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1 |  INTRODUCTION

Gastric cancer (GC) is the fifth most common cancer in the 
world, ranking third among all cancer deaths, and its incidence 
in East Asia, North America, and other places has increased 
significantly.1 Early gastric cancer was lack of specific symp-
toms, most of them develop into advanced gastric cancer with 
poor prognosis. The current treatments for gastric cancer are 
mainly surgery and chemotherapy, but the recurrence rate is 
high.2 Due to the poor prognosis of gastric cancer, a vari-
ety of new treatments and new prognosis- related biomarkers 

have been proposed and applied, among which, new auxil-
iary chemotherapy and immunotherapy have been applied 
and shown good response in gastric cancer.3 However, how 
to choose the timing of the application of these new therapies 
is becoming a new challenge. Studies reported that the selec-
tion of drug for new complementary chemotherapy does not 
have a uniform standard and not completely effective in all 
types of gastric cancer, and that immunotherapy, especially 
for PD- 1/PDL- 1 inhibitors, did not show good suitability 
for patients with gastric cancer.4,5 Therefore, how to choose 
treatment means needs to be combined with the patient's 
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Abstract
Gastric cancer (GC) is a kind of malignancy with a high mortality and recurrence. 
An effective prediction model based on ideal biomarkers to assess prognosis could 
benefit patients for optimization of treatment. Bioinformatics has played an increas-
ingly important role in the study of cancer diseases. Therefore, this study started with 
bioinformatics to establish a reliable prognostic model of gastric cancer. The gene 
expression data and clinical data of GC tissues and normal tissues were obtained from 
the Gene Expression Omnibus (GEO), Genotype- Tissue Expression (GTEx), and The 
Cancer Genome Atlas (TCGA) profile database. We finally identified a four gene 
signature and constructed a prognostic model. The results of internal and external 
validation showed that the model is highly reliable. In addition, we also constructed 
a nomogram based on the model, which was verified by a calibration curve to show 
its predicted accuracy. Comprehensive analysis indicated that the four genes in the 
model are related to the occurrence and development of tumors, perhaps they are 
potential targets for tumor treatment. Generally, this prognostic model can bring po-
tential benefits to patients with gastric cancer.
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specific conditions such as tumor stage, size, grade, and other 
factors of comprehensive judgment. Individualized therapy 
can help patients with more suitable treatment by combining 
the actual situation of patients, and accurately predicting the 
prognosis of patients is one of the most important links in in-
dividualized treatment.2 Although various prognostic- related 
biomarkers are recognized as effective in gastric cancer, it is 
still important to explore and identify new potential prognos-
tic markers for gastric cancer diagnosis due to the complex-
ity of the causes and mechanisms of development of gastric 
cancer.

Advances in tumor molecular biology have contri-
bution to the development of predictive tools based on 
prognostic genes. Data from a variety of patients, includ-
ing gene expression, survival, tumor stages, etc., are in-
cluded in public databases, and researchers can perform 
bio- informational analysis of these publicly available data 
to identify new prognostic- related genes or summarize 
the underlying genetic characteristics of disease.6 A large 
amount of data can reduce the error caused by the analy-
sis, and the conclusions of the analysis also have a wider 
applicability. Databases, such as TCGA, GEO, and GTEx, 
have been widely used in cancer research, which indicated 
that the analysis of a large number of data to determine 
tumor prognosis characteristics and prognostic markers is 
more beneficial.

In this study, we identified four genes associated with 
the prognosis model of potential gastric cancer by ana-
lyzing the difference expression genes (DEG) of normal 
tissue and stomach cancer tissue in the TCGA and GEO 
databases, and based on this, we established a prognostic 
model. The results of data set verification showed that the 
model is applicable and plays a great role in the prediction 
of gastric cancer.

