. Despite a need for coordination
to design more effective policies, much previous research to
inform climate and air quality actions has focused on assessing
interventions primarily designed to achieve either climate or air
quality targets, while treating the other as a side effect. Current
modeling approaches are limited in their ability to simulta-
neously assess the implications of emission controls intended
to reduce concentrations of harmful pollution and of climate
policy that aims to reduce emissions of climate forcers such as
greenhouse gases. Specifically, efforts to model the impacts of
multiple intervention levers often sacrifice the detail needed to

examine important distributional concerns. Here, we describe
an approach that bridges the gap between integrated
assessment modeling and full-scale atmospheric chemistry-
climate simulations and illustrate its application to address the
impact of different policy levers on population exposure to
health-damaging pollutants such as ozone and fine particulate
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matter (PM2.5) in different global regions. Researchers have
used different approaches to assess the implications of climate
policy on air quality. Climate policy will have direct air quality
consequences, which are often quantified as the “climate
penalty” of greenhouse gas emissions.1,2 Much research also
focuses on the “co-benefits” of climate action, taking the
climate action as primary and air quality and other impacts as
secondary.3,4 Recent work such as that by Hegwood et al.5 has
questioned the framing of such “co-benefits” as this implies a
hierarchy of goals and priorities and does not reflect the
growing importance of justice and equity in the climate debate.
Studies that are instead focused on the potential impact of

air quality interventions often use models to simulate a single
change while holding all other factors constant, including
climate change.6,7 This can support efforts to identify what sort
of air quality control would yield the greatest contribution to
achieving an air quality target but only as long as background
conditions�including meteorology�remain approximately
the same. Examples include estimating the contribution of
individual power plants to US air pollution8 or determining the
air quality consequences of “excess” nitrogen oxide (NOx)
emissions from cars.9 More generally, quantifications of the
sensitivity of air quality to changes in different emissions can
help to inform policy by indicating which interventions might
be most effective.10 There has also been work to assess how
emission changes motivated by air quality concerns could
affect the climate, such as the warming effect of removing
sulfur from ship fuel.11

Recent work has argued for more coordinated climate and
air quality efforts, recognizing both the presence of common
sources and that the effect and effectiveness of emission
regulation will evolve with a changing climate. Kinney12,13 and
von Schneidemesser et al.14 have pointed out the need for
more holistic consideration of air quality and climate policy.
Some studies have used high-fidelity air quality models under
different scenarios to directly compare the effects of air quality
policy under different climate assumptions.15−18 These studies
show that greater air quality improvements are achievable
through control of air pollutants than through avoidance of
climate change in isolation, although factors such as the effect
of temperature change on biogenic emissions (which can be
ozone precursors) result in complex interactions. Other
researchers have used integrated assessment models (IAMs)
to provide rapid assessment of different scenarios, representing
the effects of a broad slate of policy options on a range of
relevant outcomes.19−23 Although some IAMs focus on total
economic impacts to inform quantities such as the Social Cost
of Carbon (e.g., Nordhaus, 2014), others have been used
specifically to show greater health benefits from “welfare-
maximizing policies” rather than a pure focus on climate
policy.24

Existing efforts to better understand how air quality and
climate policy together might change environmental outcomes
are currently limited by model capabilities and computational
cost. Evaluating only specific scenarios in detailed models
(which is necessary because of the high computational cost of
each scenario) can potentially result in misleading estimates of
the effects of a policy choice. Jafino et al.25 discuss this in the
context of adaptation policy, but the same is true when
considering air quality policy. As an example, a future
atmosphere might have greater marginal ozone production
(per unit of NOx emitted) than the current day, reflected in
greater ozone production during pollution episodes.26 This

counterintuitively implies that air quality policy will become
“more effective”, even though the population’s exposure to
ozone would be greater in absolute terms under any proposed
NOx control policy than would be the case for the present day.
Additional complications arise if baseline ozone concentrations
have also been affected by climate change. In contrast,
integrated assessment approaches inherently rely on simplified
representations of key atmospheric and economic processes to
remain computationally tractable and typically provide results
at the scale of the global, regional, or national mean. However,
the response of air quality to both climate and air quality policy
is complex, with the same intervention (e.g., a decrease in NOx
emissions) sometimes having effects that vary in sign over the
span of a few hundred kilometers. Regardless of the method
used, focusing on global or regional mean responses can
obscure the equity implications of climate and air quality
policy.
Here, we describe an intermediate-fidelity approach that

