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Disorders of the Nervous System

Acute Axonal Degeneration Drives Development
of Cognitive, Motor, and Visual Deficits after
Blast-Mediated Traumatic Brain Injury in Mice

Terry C. Yin,' Jaymie R. Voorhees,? Rachel M. Genova,' ©®Kevin C. Davis,! ®Ashley M. Madison,’
Jeremiah K. Britt,' ®Coral J. Cintron-Pérez,' Latisha McDaniel,' Matthew M. Harper,®>* and Andrew A.
Pieper'-56:78

DOl:http://dx.doi.org/10.1523/ENEURO.0220-16.2016

"Department of Psychiatry, University of lowa Carver College of Medicine, lowa City, IA 52242, 2Department of
Psychiatry, Interdisciplinary Graduate Program in Human Toxicology, University of lowa Carver College of Medicine,
lowa City, IA 52242, 3Department of Veteran Affairs Center for the Prevention and Treatment of Visual Loss,
University of lowa Carver College of Medicine, lowa City, IA 52242, “Department of Ophthalmology and Visual
Sciences, University of lowa Carver College of Medicine, lowa City, IA 52242, *Department of Neurology, University
of lowa Carver College of Medicine, lowa City, IA 52242, Department of Free Radical and Radiation Biology,
University of lowa Carver College of Medicine, lowa City, IA 52242, “Department of Veteran Affairs, University of lowa
Carver College of Medicine, lowa City, IA 52242, 8Weill Cornell Autism Research Program, Weill Cornell Medicine,
Cornell University, New York, NY 10065

Abstract

Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in
blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Irag and Afghanistan. It is not known,
however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the
injury. The Wallerian degeneration slow strain (WIdS) of mice is resistant to some forms of axonal degeneration
because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that
is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we
demonstrate that resistance of WIdS mice to axonal degeneration after blast-mediated TBI is associated with
preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and
optic nerve—dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent
neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating
axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of
blast-mediated TBI.
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Blast-mediated traumatic brain injury (TBI) is the signature injury of soldiers associated with chronic cognitive,
motor, and visual dysfunction. An early event in blast-TBI is diffuse axonal damage, but it is not known whether
this drives development of subsequent pathology. WIdS mutant mice are resistant to axonal degeneration via a
mutation that enables maintenance of neuronal nicotinamide adenine dinucleotide (NAD) levels after injury, and
a number of different approaches have been proposed for augmenting NAD levels in the nervous system. We
show that WIdS mice are protected from axonal degeneration and deficits in cognition, movement, and vision
after blast-TBI. Axonal degeneration is thus a critical early event in this prevalent injury, suggesting therapeutic
\potential of specifically mitigating early axonal degeneration after blast-TBI. j
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Introduction

Traumatic brain injury (TBI) is a leading cause of death
and disability worldwide (Fleminger and Ponsford, 2005),
with blast-mediated injury being the most common cause
of TBI sustained by soldiers in the recent wars in Iraq
(Operation Iragi Freedom) and Afghanistan (Operation En-
during Freedom). Blast-mediated TBI places patients at
risk for both acute and long-term neurologic complica-
tions, such as cognitive dysfunction, motor decline, psy-
chiatric conditions, visual deficits, and neuropathologic
features similar to Alzheimer’s disease (Hoge et al., 2008;
Wolf et al., 2009; Goldstein et al., 2012; Shively et al.,
2012). Sadly, there are currently no treatment options for
patients beyond supportive and rehabilitative care.