2 |  MATERIALS AND METHODS

2.1 | Acquisition of genetic and clinical data

Data files of FPKM expression in gastric adenocarcinoma 
(STAD) and corresponding normal tissues (375 tumor, 32 
normal) were derived from TCGA (https://portal.gdc.cancer.
gov). TPM value of normal tissues (359 normal) was derived 
from GTEx (https://gtexp ortal.org/home/). TCGA- STAD 
clinical data were derived from cBioPortal7 database (www.
cbiop ortal.org). Thirteen original files in GPL570 platform 
gene chip of gastric cancer tissue microarray (GSE66229, 
GSE54129, GSE13911,8 GSE19826,9 GSE79973,10 
GSE51725,11 GSE15459,12 GSE51105,13 GSE35809,14 
GSE57303,15 GSE34942,16 GSE22377,17 GSE38749) were 
obtained from GEO (https://www.ncbi.nlm.nih.gov/geo) 
(Table 1).

2.2 | Data processing

The data downloaded from TCGA were converted into TPM 
value, and the “sva”18 package was used to combine with 
the TPM value from GTEx to remove batch effect. After 
removing the genes with mean less than 0.5, the “limma”19 
package was used for difference analysis, set P < 0.05 and 
FDR (error detection rate) <0.05. The “affy”20 package 
was used to extract GPL570 platform chip- expression data 
in GEO database. The “sva” package was used to combine 
with the abovementioned data and remove the batch effect. 
The “limma” package was used to analyze the difference, set 
P < 0.05 and FDR < 0.05. SangerBox (www.sange rbox.com 
mapping tool was used to make the Venn map; 651 DEGs 
were selected to be co- regulated.

GEO data sets Year Country Platform Sample
Tumor 
(n)

Normal 
(n)

GSE66229 2015 USA GPL570 GC/Normal 300 100

GSE54129 2017 China GPL570 GC/ Normal 111 21

GSE13911 2008 Italy GPL570 GC/ Normal 38 31

GSE19826 2010 China GPL570 GC/ Normal 12 15

GSE79973 2016 China GPL570 GC/ Normal 10 10

GSE51725 2013 Japan GPL570 GC/ Normal 8 2

GSE15459 2009 Switzerland GPL570 GC 200 0

GSE51105 2014 Australia GPL570 GC 94 0

GSE35809 2012 Singapore GPL570 GC 70 0

GSE57303 2014 China GPL570 GC 70 0

GSE34942 2014 Singapore GPL570 GC 56 0

GSE22377 2011 Germany GPL570 GC 43 0

GSE38749 2012 Brazil GPL570 GC 15 0

T A B L E  1  GEO data sets included in 
this study

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://gtexportal.org/home/
http://www.cbioportal.org
http://www.cbioportal.org
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66229
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54129
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13911
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19826
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79973
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51725
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51105
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35809
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57303
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34942
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22377
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38749
https://www.ncbi.nlm.nih.gov/geo
http://www.sangerbox.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66229
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54129
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13911
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19826
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79973
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51725
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15459
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51105
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35809
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57303
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   | 3311ZHOU et al.

2.3 | PPI network construction

We used the string database (https://strin g- db.org/) to con-
struct the DEGs gene protein– protein interaction (PPI) net-
work. We set the minimum correlation value to 0.40 and 
removed unconnected points to exclude less correlated con-
nections. The results were imported into Cytoscape21(3.7.2) 
to visualize PPI network interactions. The network analysis 
tool was used to analyze the degrees between various pro-
teins, and the degrees were arranged from the inside out ac-
cording to their sizes. The MCOD tool of Cytoscape was used 
to analyze and determine the key modules in PPI network, 
and the most representative top 3 modules were obtained for 
further analysis.

2.4 | Gene enrichment analysis

We used Kyoto encyclopedia of Gene and genome database 
(KEGG)22 (https://www.genome.jp/kegg/) and the Gene 
Ontology database (GO)23 (http://geneo ntolo gy.org/) en-
richment analysis to investigate the functions of the genes 
in these key modules of gastric cancer. According to KEGG 
and the GO, the WebGestalt24 (www.webge stalt.org) tool 
was used for the enrichment of the gene in top 3 modules, set 
threshold P < 0.05 and FDR <0.05. The “GOplot” package25 
was used to visualize the enrichment analysis results.