allows decision makers to understand and freely explore
diverse scenarios of climate and air policy intervention�
including their effects on equitability of outcomes�while
minimizing the loss in accuracy. This “intermediate fidelity”
approach lies at the intersection between low-fidelity
approaches, such as a single regional estimate for the sensitivity
of ozone to NOx and climate change, and high-fidelity
approaches such as expensive single-scenario chemistry-climate
simulations. We do this by bridging between existing IAMs and
chemistry-climate modeling. We use a full-complexity atmos-
pheric chemistry-transport model that can accurately represent
local chemical regimes to simulate global air quality under
carefully chosen climate and air pollutant emission scenarios
(see Methods), designed to explore the parameter space of
plausible interventions. By fitting a response surface to the
results for each location across Earth, we produce a rapid
assessment model that can estimate the effect of simultaneous
changes in air pollutants and climate on air quality. Although
such approaches have been used previously in modeling of air
quality impacts alone,27 they have not to date been developed
for climate−air quality interactions. This can facilitate
assessment of multiple interventions that aim to reduce the
health impact of air pollution. It also allows equity outcomes to
be considered since the response is independently charac-
terized in each individual location rather than using a global or
regional mean. We then apply this approach to explore the
challenge of achieving air quality goals under combined climate
and air quality policy.
We first quantify the relationship between conventional air

quality-relevant pollutants and outcomes, comparing our
results to the existing literature. We then use the same data
set to describe how interacting policies (specifically, those
designed to control climate and air quality, respectively) could
affect our ability to achieve air quality targets in the future.

2. METHODS
We perform a series of atmospheric chemistry simulations to project
air quality under different climate and pollutant emission scenarios28

in the late 21st century. Using a global atmospheric chemistry model,
we simulate air quality under two different climate scenarios
(corresponding to 3.7 and 10 W/m2 in 2100), using five different
realizations (ensemble members), and including perturbations to
emissions of NOx, SOx, volatile organic compounds (VOCs), and
ammonia (five cases, including the baseline).
From these 50 simulations, we fit response surfaces in every surface

grid point with non-zero population, resulting in simplified models
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that allow us to evaluate the reductions in emissions which might be
necessary to achieve air quality goals. For each combination of an
outcome (e.g., surface ozone) and two levers or interventions (e.g.,
target global mean surface temperature (T) and NOx emissions, or
SOx emissions and ammonia emissions), a separate surface is fitted in
each location, ensuring that location-specific chemical regimes and
responses are captured.

2.1. Atmospheric Modeling
We calculate surface air quality for a given combination of climate
scenario and emission perturbation using two linked models: the
Community Atmosphere Model (CAM) v3.1 and a version of the
GEOS-Chem High Performance (GCHP) regional-to-global air
quality model which we modify to use meteorology generated by
CAM.
Meteorological data for each climate projection are generated using

CAM v3.1 as detailed by Monier et al.,29 following scenarios
“POL3.7” (3.7 W/m2 in 2100, resulting in 1.1 °C of warming in
2080−2100 relative to the 1990−2009 period) and “REF” (10 W/m2,
4.3 °C of warming) as described therein. This framework was
evaluated in Monier et al.30 and found to produce a realistic
simulation of observed climate trends. We use an ensemble approach,
performing five different realizations using different sea surface wind
stresses. Simulations are performed in CAM v3.1 at a global resolution
of 2° × 2.5° on 26 vertical levels from the surface to a pressure of 2.2
hPa. To enable the use of this meteorology in GEOS-Chem, the same
key variables are stored as are available from the NASA GMAO
Modern Era Retrospective for Research and Analysis version 2
(MERRA-2) reanalysis data set and at the same temporal resolution.
As a result, GCHP can be seamlessly switched between using
meteorological data from MERRA-2 and from CAM.
Once meteorological data are available from CAM for each

scenario realization, they are processed for use in GCHP. This
approach means that emissions and meteorology can be decoupled in
GCHP, allowing climate-focused and air quality-focused interventions
to be assessed as separate levers. It also avoids chaotic chemistry-
climate feedbacks that would otherwise take decades to average out
but that do not fundamentally change the nature of the response.
Surface-level concentrations of CO2 are prescribed in GCHP based on
the appropriate climate projection. CO2 is assumed to be uniformly
distributed, while the distribution of surface methane concentrations
is simulated by scaling observations from NOAA (spatially kriged) to
provide the correct annual mean surface concentration.31