Sheer forces associated with blast injury lead to wide-
spread, diffuse, and progressive axonal injury, known to
play a role in multiple forms of neurodegeneration (Raff
et al.,, 2002; Nakagawa et al., 2011; Lingor et al., 2012;
Magnuson et al., 2012; Yin et al., 2014). This form of injury
and its associated behavioral deficits can be recapitulated
in rodent models, which may therefore be useful for dis-
covery and validation of new therapeutic approaches
(Goldstein et al., 2012; Mohan et al., 2013; Yin et al.,
2014). Pharmcologic agents shown to enhance flux of the
nicotinamide adenine dinucleotide (NAD) salvage path-
way in normal mammalian cells and facilitate NAD re-
bound following doxorubicin exposure (Pieper et al.,
2010, 2014; MacMillan et al, 2011; Wang et al., 2014)
confer protective efficacy on pathology and behavior in a
rodent model of blast-mediated TBI (Yin et al., 2014), as
well as other models of neurodegeneration in the central
and peripheral nervous systems (De Jesus-Cortés et al.,
2012, 2015,2016; Tesla et al., 2012; Blaya et al., 2014;
Dutca et al., 2014; Naidoo et al., 2014; Kemp et al., 2015;
Walker et al., 2015; Lee et al., 2016). In addition, treatment
with NAD and NAD precursors, including nicotinamide,
nicotonic acid mononucleotide, and nicotinamide mono-
nucleotide (NMN), or overexpression of nicotinamide
phosphoribosyltransferase protect axons in vitro (Araki
et al., 2004; Wang et al., 2005; Sasaki et al., 2006).
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To investigate whether NAD metabolism might be re-
lated to blast-mediated axonal degeneration in the brain,
we applied the blast model of TBI to the Wallerian degen-
eration slow strain (WIdS) of mice (Lunn et al., 1989).
These mice were originally identified as being resistant to
axonal degeneration after injury, and the wids gene was
subsequently shown to exist as a triplicated fusion gene
encoding the first 70 amino acids of Ufd2a, a ubiquitin-
chain assembly factor, that is linked directly to the com-
plete coding sequence of nicotinamide mononucleotide
adenylyl transferase 1 (Coleman et al., 1998; Conforti
et al., 2000; Mack et al., 2001). WIdS mice have shown
resistance to neurodegeneration in multiple models, in-
cluding Charcot-Marie-Tooth disease 1A (Meyer zu Hor-
ste et al., 2011), Parkinson’s disease (Sajadi et al., 2004),
and retinal ganglion cell death after optic nerve crush
injury (Lorber et al., 2012). These mice have also shown
improved motor function, learning, and memory after con-
cussive brain injury relative to wild-type littermates (Fox
and Faden, 1998). Although multiple mechanisms have
been proposed for how WIdS mice are protected from
axonal degeneration (Wang and Barres, 2012), it has re-
cently been shown in vitro that NAD, the metabolite of
WIidS/nicotinamide mononucleotide adenylyltransferase
enzymatic activity, is both sufficient and specific to reca-
pitulate the axonal protection seen with the WIdS muta-
tion, thereby strongly suggesting that NAD is a likely
molecular mediator of WIdS axonal protection (Wang
et al., 2015). Accordingly, we investigated whether WIdS
mice might be similarly protected from blast-induced TBI,
using measures of both neurodegeneration and behav-
ioral outcome.

Materials and Methods

Animals

All animal procedures were performed in accordance
with the University of lowa Carver College of Medicine
animal care committee’s regulations. Animals were
housed in temperature-controlled conditions, provided
food and water ad libitum, and maintained on a 12-h
light/dark cycle (6 a.m. to 6 p.m.). Heterozygous WIdS
mice (kindly provided by Dr. Karen O’Malley of Washing-
ton University, St. Louis, MO) were bred to generate
WIdS-positive mice and wild-type littermates. Genotyping
was performed using genotyping primers: forward, CGT-
TGGCTCTAAGGACAGCAC, and reverse, CTGCAGC-
CCCCACCCCTT. Mice used were male and 8 weeks of
age at the time of injury.

Blast-mediated TBI

Mice were anesthetized with 1 mg/kg ketamine and
0.1 mg/kg xylazine and placed in an enclosed blast
chamber (50 cm long and 33 cm wide) constructed from
an air tank partitioned into two sides. One side was
pressurized with a 13-cm opening between the parti-
tions and covered with a Mylar membrane. The unpres-
surized partition contained a restraint 10 cm from the
Mylar membrane, into which the mouse was placed.
The head was freely moving, whereas a metal tube
shielded the body. Compressed air was forced into the
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pressurized partition until the Mylar membrane burst at
27 kPa. The blast wave impacted the test animal inside
a foam-lined restraint to reduce blunt impact trauma of
the head against the metal tube. The left side of the
head was closest to the origin of the blast wave. Sham-
injured animals were anesthetized in the same way and
not subjected to the blast.