2.5 | Construction of prognostic model

We used univariate Cox regression analysis to screen out 
genes related to the overall prognosis in TCGA- STAD, and 
further used the "glmnet" R package to study the significant 
genes related to the prognosis of gastric cancer patients. We 
used the multivariate Cox regression analysis to analyze in-
dependent prognostic hub genes in gastric cancer and built a 
risk ratio model based on this. The linear grouping method 
was used to combine the expression level with coefficient 
of each gene, and the risk score formula was obtained as 
follows:

Risk score= β1 ∗ Exp2 + β1 ∗ Exp2+β1 ∗ Exp2 +…βi ∗ 
Expi (Exp is the expression level of each prognostic gene and 
β is its regression coefficient).

Based on risk scores, patients in the data set were divided 
into two groups with high and low risk. KM survival analysis 
was used to show different survival rates among two groups, 
with logarithmic rank sum test to evaluate the performance. 
To explore the diagnostic ability of different genes at other 
levels of clinical prognostic parameters, risk and clinico-
pathological heat map was drawn to compare differences in 
age, gender, grade, TMN stage, AJCC stage, MSI status, and 
survival status. Univariate and multivariate Cox proportional 

hazards regression analyses were used to assess the risk lev-
els of different factors. To verify the accuracy, we established 
the ROC curve of the prediction.

2.6 | Verification of multigene 
prognostic signatures

Data sets with clinical data from the GPL570 platform were 
used as test sets. We used the test sets to prove the accuracy 
and applicability of multigene prognostic signatures in gas-
tric cancer. Each patient's risk score was calculated by the 
coefficients of the four genes which could divide patients 
into high- risk or low- risk groups. The multigene prognosis 
signatures were verified by the KM survival curve. The loga-
rithmic rank test and ROC analysis were used to assess the 
performance of KM survival curve.

2.7 | Construction and 
Verification of the nomogram

To develop a quantitative prognostic approach, we con-
structed nomogram to predict the impact of each gene on 1-  
to 5- year overall survival. The nomogram was constructed 
from prognostic factors screened by univariate and multi-
variate Cox regression analyses. Based on multivariate Cox 
analysis, point scales in the nomogram were used to assign 
values to individual variables. We used a horizontal line to 
determine the points of each variable and calculated the total 
points for each patient by adding up the points of all vari-
ables, normalizing the distribution from 0 to 100. Then we 
established the performance of the calibration curve to visual 
nomogram. We compared the predicted and observed results 
in the calibration curve. The best prediction occurred when 
the slope was close to 1.

2.8 | Verification of the Hub gene expression

To verify the expression differences and levels of P3H2, 
UHRF1, THY1, and C5 in tumor tissues and normal tissues, 
three data sets in the Oncomine database (www.oncom ine.
org), including Cho Gastric (n = 90), Chen Gastric (n = 132), 
and Cui Gastric (n = 160) were used to verify the survival- 
related hub genes.

2.9 | Statistical analysis

Wilcoxon test was used to test the difference of DEG expres-
sion between tumor tissues and non- tumor tissues in TCGA 
data. The eBayes function of R Documentation was used to 

https://string-db.org/
https://www.genome.jp/kegg/
http://geneontology.org/
http://www.webgestalt.org
http://www.oncomine.org
http://www.oncomine.org
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analyze the data obtained in GPL570 platform gene chip. 
Kruskal- Wallis test was used to compare the differences of 
DEG in all groups. Chi- square test (X2) was used to evalu-
ate DEG expression and clinicopathological parameters. 
Kaplan- Meier analysis verified by log- rank test was used to 
contrast different survival rates between the high-  and low- 
risk groups. Univariate and multivariate survival analyses 
were performed using Cox proportional hazard regression 
models. External validation was performed by the unpaired t- 
test in GraphPad Prism Statistics software (7.0), set P < 0.05.

3 |  RESULTS

3.1 | Acquisition of DEGs

The whole research process is shown in Figure 1. DEGs of 
tumor and non- tumor tissues in TCGA database and GTEx 
database were analyzed by the “limma” package. The scatter 
plot showed the up- regulation and down- regulation of genes 
in gastric cancer and normal gastric tissue, and we got 2,410 
up- regulated and 2,480 down- regulated DEGs (Figure 2A). 
The data obtained in the previous step and the data ob-
tained from the GEO database were analyzed again by the 
“limma” package, 466 up- regulated and 635 down- regulated 
genes were identified (Figure 2B). Then, using Venn graph 

analysis, there were 296 co- up- regulated genes and 355 co- 
down- regulated genes in total (Figure 2C).