Global, anthropogenic emissions of all non-greenhouse gas (non-
GHG) species are prescribed based on the estimate for 2014 from the
Community Emissions Data Set (CEDS).32 Surface-level concen-
trations of long-lived species (other than CO2) in GCHP are also
prescribed for 2014 using existing emission inventories. Emissions of
biogenic species, soil NOx, and sea salt are estimated during the
simulation based on meteorological conditions for the given scenario
and, in the case of biogenic emissions, on the scenario-specific CO2
concentration. Emissions of lightning NOx and mineral dust are
prescribed based on a 2014 inventory for all simulation years.
Since GCHP is using a new source of meteorological data, we

evaluate the skill of the model by comparing observed concentrations
of surface ozone to that simulated using both the “standard”
configuration and the new meteorology. Figure S2 compares annual
mean surface ozone between observational data (2010−2014,
inclusive) from the TOAR-I data set33,34 (https://igacproject.org/
activities/TOAR) and values simulated using GCHP for 2014. We
evaluate both the performance of a standard configuration of GCHP
using meteorological data from the NASA Global Modeling and
Assimilation Office the Modern Era Retrospective for Research and
Analysis version 2 (GMAO MERRA-2) reanalysis and using data from
CAM. The MERRA-2 data set was generated using the Goddard
Earth Observation System (GEOS) model and is one of two GEOS
output data sets which are routinely used in assessments of air
quality.35−38

Considering the agreement between observed ozone and that
simulated using MERRA-2 input (Figure S2, left panel), we find an r2
of 0.23, a slope of 0.58, and a mean bias of 7.9 ppbv. The simulation
using CAM data has an r2 of 0.29, a slope of 0.73, and a mean bias of
15 ppbv, indicating a greater ability to represent differences between
regions but a larger absolute error. Both simulations use identical
emission data. On the basis of these results, we conclude that the
model skill is not significantly degraded by the use of CAM
meteorology compared to the use of GEOS meteorology. Parity plots,
an evaluation of seasonal changes in model skill, the methods used to
process the TOAR-I data, and an evaluation of model skill for wet
deposition of sulfur and nitrogen are provided in the Supporting
Information.

2.2. Fitting a Response Surface
For each location, we characterize the mathematical relationship
between interventions (i.e., policy) and outcomes using data from the
aforementioned CAM−GCHP simulations. Consider an environ-
mental outcome that decision makers seek to achieve, such as a

Figure 1. Response of surface air quality in one location to changes in air quality and climate policy. Left panel: typical representation of how air
quality policy (NOx emission stringency) might affect local air quality (ozone concentration) under two different climate policies (CO2 levels).
Right: demonstration of how the two lines in the left panel are actually curves on the surface of a more general response surface, where a surface
ozone response can be defined for any combination of climate and air quality policy. The red points in the right-hand figure correspond to the
results from individual simulations that can be used to develop a reduced-order estimate (e.g., a response plane�see Figure 2) of the response
surface.
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reduction in the ozone level in a single location. Any such quantity
can be described as a function of factors typically related to climate
change, factors typically related to air quality, and inherent
uncertainty (chaos). The former factors include the total emissions
of CO2, N2O, and CH4 to date and the subsequent changes in the
global climate. “Air quality-relevant” factors include the local
emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and
ammonia (NH3) as well as the emissions in other locations around
the globe. The remaining factor is the chaotic nature of the
atmosphere, resulting in uncertainty�typically expressed as a
dependency on an initial condition. The model can therefore be
expressed as