Barnes maze

The Barnes maze test was conducted on a gray circular
surface 91 cm in diameter, raised to a height of 90 cm,
with 20 holes 5 cm in diameter equally spaced around the
perimeter (Stoelting Co.). The surface was brightly lit and
open to motivate the test animal to learn the location of a
dark escape chamber recessed under one of the 20 holes,
which was designated randomly. The maze was sur-
rounded by a black circular curtain on which were hung
four different and equally spaced visual cues (with differ-
ent shapes and colors), for orientation to the designated
location of the escape chamber. Each animal was sub-
jected to 4 days of training comprising four trials per day.
An area extending 4 cm from the escape hole in all
directions was used as the target area for measurements
(percent time in escape area, percent latency to escape,
and nose pokes). A probe trial was conducted on the next
day, during which time the escape chamber was removed
and measurements were made to confirm the animal’s
memory based on spatial cues. Measurements were ac-
quired with Anymaze video tracking software (Stoelting
Co.), and analysis was conducted blind to treatment

group.

Foot slip assay

We used standard procedures described by Luong
et al. (2011) to measure motor balance coordination. Dur-
ing the training period, mice were trained to cross the
80-cm beam to enter a black box with nesting material
three times a day over two consecutive days. On test day,
behavior was videotaped during the task, and foot slips
were analyzed by an observer blind to condition and
treatment group.

Provocative pattern-evoked electroretinography
Provocative pattern-evoked electroretinography (pPERG)
was used to objectively measure the function of retinal
ganglion cells by recording the amplitude of the PERG
waveform 4 weeks after TBI. Mice were anesthetized with
a combination of ketamine (0.03 mg/g, i.p.) and xylazine
(0.005 mg/g, i.p.) and placed on a heated recording table
to maintain body temperature. They were placed in a 60°
head-down position using a custom-made PERG system,
and responses were evoked using alternating, reversing,
and black-and-white vertical stimuli delivered on a mon-
itor (Jorvec, Miami, FL). A reference needle electrode was
placed at the base of the head, and a ground electrode
was placed at the base of the tail to complete the circuit.
Each animal was placed at the same fixed position in front
of the monitor to prevent recording variability caused by
animal placement. Mice were positioned in a provocative
head-down position for 15 min before initiation of the
recording and remained in this position throughout the
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duration of the recording. Stimuli (18° radius visual angle
subtended on full-field pattern, two reversals/s, 372 aver-
aged signals with cutoff filter frequencies of 1-30 Hz, 98%
contrast, 80 cd/m? average monitor illumination intensity)
were delivered under mesopic conditions without dark
adaptation to exclude the possible effect of direct photo-
receptor-derived evoked responses. A diffuser placed over
the pattern on the monitor also did not elicit a measurable
evoked potential, further ensuring that the electrical re-
sponses were elicited from retinal ganglion cells. The PERG
response was evaluated by measuring the amplitude (peak
to trough) of the waveform.

Immunohistochemistry

Mice were killed by transcardial perfusion with 4%
paraformaldehyde at pH 7.4, and dissected brains were
immersed in 4% paraformaldehyde overnight at 4°C and
cryoprotected in sucrose for 72 h. Brains were then rap-
idly frozen in isopentane precooled to —70°C with dry ice.
All brains were stored in a freezer at —-80°C before sec-
tioning. Serial sections (40 wm) were cut coronally through
the cerebrum, approximately from bregma 3.20 mm to
bregma -5.02 mm, and the brainstem and cerebellum,
approximately from bregma -5.52 mm to bregma -6.96
mm (Paxinos and Franklin, 1997). Every section in a series
of 12 sections (interval: 480 wm) was collected separately.
All sections were stored free-floating in FD sections stor-
age solution (FD Neurotechnologies, Columbia, MD) at
—20°C before further processing. For silver staining, sec-
tions were collected in 0.1 m phosphate buffer (pH 7.4)
containing 4% paraformaldehyde and fixed for 5 days at
4°C. Sections were then processed for the detection of
neurodegeneration with FD NeuroSilver Kit Il (FD Neuro-
technologies) according to the manufacturer’s instruc-
tions. Sections were subsequently mounted on slides,
dehydrated in ethanol, cleared in xylene, and cover-
slipped with Permount (Fisher Scientific, Fair Lawn, NJ).
All images were taken with an Aperio ScanScope (Leica
Biosystems, Buffalo Grove, IL).

Immunohistochemistry quantification

Optical densitometry for quantification of immunohisto-
chemical signal was modified from published methodol-
ogy (Baldock and Poole et al. 1993). Images were
captured with an upright microscope (Zeiss Axiolmag-
er.M2) equipped with a monochromatic digital camera
(Zeiss AxioCam MRm Rev.3) and processed with Zen
imaging software (Zeiss 2012, Blue edition). The micro-
scope light intensity and camera exposure were held
constant. The operator outlined areas of interest around
specific brain regions and recorded the intensity of light
passing through the slide. Degenerating axons allowed
less light to pass through the section owing to their uptake
of silver stain, so lower light intensity correlated with
increased degeneration. The operator performing quanti-
fication was blinded to condition and treatment.