3.2 | Construction of PPI network and DEGs 
enrichment analysis

Based on the 651 DEGs obtained above, a PPI network with 
591 nodes and 6,419 edges was constructed to identify the 
interactions among DEGs (Figure  3A). Node degree and 
intermediate degree were calculated by the MCC method 
to obtain hub node. MCODE analysis identified the three 
core modules with the highest scores in the PPI network 
(Figure 3B, C, D), which contained a total of 133 key DEGs, 
and these genes may play a core role in the PPI network.

Enrichment analysis by the GO and KEGG pathways 
was used to discover the function of key DEG. The key 
DEGs are expressed in cellular components (including the 
nucleus, cytoplasm, and membrane- bound organelles), and 
are also significantly associated with cellular biological 
processes (including physiological regulation, metabolism, 
and stimulus response) and cellular molecular functions 
(such as binding of proteins, nucleic acids, and nucleo-
tides) (Figure 4A). Figure 4B showed that some key DEGs 
were associated with cell cycle, DNA replication, and other 
processes. Some tumor- related signaling pathways, such 

F I G U R E  1  The workflow of entire 
research



   | 3313ZHOU et al.

as p53, TNF, and IL- 17 pathways, were also connected 
with DEGs. These results indicated that the key DEGs 
are involved in various functions of tumor cells in vary-
ing degrees and may represent a key biological role in PPI 
networks.

3.3 | Identification of survival- related 
DEGs and establishment of four gene 
prognostic model

The results of univariate Cox analysis showed that there 
were 16 genes related to overall survival, among which 
up- regulated genes were P3H2, COL10A1, TIMP1, 
THBS2, COL12A1, THY1, COL8A1, COL5A1, APIDOQ, 
ANGPT1, C5, CHRDL1, FAM20A, and P2RY14, and 
down- regulated genes were UHRF1, FEN1, and EZH2 
(Figure 5A). To further identify the DEGs significantly asso-
ciated with GC prognosis, lasso regression analysis and ten-
fold cross- validation were used to further screen for DEGs 
(Figure 5B). The best λ value (λmin = 0.025) was obtained 
from the smallest local likelihood deviation, and eight genes 
were found that are significantly related to the prognosis. 
Multivariate Cox analysis directly identified four optimal 
prognostic gene models, namely P3H2, COL10A1, UHRF1, 
and C5 (Figure 5C). The risk scores of patients were calcu-
lated according to the scoring formula: Risk score = (P3H2 
expression level * 0.109987) + (COL10A1 expression level 
*0.10246) + (UHRF1 expression level * −0.22772) + (C5 
expression level * 0.218072).

Kaplan- Meier survival curve evaluated the difference 
of survival between high- risk and low- risk patients in 
the risk model, and it was shown that the decrease in sur-
vival was more obviously in the high- risk group than the 
increase in the low- risk group over the time, mean prog-
nosis of the high- risk group is poorer than the low- risk 
group (P  =  2.461e- 04) (Figure  6A). Prognostic value of 

the Kaplan- Meier survival curve was determined by the 
ROC curve. Area under the curve (AUC) of 0.726 indi-
cated the median credibility of the Kaplan- Meier survival 
curve (Figure  6B). The number of deaths in high- risk 
group was higher than that in low- risk group, and the num-
ber of patients with survival time of more than 5 years in 
high- risk group was lower than that in low- risk group. The 
heat map showed the risk with each prognostic gene. With 
the increase of risk score, the expression level of P3H2, 
COL10A1, and C5 in patients increased and UHRF1 was 
decreased (Figure 6C). Univariate Cox analysis and mul-
tivariate Cox analysis were used to determine whether the 
risk value and other clinicopathological characteristics 
are independent prognostic factors. Univariate Cox re-
gression analysis suggested that age [HR = 1.024, 95% CI 
(1.007– 1.043), P  =  0.007], N stage [HR=1.319, 95% CI 
(1.126– 1.544), P < 0.001], T stage [HR = 1.306, 95%CI 
(1.046– 1.629), P = 0.018], AJCC stage [HR = 1.556, 95% 
CI (1.255– 1.929), P < 0.01], and risk score [HR = 2.312, 
95% CI (1.611– 3.318), P  <  0.001] were related to the 
overall prognosis of gastric cancer patients (Figure  6D). 
Multivariate Cox regression analysis showed that the risk 
score [HR = 3.725, 95% CI (2.166– 4.953), P < 0.001] was 
the best independent prognostic factor for gastric cancer 
patients compared with age [HR = 1.049, 95% CI (1.028– 
1.069), P < 0.001] (Figure 6E).