C SX f U( , , )i N j M1 1= = =

where X is the objective quantity in some single location, C is a vector
of N “climate-related” factors, S is a vector of M shorter-term “air
quality-related” factors, and U is a variable representing the initial
conditions. Members of each vector can reflect any input variable�
including different species being emitted, different sectors or
geographical source locations, or different times of the emission.
For many outcomes of climate change, vector C might be

approximated with a single scalar value. Since climate change is a
global phenomenon with little sensitivity to the location of the cause
(e.g., the location of CO2 emissions), its effect in any given location
can mostly be captured through a scalar such as the mean CO2
equivalent mixing ratio, global radiative forcing, or global mean
surface temperature. This reduces the model to

SX f R U( , , )j M1= =

where vector C is now replaced with scalar R. The left panel of Figure
1 illustrates how a conventional air quality study might then evaluate
the effect of climate change on surface air quality through four
simulations, where each simulation provides an estimate of X under
different conditions. In this illustrative case, U is neglected, assuming
that we are considering a single “realization” of the atmosphere.
For each climate scenario, the full curve of possible results is

shown, with each pair of simulations (A and B, C and D) providing
the results for two scenarios along that curve. The figure also
illustrates how each pair of results can be used to derive the marginal
sensitivity of surface ozone to NOx in each climate scenario (dX/dS),
while pairing point A with point C and point B with point D enables
calculation of the climate penalty ( f(800,S)−f(600,S)).
The effect of climate change on air quality can also be visualized as

an intervention, or lever (i.e., an independent variable), in the same
fashion as NOx emissions, allowing their combined effect to be
considered. The right panel of Figure 1 instead plots these four results
as point estimates of a response surface. This recognizes that the
effects of both dimensions (CO2 and NOx) on air quality are
continuous. Furthermore, we can fit a two-dimensional response
surface (most simply, a plane) to the four points, in this case with a
least-squares fit. This allows us to gain insight into the response of our
target variable for climate scenarios other than the two explicitly
assessed by assuming linearity in the response. Although this
introduces error, it exploits the broadly linear behavior of the
atmosphere in response to perturbations. If we use global mean
surface temperature in place of CO2 or radiative forcing, this also
frames the problem in terms of a common, physical target which is
robust to uncertainty in factors such as climate sensitivity.
We use this approach to generate a response surface in each model

grid point with non-zero population across Earth with respect to key
climate and air quality emissions, resulting in a low-cost, intermediate-
fidelity global air quality model. We calculate the response of ozone
and PM2.5 concentration across the world to changes in climate
(expressed as a target global mean surface temperature T) and air
quality emissions (NOx, SOx, VOCs, and ammonia). For each
outcome and combination of two input variables (e.g., T and NOx),
we fit a response surface in each location which is described by three
fit parameters (baseline value and gradient with respect to each

parameter), producing a global model of air quality−climate
interactions which can be applied in milliseconds.

2.3. Experimental Design

Data for fitting each response surface are generated using the GCHP
(Eastham et al., 2018) chemistry transport model as described in
Section 2.1. We use GCHP to simulate global air quality in the 2090s
with year-2014 anthropogenic emissions of NOx, SOx, VOCs, and
ammonia. Year-2014 emission data are used to provide a known
baseline distribution and magnitude of emissions, but subsequent
studies might consider using projections based on plausible scenarios
of future emission changes.39 The simulation is repeated four
additional times, with a 10% reduction in global emissions of each
pollutant (i.e., five simulations total). This exercise is performed for
two different climate projections, consistent with a 2080−2100 mean
warming (relative to 1990−2009) of either 1.1 or 4.3 °C. The results
of each simulated combination of surface temperature and air quality
emissions are taken as the average result across all five realizations.
The change in global mean surface temperature (ΔT) is used as the
policy lever to represent climate change. This is consistent with its
role in models such as DICE, which use global mean temperature as
the key climate metric and calculate outcomes dependent on that
target.
The result is a set of 10 data points describing the concentration of