Transmission electron microscopy

Mice were transcardially perfused with Karnovsky’s fix-
ative solution (2% formaldehyde, 2.5% glutaraldehyde,
0.2 M sodium cacodylate buffer, 1 mm CaCl,, 2 mm MgCl,,
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Figure 1. WIdS mice are protected from memory deficits after blast-mediated TBI. A, Latency to escape progressively decreases
over the 4-day training period in all groups. B, Blast-mediated TBI wild-type (WT) mice spend less than half the time as
sham-injury WTs in the escape area (5-cm radius around the escape hole) during the probe test of memory. Blast-mediated TBI
WIdS mice spend a amount of time in the escape area comparable to that of sham-injury WT and sham-injury WIdS mice. C,
The average locomotion speed during the probe trial was similar in all groups. D, The total distance traveled during the probe
trial was similar in all groups. Each group consisted of 25 male congenic C57/BI6 mice, aged 12-14 weeks. Data were collected
and scored in an automated manner blind to treatment group. Data are represented as mean * SEM. Significance was
determined by two-way ANOVA with Bonferroni post hoc analysis. p-values labeled as #+<0.01 and #*##%<0.0001 compared

Blast

with blast-injured WT animals.

and 42.8 mm NaCl, pH 7.4) 2 weeks after either sham or
blast injury. Harvested brains were incubated in Kar-
novsky’s fixative solution overnight at 4°C. Whole brains
were cut in the horizontal plane (100 wm) using a vi-
bratome (Leica 1500). Sections that contained the hip-
pocampus were selected, washed with 0.1 M sodium
cacodylate buffer, and postfixed with 1% osmium fixative
for 1 h. Sections were then dehydrated in a series of
ethanol (50%, 75%, 95%, and 100%) followed by embed-
ding in EPON resin overnight at 65°C. For transmission
electron microscopy, ultrathin sections (60 nm) adjacent
to semithin sections were cut with an ultramicrotome,
loaded onto a Formvar 200-mesh Ni grid, and counter-
stained with uranyl acetate and lead citrate. Specimens
were examined using a JEOL JEM 1230 electron micro-
scope with a Gatan UltraScan 1000 2k x 2k charge-
coupled device camera.

Statistical analysis

All data was compiled and analyzed using Graphpad
Prism. Significance was performed with ANOVA and
Tukey post hoc analysis.

September/October 2016, 3(5) e0220-16.2016

Results

WIdS mice are protected from learning and memory
deficits after blast-mediated TBI

To evaluate the susceptibility of WIdS mice to blast-
mediated TBI, we used a model of blast injury in which a
blast wave is intiated by rupture of a mylar membrane to
expose anesthetized mice in an enclosed overpressure
chamber composed of an air tank partitioned into two
sides (Mohan et al., 2013; Yin et al., 2014)). A sealed mylar
membrane covers a port between the two parts of the
tank, and pressure is increased in the side without the
mouse until the membrane ruptures at ~27 kPa. This
rupture generates a blast wave that travels through the
mouse’s untethered head located in a padded holder,
while the body is shielded by a metal tube. The intensity of
the blast wave is 149.8 = 2.09 kPa, and total duration of
the pressue is ~10-15 ms, composed of both blast wave
and wind gust (Mohan et al., 2013; Yin et al., 2014).

The Barnes maze was used to evaluate hippocampal-
dependent spatial learning in WIdS mice after blast-
induced TBI, with 25 animals per group. This task consists
of a round table with equally spaced holes at its perimeter,
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Figure 2. WIdS mice are protected from motor coordination
deficits after blast-mediated TBI. Blast-injured wild-type (WT)
mice showed an increased number of foot slips relative to sham-
injury WT mice 28 days after blast-mediated TBI. Blast-injured
WIdS mice show a similar number of foot slips as sham-injury
WT and sham-injury WIdS mice. Each group consisted of 25
male congenic C57/BI6 mice, aged 12-14 weeks. Data was
manually collected and scored blind to treatment group. Data are
represented as mean = SEM. Significance was determined by
two-way ANOVA with Bonferroni post hoc analysis. Significance
was determined by two-way ANOVA with Bonferroni post hoc
analysis. p-values labeled as ###%<0.0001 compared to sham-
injured WT animals.