In addition, we further analyzed the risk score and the 
relationship between the four hub genes with clinical case 
characteristics in TCGA- STAD. Figure  7A indicated that 
MSI status, Grade staging, and survival status are related 
to the level of risk. Among the four hub genes (Figure 7B), 
it is worth noting that the expression of P3H2 was signifi-
cantly positively correlated with Grade, M, T, AJCC, and 
MSI status (P < 0.05). While the expression of HRF1 was 
only related to MSI status (P < 0.0001), the expression of 
THY1 and C5 was positively related to Grade and T stages 
(P < 0.05).

F I G U R E  2  Regulated genes in normal and gastric cancer tissues. Each red dot represents an up- regulated gene and each green dot represents a 
down- regulated gene. (A) Volcano plot of differential expressed genes (DEGs) in TCGA & GTEx database. (B) Volcano plot of DEGs in GPL570 
platform array. (C) Venn diagrams of the co- regulated DEGs between tumor with normal tissues
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3.4 | Verification of four gene 
prognostic signatures

Data from GPL570 platform arrays were used for external 
verification to test the applicability of the four gene prognostic 
signatures. In this data set, we analyzed a total of 493 gastric 
cancer patients. According to the previous risk score calcula-
tion formula, 464 patients were high risk and 28 patients were 
low risk. The results of Kaplan- Meier survival curve showed 
a less optimistic prognosis in the high- risk group than low- 
risk group (p = 8.76e- 03), which is approximate to the results 
in the test set (Figure 8A). The AUC of ROC curve was 0.614, 
and showed that the prognostic value of four gene signature 
was high (Figure  8B). In addition, the heat map indicated 
that P3H2, COL10A1, and C5 was up- regulated in the high- 
risk group, while UHRF1 was low- expressed in the high- risk 

group, this was consistent with previous results (Figure 8C). 
Univariate Cox analysis (Figure  8D) and multivariate Cox 
analysis (Figure 8E) indicated that age [HR = 1.022, 95% CI 
(1.010– 1.033), P < 0.001], AJCC stage [HR = 2.469, 95% 
CI (2.106– 2.894), P < 0.001], and risk score [HR = 1.311, 
95%CI (1.147– 1.497), P  <  0.001] were independent prog-
nostic factors for gastric cancer patients, which was consist-
ent with TCGA set.

3.5 | Construction and 
verification of nomogram

Based on 370 patients in TCGA- STAD, we drew a nomo-
gram composed of four hub gene expression levels. The 
corresponding assigned score was obtained by detecting the 

F I G U R E  3  PPI network of all the co- regulated DEGs and top 3 key modules. Up- regulated genes are marked with red and down- regulated 
genes are marked with blue. (A) PPI network of all the co- regulated DEGs. (B) The key module 1. (C) The key module 2. (C) The key module 2
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expression of the hub gene, and the total score was obtained 
by adding the individual gene scores, while the survival rate 
of gastric cancer patients can be predicted from 1 to 5 years 
(Figure 9A). Calibration curve was drawn to test the accu-
racy of the nomogram prediction. In the calibration chart, the 
predicted result (dotted line) was very close to the actual re-
sult (red line), means that the prediction of nomogram was of 
high quality (Figure 9B). In summary, four gene prognostic 
markers can accurately predict prognosis of GC patients.

3.6 | External verification of four gene 
prognosis signature

Three data sets of Cho Gastric (n = 90) (Figure 10A), Chen 
Gastric (n = 132) (Figure 10B), and Cui Gastric (n = 160) 
(Figure 10C) were selected from the Oncomine database for 
external use to verify the expression level of central genes 
related to survival. Each gene was individually validated in 
three data sets. In general, the expression of P3H2, COL10A1, 

F I G U R E  4  Gene enrichment analysis of 133 key DEGs in top 3 module of PPI network. (A) GO enrichment analysis. (B) KEGG enrichment 
analysis
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and C5 in tumor tissues was significantly increased than that 
in normal tissues, and the expression of UHRF1, considered 
as a tumor suppressor gene, was higher in normal tissues 
than in tumor tissues. The results of external validation were 
consistent with our previous results, suggested that the four 
gene signature can be used as a reliable prognostic model for 
gastric cancer.