ozone (or PM2.5) in each location globally under each climate
projection and each air quality perturbation. For any set of two input
variables (e.g., ΔT and NOx emissions), a linear, 2-D response surface
is fit to the relevant data points for each grid cell, producing a
linearized model of the response of ozone (or PM2.5) in that location
to changes in both variables. If one of the two variables is ΔT, the fit is
made to four points (e.g., 100% NOx at 1.1 °C, 90% NOx at 1.1 °C,
100% NOx at 4.3 °C, and 90% NOx at 4.3 °C). If both variables are air
quality only, three points are used (e.g., 100% NOx and VOCs, 100%
NOx and 90% VOCs, 90% NOx and 100% VOCs) as combined
reductions in air quality-relevant pollutants (“cross-terms”) are not
simulated.
All simulations are performed for the period 2079−2099, with

results stored hourly. The air quality response is calculated by
averaging the results from the period 2080−2099 to compensate for
meteorological variability,40 with the 1 year period 2079−2080
discarded to avoid interference from transient “spin-up” effects.
Simulations are performed at a global resolution of C24, roughly
equivalent to 4° × 5°. Regional variations in air quality are therefore
captured in response to global changes in climate and air quality
precursor emissions.

2.4. Quantifying and Visualizing the Effect of Emission
Reductions

Figure 2 shows how we fit the results from the simulations described
above, where a response surface has been fit to the four points for a
single location. We extrapolate or interpolate in areas where we have
not explicitly calculated the response, indicated by a transition from
opaque/blue to transparent/red in the figure. This fit is performed
independently for each populated location on Earth, resulting in 1525
independent fits of the response of ozone (or PM2.5) to each
combination of two input variables. Combined, these produce a
model which can rapidly estimate the global, spatially discretized
response of air quality to combined changes in radiative forcing and
air quality precursor emissions.
The use of a linear approximation is common in air quality

calculations, as represented through marginal sensitivities.10,41,42

Although the climate response to small perturbations is chaotic,
atmospheric chemistry is broadly linear when examined at scale or for
small changes in emissions. However, large changes in either future
climate or emissions may result in substantial nonlinearity which
would not be captured when using a linear assumption.43 This could
be addressed by calculating additional data points and using a
nonlinear fitting procedure.

ACS Environmental Au pubs.acs.org/environau Article

https://doi.org/10.1021/acsenvironau.2c00054
ACS Environ. Au 2023, 3, 153−163

156

pubs.acs.org/environau?ref=pdf
https://doi.org/10.1021/acsenvironau.2c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.5. Application in This Work
In our analysis, rather than quantifying the average surface ozone or
PM2.5 for each location under every combination of emissions, we
instead quantify the fraction of a given population which would be
exposed to pollution in excess of targets of either 50 ppbv maximum
annual mean ozone exposure (MDA8, or maximum daily average over
8 hours) or 8 μg/m3 annual mean PM2.5 exposure. We refer to this
quantity as the “population fraction with exposure above the target”.
This approach reduces the risk of a low average value hiding inequities
in population exposure.
To visualize this result, we use the response surfaces calculated for

each model grid cell in a single region to determine whether the
population in that location will be exposed to an ozone (or PM2.5)
concentration in excess of the target for a given combination of two
input variables (e.g., 10% reduction in NOx emissions and a global
mean surface temperature increase of 4.3 °C). This is summed,
weighted by population, across all grid cells in a given region to
determine what fraction of the region’s population will be exposed to
concentrations in excess of the target. By repeating this procedure
while sweeping through possible combinations of input variables, an
aggregate surface can be created, which shows the fraction of the
region’s population with exposure above the target as a function of the
input variables.
Throughout this article, we show these surfaces split into three

zones, depending on the degree of extrapolation underlying the result.
Data shown outside of the innermost region rely on extrapolation, so
although they still reflect the marginal sensitivity under different
regimes, they should be interpreted with care. This is consistent with
the broader approach of using marginal sensitivities to evaluate the
effects of significant changes in emissions.9,10,41,44 A description of the
three zones is shown in each figure’s caption.