one of which contains an escape cup. Mice are motivated
to learn the location of the hole that houses the escape
cup, so that they can enter the hole and hide in the cup to
avoid exposure on the table. Testing was initiated 7 days
after blast injury, beginning with 4 days of training in which
mice were allowed to find and enter the escape hole and
then rest in the protective cup. All mice, regardless of
genotype or injury group, learned how to locate the plat-
form more quickly over the course of the 4-day training
period (Fig. 1A), indicating equal ability to learn in all four
groups. On day 5, the probe test was conducted, in which
the escape cup was removed and the ability of the mouse
to remember the location of the cup was then assessed
by measuring the amount of time the mouse spent in the
area surrounding where the cup had been previously
located. During the probe test, sham-injured wild-type
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animals spent ~50% of their time in the escape area,
defined as a 5-cm radius surrounding the escape hole
(Fig. 1B). This indicates normal memory. There was no
significant difference in performance in the probe test
between sham-injured WIdS mice and sham-injured wild-
type littermate mice. In contrast, blast-injured wild-type
mice spent only ~20% of their time in the escape area
(Fig. 1B; p < 0.0001 relative to sham-injury wild-type),
indicating the expected degree of impaired memory after
injury (Yin et al., 2014). No differences in this measure
were seen between sham-injury and blast-injury WIdS
groups, in relation to each other or sham-injury wild-type
mice. Importantly, both sham-injury and blast-injury WIdS
mice showed significantly greater time in the escape area
than blast-injury wild-type mice, with ~40% time in es-
cape area for sham-injury WIdS (p < 0.01 relative to
sham-injury wild-type) and ~43% time in escape area for
blast-injury WIdS (p < 0.0001 relative to sham-injury wild-
type; Fig. 1B). This indicates that whereas the WIdS mu-
tation does not improve the animal’s memory under
normal conditions, it does effectively block impairment in
memory that is normally observed after blast injury. Im-
portantly, none of the four groups differed in ability to
physically participate in the task, as determined by com-
parable levels of average speed of locomotion and total
distance traveled during the probe test (Fig 1C, D).

WIdS mice are protected from motor coordination
deficits after blast-mediated TBI

To assay balance and coordination, which are compro-
mised after blast-mediated TBI in wild-type mice (Yin
et al., 2014), we used the standard balance beam task
(Luong et al., 2011). Mice were trained to cross an 80-cm-
long balance beam over 2 days before the day of injury,
and tested again 28 days after injury. Videorecording of all
mice traversing the beam was analyzed for the number of
foot slips by observers blind to genotype or injury group.
Blast-injured wild-type mice displayed four times as many
foot slips as sham-injured wild-type mice (p < 0.0001

WIdS

Hippocampus

Cerebellum

Figure 3. WIdS hippocampus and cerebellum are protected from axonal degeneration after blast-mediated TBI. High-power
representative pictures with 40X objective from hippocampal CA1 stratum radiatum and cerebellum show prominent silver staining
of degenerating axons (red arrows) in blast-injured wild-type mice 12 days after injury, with little to no axonal degeneration in WIdS
mice after the same injury. Images shown are representative of typical images from five animals in each group. Scale bar = 2.5 mm.
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Figure 4. WIdS mice are broadly protected throughout the brain from axonal degeneration after blast-mediated TBI. As in
hippocampus and cerebellum, protection was also noted in WIdS cortex, corpus callosum, olfactory bulb, striatum, and thalamus.
Noticeably, the hypothalamus is resistant to axonal degeneration in wild-type mice after blast-mediated TBI. Images shown are
representative of typical images from five animals in each group. Scale bar = 2.5 mm.

relative to sham-injury wild-type), whereas sham- and
blast-injury WIdS mice showed no difference from sham-
injury wild-type mice (Fig. 2). Thus, WIdS mice are pro-
tected from the motor coordination deficits that are
normally observed after blast-mediated TBI in mice.