4 |  DISCUSSION

Stomach cancer is one of the most common cancers in the 
world, and the low detection rate of early gastric cancer 
and the high recurrence rate of advanced stomach can-
cer together lead to a poor prognosis of stomach cancer. 
Individualized treatment of stomach cancer helps patients 
choose the most appropriate treatment among a variety of 
treatments, and accurate prediction of the patient's prognos-
tication is critical for individualized treatment, with ena-
bles patients to choose more suitable therapeutic methods 
among molecular targeted, immunotherapy, and other new 
therapeutic methods.26 Molecular prognostic markers could 
be changed with tumor progression, and monitoring these 
markers can dynamically reflect the prognosis of patients, 
which may be further increased by combining AJCC stage, 
the most commonly used prognostic tool for gastric can-
cer.27 In addition, some molecular prognostic markers are 
involved in the development of tumors, they may be po-
tential targets for tumor therapy and diagnostic indicators 
for early tumors.28 Molecular prognostic markers in differ-
ent patients may be heterogeneous, so a group of molecular 

markers is better than a single molecular marker in terms 
of prognosis. In clinical practice, nomograms are widely 
used to evaluate multiple prognostic factors.29 Conventional 
AJCC staging combined with nomograms can provide more 
accurate predictions, which is undoubtedly beneficial to the 
individualized treatment of patients.

For a wide range of applicability, we analyzed and 
screened a large number of stomach cancer tissue and 
normal stomach tissue in the TCGA, GTEx, and GEO 
databases. One hundred and thirty- three reliable key 
DEGs were identified through comprehensive analysis 
of multiple data sets. Gene enrichment analysis showed 
that DEGs were involved in many important biological 
processes such as protein synthesis, cell metabolism, 
and stimulus response. In addition, these DEGs are as-
sociated with several important tumor- related pathways, 
such as p53, TNF, and IL- 17 pathways. Among them, 
p53 pathway is the most frequently activated pathway 
in cancer. Mutations in the tumor suppressor gene p53 
are present in most of human cancers and have been 
shown to increase the ability of tumor invasion.30 The 
pro- inflammatory role of IL- 17 pathway in human au-
toimmune diseases has been widely concerned. Recent 
studies have shown that IL- 17 pathway is also involved 
in the occurrence and development of tumors.31 TNF 
pathways are rich in functions and are involved in cell 
survival, apoptosis, and differentiation, hence their 
name due to their antitumor properties.32 To find the 
most representative survival- related DEGs, we used 
univariate Cox analyses, lasso regression analyses, and 
multivariate Cox analyses for further analysis of these 

F I G U R E  5  Identification of survival- related DEGs. (A) A total of 16 genes associated with survival were identified by univariate Cox 
analysis. (B) Eight DEGs were further screened from 16 genes by lasso regression analysis and tenfold cross- validation. (C) Multivariate Cox 
analysis finally screened out four optimal genes and constructed forest map
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F I G U R E  6  Predictive ability of four gene signatures. (A) Kaplan- Meier survival curves for the high- risk and low- risk groups (B) ROC 
validation of the four gene signature, (AUC) =0.726. (C) The status distribution of patients’ survival and the heat map of hub gene expression. (D) 
Univariate Cox analyzes the relationship between clinicopathological characteristics and risk value and overall prognosis. (E) Multivariate Cox 
analyzes the relationship between clinicopathological characteristics and risk value and overall prognosis
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DEGs, resulting in p3H2, COL10A1, C5, and UHRF1 
for a total of four genes. P3H2, COL10A1, and C5 were 
up- regulated and associated with adverse survival, and 
UHRF1 was down- regulated, indicating that this is a pro-
tective gene. Gastric cancer patients can be divided into 
high- risk group and low- risk group using these four gene 
signatures, and the survival rate of the high- risk group 
is significantly lower than that of the low- risk group. 
Similarly, Oncomine database was used to test the per-
formance of prognosis models based on these four gene 
signatures, which showed that they performed well in 
predicting gastric cancer prognosis. All four genes were 
significantly related to survival and are involved in the 
biological processes of many important cells, suggesting 
their reliability as prognostic genes. P3H2 is a protein 
coding gene, and mutations in the gene are associated 
with severe non- syndromic myopia with cataracts and 
vitreoretinal degeneration.33 In tumors, breast cancer 
may be associated with down- regulation of the gene, but 
lung cancer studies have shown that up- regulation of the 
gene is harmful to patients.34 The main role of COL10A1 
gene is to promote cartilage ossification, and diseases 
associated with COL10A1 include metaphyseal chondro-
dysplasia, schmid type, and cartilage disease.35