3. RESULTS
We first use our approach to quantify the sensitivity of air
quality to emissions of two short-lived pollutants under a “low-
GHG” (1.1 °C of warming in 2100) future with year-2014

emissions of NOx, VOCs, and other pollutants. Figure 3 shows
how the population fraction with exposure above the surface
ozone target in four different regions (global, US, China, and
the EU27) varies for different levels of VOC emissions, NOx
emissions, or both. Outcomes are extrapolated to cover 0 to
50% reduction in pollutant emissions relative to 2014. The
results extrapolated to 100% reductions are shown in the
Supporting Information.
Aggregating globally, reductions of 50% in either NOx or

VOC emissions consistently result in a reduction in the total
population fraction with exposure above the target, together
reducing the fraction from 44 to 27%. However, the response
in individual regions is more complex. In China, we find that
the atmosphere is at least partially VOC-sensitive, such that
reducing NOx emissions by 50% without any VOC controls
increases the fraction above the target from 46 to 55%.
However, reducing VOC emissions alone by 50% can reduce
the fraction to 29%, while combined NOx and VOC reductions
bring the fraction down to 17%. Rather than indicating a single
“dominant” chemical regime, this likely reflects the hetero-
geneity of chemical regimes across China (see Figure S6) such
that combined reductions are needed.
In the US, we find that lowering NOx emissions by 50%

reduces the fraction of the population above the target
exposure from 82 to 63%, a greater benefit than when VOC
emissions are reduced. This suggests NOx-sensitive regimes
across most of the US for 2014-like emissions and conditions.
Again, combined reductions ensure that both NOx- and VOC-
sensitive regions are addressed, resulting in the total
population fraction with exposure above our target being
reduced to 56%. As in China, our result does not capture a
change in chemical regime but rather reflects the fact that
combined reductions in VOCs and NOx allow ozone to be
brought down regardless of the current chemical regime.
Similar behavior is observed in the EU, where ozone levels are
generally lower, and when aggregated globally.
Figure 4 integrates climate change as an independent

variable, showing how the fraction of the population above the
target exposure level changes in response to reduced global
warming and NOx emissions in 2100. Outcomes are
extrapolated to cover the range of 0 to 5 °C of global mean
surface temperature change. Globally, we find a near-linear
relationship between each independent variable and the
population fraction with exposure greater than the given
ozone target. Reducing the year-2080−2100 warming from 5
to 0 °C reduces the fraction from 46 to 44%. Reducing NOx
emissions to 50% while remaining at 5 °C has a similar effect,
dropping the fraction again to 44%. Combined reductions in
warming and NOx emissions yield an additional nonlinear
benefit, reducing the fraction to 35%. Similarly, reductions in
either warming or NOx emissions cause monotonic decreases
in the population fraction above the target exposure for the
EU27 region.
This monotonic improvement is not observed in all regions.

For the US, reducing warming without any reduction in NOx
emissions results in a small increase in the population fraction
above the target exposure, from 80 to 83%. This behavior
reverses as NOx emissions are reduced, and for 50% NOx
emissions, we find that reducing warming from 5 to 0 °C
reduces the fraction from 67 to 63%. In China, reducing
warming always results in a reduction in the fraction exposed
to excessive ozone. However, reducing NOx emissions without
addressing warming causes the fraction exposed to increase

Figure 2. Demonstration of the fitting procedure. For each individual
cell, we calculate the 20 year, 5-member-ensemble outcome�in this
case ozone concentration�for four different scenarios (black points).
A plane is then fit through these 20 points to provide a linearized
estimate of the local ozone response to changes in climate
(represented by the change in global surface temperature) or
emissions of (e.g.) NOx. Colors indicate qualitatively where we are
performing less (blue, solid) or more (red, faded) interpolation or
extrapolation.
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from 50 to 83%, highlighting the importance of considering
changes in baseline exposure and not just in the marginal
sensitivity to emissions. This behavior does not strongly
emerge within the range of points which are interpolated
between the four explicitly simulated conditions (the darkest
region shown), and thus, additional simulations to directly
explore the effect of larger reductions are needed to add
confidence to this result.
Figure 5 shows the response of anthropogenic PM2.5 to

warming and ammonia (NH3) emissions in the same four
regions. The results for China and globally show almost no
sensitivity to temperature and ammonia. In the US and EU27
however, reducing ammonia emissions yields monotonically
increasing reductions in the fraction of the population with
exposure above the target. At high warming levels (5 °C), 11%
of the US and 4.8% of the EU27 region populations are
brought from above the target exposure to below it when

ammonia emissions are reduced by 50%. However, in the
EU27 region, a 5 °C reduction in the target surface
temperature decreases this sensitivity to a 2.8% change. In
China, the fraction above the target exposure remains at
between 99 and 100% regardless of target surface temperature
or NH3 emission level. Globally, 82% of the population have
exposure greater than the target when ammonia emissions are
reduced, compared to 85% for no reduction. The fraction is
relatively insensitive to temperature, falling from 85 to 84% as
the target surface temperature change is reduced from 5 to 0
°C.