WIdS mice are protected from axonal degeneration
after blast-mediated TBI

Histologic examination of brain tissue for evidence of
axonal degeneration was conducted via silver staining 12
days after injury, as previously established (Yin et al.,
2014). In wild-type mice, blast injury was associated with
prominent silver staining of degenerating axons in CA1

September/October 2016, 3(5) e0220-16.2016

stratum radiatum of the hippocampus, cerebellum, cor-
tex, corpus callosum, olfactory bulb, striatum, and thala-
mus, with no injury in the hypothalamus (Figs. 3 and 4),
consistent with previous observations in this TBI model
(Yin et al.,, 2014). Use of an established technique of
automated optical densitometry to quantify the magni-
tude of silver staining, in which decreased signal indicates
greater impedence of light through the tissue owing to
silver staining of degenerating axons (Yin et al., 2014),
showed that in all cases the extent of axonal degeneration
in wild-type mice after TBl was statistically significant
compared with the sham group (Fig. 5). There were no
signficant differences between sham-injured WIdS mice

eNeuro.org
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Figure 5. Optical densitometry of light transmitted through silver-stained brain regions from all animals in each group was used to
quantify the protective effect. Signal was quantified for 18 sections for each of the five animals, spaced 480 mm apart. Here, a greater
value indicates that more light was able to pass unimpeded through the section by virtue of less silver staining, which reflects less
axonal degeneration. Data are represented as mean = SEM. p-value #<<0.05 and #*<0.01 determined by two-way ANOVA with
Bonferroni post hoc analysis compared with blast-injured WT animals.

and sham-injured wild-type littermate mice. In addition,
no significant differences were noted between sham- and
blast-injury WIdS mice, and both of these groups also
showed statistically greater signal than blast-injury wild-
type mice in CA1 stratum radiatum of the hippocampus,
cerebellum, cortex, corpus callosum, and striatum (Fig. 5).

Protective efficacy of the WIdS mutation was con-
firmed by transmission electron microscopy of brain
tissue 12 days after injury. This showed normal myelin
and axonal mitochondrial structures in the CA1 stratum
radiatum of sham-injury wild-type mice, as well as in
sham- and blast-injury WIdS mice (Fig. 6). Blast-injured
wild-type mice, however, showed degeneration of the
myelin sheath, as well as abnormal outer membrane

September/October 2016, 3(5) e0220-16.2016

and internal cristae structures within neuronal mito-
chondria.

WIdS mice are protected from damage to the visual
system after blast-mediated TBI

In patients, TBI frequently leads to chronic visual dys-
function, including light sensitivity, ocular motility dys-
function, optic neuropathy, retinopathy, and visual field
loss (Cockerham et al., 2009, 2011; Lemke et al., 2013). A
measure of retinal ganglion cell and optic nerve damage is
the pattern electroretinogram (PERG), a painless and non-
invasive objective diagnostic measure of retinal function
that requires no verbal communication between patient
and clinicians. This latter feature is important, given the
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Figure 6. Transmission electron microscopy 12 days after injury
shows normal myelin and axonal mitochondrial structures in the
CA1 stratum radiatum of sham-injury wild-type mice, with no
differences seen in sham- and blast-injury WIdS mice. Blast-
injured wild-type mice show degeneration of the myelin sheath
along, as well as abnormal outer membrane and internal cristae
structures within neuronal mitochondria.

acute variance in mental functioning of patients after TBI.
PERG is applicable to both human patients and mice, and
measures stimulus-evoked electrical activity of retinal
cells in response to contrast modulation of patterned
visual stimuli, such as a checkerboard, at constant lumi-
nance (Porciatti, 2007). Because deficits in PERG typically
do not arise until visual damage has been sustained, this
procedure has been modified to the provocative PERG
(PPERG), in which mice or people are tilted with their head
down to increase intraocular pressure. This amplifies
retinal sensitivity to damage and has recently been
shown to provide an early, sensitive, and noninvasive
indicator of future chronic visual dysfunction after TBI,
including later development of retinal cell death (Dutca
et al., 2014). When wild-type mice were exposed to
blast injury, they exhibited significantly decreased
pPERG amplitude 4 weeks later, relative to sham injury
wild-type animals (p < 0.05; Fig. 7). Both sham- and
blast-injury WIdS animals, however, showed pPERG
amplitude preserved to the wild-type sham-injury level
(p < 0.01 relative to blast-injury wild-type animals;
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Figure 7. WIdS mice are protected from pPERG deficits after
blast-mediated TBI. pPERG serves as an early indicator of future
chronic damage to the visual system, including retinal cell death.
Wild-type (WT) mice exhibit ~25% decrease in pPERG 4 weeks
after blast injury, whereas both sham- and blast-injury WIdS
mice exhibit pPERG levels equivalent to sham-injury WT mice.
Each group consisted of 25 male congenic C57/BI6 mice, aged
12-14 weeks. Data were collected and scored in an automated
manner blind to identification of the group and are represented
as mean = SEM. p-value #<0.05 and #*<<0.01 determined by-
two way ANOVA with Bonferroni post hoc analysis, compared to
blast-injured WT animals.