4. DISCUSSION AND CONCLUSIONS
Our results for the sensitivity of air quality to reductions in
NOx and VOCs alone are consistent with the current literature,
indicating that the underlying model structure is appropriate
for air quality assessments. Our analysis of the air quality

Figure 3. Response of surface ozone in 2080−2100 to reductions in VOC (x-axis) and NOx emissions (y-axis). The results are shown in terms of
the percentage of the target region population for whom exposure is above 50 ppbv. Different panels show different regions, indicated on the
vertical (z) axis. The results are shown for a 2080−2100 warming of 1.1 °C. Shading indicates the value on the vertical axis, as indicated by the
color bar. The darkest region indicates the results which are interpolations of simulations only, the adjacent region shows extrapolations to less than
three times the base range, and the lightest region shows extrapolations beyond three times.
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response to NOx and VOCs in China in a scenario with low-
background GHGs and near-current day pollutant emissions
indicates the influence of a mix of NOx-sensitive and VOC-
sensitive regions. This is consistent with a recent study which
found that NOx controls in China have been ineffective in
controlling urban ozone pollution.45 Meanwhile, the simulated
response of US air quality to NOx and VOCs shows NOx-
sensitive conditions with relatively little sensitivity to VOCs.
This is consistent with observed changes in the US chemical
regime which are likely due to falling NOx emissions and the
relatively high concentration of biogenic VOCs.46−48

Using a spatially disaggregated approach allows for different
chemical regimes in one region to be captured in a rapid
assessment model. In China, for example, we find a greater
benefit for combined reduction of NOx and VOCs compared
to the sum of benefits from reducing each independently. This
indicates the existence of a mix of VOC-sensitive and NOx-

sensitive regions, which could not be captured by approaches
which treat the region and its air quality monolithically. The
ability to represent spatial heterogeneity allows us to provide
information on how to achieve benefits (or mitigate damages)
for the largest possible population. With additional simulations,
our approach could also indicate changes in the chemical
regime which might occur at lower emission levels.
These results indicate that our approach, despite being

produced with a relatively coarse global model, is able to
capture heterogeneity in the response of air quality to changes
in emissions. Our method constitutes a reduced order
approach to evaluate interactions between climate and air
quality policy in terms of their impacts on public health. We
assume linearity in the response of air quality to climate and air
quality policy and neglect interactions between pollutants in
individual locations. However, by developing an independent
fit of the response in every grid cell, our metric incorporates

Figure 4. Response of surface ozone in 2080−2100 to reductions in future global mean surface temperature (x-axis) and NOx emissions (y-axis).
The results are shown in terms of the percentage of the target region population for whom exposure is above 50 ppbv. Different panels show
different regions. Shading indicates the value on the vertical axis, as indicated by the color bar. The darkest region indicates the results which are
interpolations of simulations only, the adjacent region shows extrapolations to less than three times the base range, and the lightest regions shows
extrapolations beyond three times.
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information on the differing chemical regimes across different
locations. The results from work following this approach can
be easily incorporated into IAMs by providing three fit
parameters for each location and outcome (ozone and PM2.5),
thereby advancing the ability of those models to represent the
effects of both climate and air quality policy on air quality
outcomes. Future work using higher-resolution modeling is
expected to provide more granular information regarding the
response of individual locations.
Differing sensitivities in different regions demonstrate the

limitations of a co-benefits framing for climate−air quality
interactions. Although reductions in global warming are
effective in improving air quality in many locations and
sometimes yield compounding benefits, our results show that
the air quality co-benefit of climate policy is dependent on air
quality precursor emission stringency. The level of air quality
benefit resulting from climate policy (reduced surface temper-

ature change) relative to the benefit from air quality policy
(reduced air quality precursor emissions) varies significantly by
region, indicating that different regions will rationally prioritize
different balances between climate and air quality policy. For
example, we show NOx reductions to be effective at reducing
ozone in the EU27 under all warming scenarios, whereas they
vary from ineffective to potentially harmful in China depending
on the degree of warming. We also show that the effectiveness
of ammonia controls in reducing exposure to PM2.5 found in
studies focusing on current conditions49 may be affected by
climate change. These differences are likely due to the effect of
climate change on meteorology, including the effect of changes
in specific humidity and precipitation. We also find that an air
quality “co-benefit” of avoiding climate change is not
inevitable, such as the increase in the fraction of the EU
population exposed to high levels of PM2.5 with decreasing
surface temperature. Our results support the need for holistic

Figure 5. Response of surface anthropogenic PM2.5 in 2080−2100 to reductions in future global mean surface temperature (x-axis) and NH3
emissions (y-axis). The results are shown in terms of the percentage of the target region population for whom exposure is above 5 μg/m3. Different
panels show different regions. Shading indicates the value on the vertical axis, as indicated by the color bar. The darkest region indicates the results
which are interpolations of simulations only, the adjacent region shows extrapolations to less than three times the base range, and the lightest region
shows extrapolations beyond three times.
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assessments of climate and air quality policy, and our approach
provides a methodology to perform such assessments.
In summary, this new approach enables rapid assessment

modeling for air quality−climate interactions. We provided
spatially disaggregated ozone and PM2.5 estimates, splitting the
global response into 1525 independent subregions. For each
region, we estimated the air quality response to policy which
affects global surface temperature, air quality precursor
emissions, or both. This enabled a first-order assessment of
how climate and air quality policy might affect both the
magnitude and distribution of air quality degradation world-
wide within milliseconds, bridging the gap between integrated
assessment modeling and high-fidelity chemistry-climate
simulation.
The results shown here can be adapted to address several

urgent, pertinent questions in the realm of climate and air
quality interactions. This approach could be applied to
estimate the integrated air quality impacts of any combined
climate−air quality policy scenario on air quality outcomes,
allowing decision makers to understand how air quality policy
will be affected by a warming climate. This could include both
evaluation of impacts and the identification of new policy
options. Since the results of the approach are not tied to
specific air quality or climate scenarios, a broader range of
outcomes can be investigated than is possible with traditional
single-scenario assessments.
There are several avenues to improve or extend our

approach without increasing the number of simulations
required. The use of a higher-resolution model would capture
more granularity in the impacts on specific demographics and
better capture heterogeneity in chemical regimes. This would
increase the computational cost required to generate the
original response surfaces but would not significantly increase
the cost of using the surfaces in an IAM context. This is
because, once the initial fit parameters have been generated, a
global evaluation currently requires less than 1 second to
perform on a single processor. If the focus is on large
reductions, it may be preferable to fit the response surface
based on reductions in emissions which are greater than 10%,
although this would then reduce the accuracy for smaller
changes.
More generally, our method could be extended by

performing additional simulations to develop a more complex
response surface, effectively increasing the number of argu-
ments considered in its functional form. The climate-relevant
factors could be separated so that surface warming and
background methane concentrations are decoupled, rather
than ignored or rather simplistically treated as a single coupled
parameter. Simulations with a simultaneous reduction in
multiple variables could be used to determine “cross-terms”
(e.g., with simultaneous reductions in VOCs and NOx) or to
explore further out in the parameter space and add confidence
in findings which are currently the result of extrapolation (e.g.,
simulate 50 or 100% reduction in NOx). A more complex
paraboloid fit to these points in each location would allow
changes in chemical regime to be captured. Finally, we
consider only global changes in air quality emissions.
Emissions scaling by location and/or by sector could enable
evaluation of the impact of more targeted air quality policy
under an uncertain climate future.
This approach can also be further extended beyond air

quality outcomes. Although the data shown in this article focus
on interactions between climate policy (future global mean

surface temperature) and air quality policy (emissions of NOx,
VOCs, and so on), our approach could equally be applied to
investigate interacting air pollutants or any other environ-
mental policy question.
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