Sham Blast

Fig. 7), indicating that the WIdS mutation protects the
visual system after TBI.

Discussion

An estimated 5 million people in the US currently expe-
rience long-term motor and cognitive disability related to
TBI, at an annual cost exceeding $70 billion (Fleminger
and Ponsford, 2005). Although axonal degeneration is a
major aspect of many forms of neurodegeneration (War-
ner et al., 2010; Wang et al., 2012; Johnson et al., 2013;
Smith et al., 2013), its contribution to the pathological and
neurobehavioral deficits of blast-mediated TBI, the most
common form of TBI sustained by soldiers in Iraq and
Afghanistan, has not previously been investigated. Here,
we show for the first time that early axonal degeneration is
a critical driver of the development of neurologic deficits
after blast-mediated TBI.

We addressed this issue by using WIdS mice, which are
are resistant to Wallerian degeneration, an active process
of axon-autonomous self-destruction linked to neurode-
generation in both injury and disease (Conforti et al.,
2014). These mice have been previously shown to be
protected from Wallerian degeneration of axons after in-
jury in different regions, including spinal cord (Fujiki et al.,
1996; Zhang et al., 1996) and dentate gyrus (Schau-
wecker and Steward, 1997). Here, we report that these
mice are broadly protected from axonal degeneration
throughout the brain after blast injury. Importantly, this
protection is also associated with complete preserva-
tion of normal cognitive, motor, and visual function after
blast exposure. These preclinical studies were highly
powered and rigorously executed, with data acquisition
and analysis conducted blind to genotype and injury
group. Given the current lack of efficacious treatment
for patients with any form of TBI (Smith et al., 2013),
including blast-mediated, these findings are highly clin-
ically relevant. It is not known, however, whether the
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beneficial effect of WIdS would also be effective post-
injury, and future experiments will be needed to ad-
dress this question. In addition, future work focused on
specifically delineating the role of WIdS in the distinct
hippocampal, cerebellar, and visual neuronal circuitry
underlying these disparate behavioral effects could add
further insight into unique pathological processes in-
volved in each domain after injury.

Although our results are highly suggestive that early
thereapeutic intervention aimed at mitigating axonal de-
generation is likely to benefit patients suffering from blast-
mediated TBI, they do not provide definitive evidence that
the functional improvement in WIdS mice after blast-
mediated TBI is exclusively the result of axonal protection.
However, a complementary body of literature supports
this notion. For example, it has recently been shown that
genetic ablation of the Toll receptor adaptor sarm1 (sterile
o/Armadillo/Toll-Interleukin receptor homology domain
protein) gene, which is a key mediator of the active pro-
cess of Wallerian degeneration, protects mice from mul-
tiple injury phenotypes after closed-head mild TBI
(Henninger et al., 2016). These findings with a genetic
loss-of-function model in TBI nicely complement our cur-
rent findings with the gain-of-function WIdS model.

In addition, recent pharmacologic agents shown to en-
hance flux of the NAD salvage pathway in normal mam-
malian cells have also demonstrated axonal protection
associated with similar behavioral protection when ad-
ministered after blast-mediated TBI (Yin et al., 2014), as
well as behavioral and histological protection in concus-
sive TBI models (Blaya et al., 2014). Furthermore, other
avenues of augmenting neuronal NAD levels, such as
administration of nicotinamide (Hoane et al., 2006, 2008;
Goffus et al., 2010), poly(ADP-ribose) polymerase inhibi-
tion (Clark et al., 2007; Stoica et al., 2014), or intranasal
delivery of NAD (Won et al., 2012) also show protective
efficacy in multiple histologic and behavioral outcome
measures after concussive TBI.

Thus, taken together, our findings support the notion
that Wallerian degeneration is an important underlying
pathological feature of blast-mediated TBI and its behav-
ioral consequences. This illustrates the translational po-
tential of NAD-augmenting therapies known to promote
axonal survival, or future alternative approaches for pro-
moting axonal survival, as a fruitful avenue for clinical
treatment of patients suffering from the effects of blast-
mediated TBI.
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