Studies in gastric and colorectal cancer have shown 
that high expression of COL10A1 promotes epithelial- 
mesenchymal transformation and tumor cell invasiveness 
and is associated with poor prognosis. It is worth noting that 
this study also used bio- informational methods to reach this 
conclusion, further demonstrated that the COL10A1 gene 

played an important role in stomach cancer.36,37 C5 gene 
plays a major role in the components of the coding com-
plement system.38 The related pathways included immune 
response, lectin- induced complement pathway, and GPCR 
signaling pathway. It has been reported that C5- encoded 
PR proteolytic product C5 promotes tumor cell invasion, 
suggesting that up- regulation of this gene in tumors pro-
motes tumor progression.39 The protein UHRF1 encodes 
a hub protein that integrates epigenetic information. In the 
study of gastric cancer, the researchers found that the high 
expression of this gene would enhance the invasion and 
proliferation of tumor.40

P3H2 and C5 genes have not been reported in gastric can-
cer. However, it has been reported that these two genes are 
involved in tumor genesis and progression in other malignant 
tumors. In general, there are few reports on the role of these 
two genes in cancer, and further studies are needed to find 
out whether they play a role in the development of gastric 
cancer. The study showed that the abnormally high expres-
sion of COL10A1 promotes the proliferation, migration, and 
invasion of gastric cancer cells and is associated with poor 
tumor stage, which is consistent with our results.41 Studies 
on UHRF1 gene in gastric cancer showed that it promoted the 
proliferation of gastric cancer cells.42 Our study suggested 
that the down- regulation of this gene leads to a poor progno-
sis, and the different observed results may be due to the un-
stable expression of this gene caused by the posttranslational 
modification.

Through the analysis of a large amount of data, the genes 
obtained in our study have a very broad applicability, which 

F I G U R E  7  Correlation of risk value and four hub genes with clinical case characteristics. (A) Heat map of the correlation between risk 
value and clinical case characteristics. (B) Heat map of the correlation between the four hub genes and clinical case characteristics. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001
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can bring some effect to the personalized treatment and ac-
curate prediction of prognostics for gastric cancer patients. 
However,the potential mechanisms of the four hub genes 
that constitute the prognostic signature to regulate the occur-
rence and development of gastric cancer require further ex-
perimental studies. In addition, these genes need to be tested 
in larger clinical trials to further determine their suitability 
and accuracy.

5 |  CONCLUSION

In summary, our four gene expression prediction model based 
on multiple data sets is more economical and clinically feasi-
ble than whole- gene sequencing. We also drew a nomogram 
of the prediction model, which can be used to evaluate the 
prognosis of different patients individually by detecting the 
expression of genes, which is undoubtedly more beneficial 

F I G U R E  8  External verification of four gene signature. (A) Kaplan- Meier survival curves for the high- risk and low- risk groups (B) ROC 
validation of the four gene signature, (AUC) =0.614. Patient survival status distribution and hub gene expression heat map. (D) Univariate Cox 
analyzes the relationship between clinicopathological characteristics and risk value and overall prognosis. (E) Multivariate Cox analyzes the 
relationship between clinicopathological characteristics and risk value and overall prognosis
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to the selection of effective treatment methods. In addition, 
the DEG was obtained from multiple data sets and verified, 
with high reliability, and may also be a potential target for 
anti- gastric cancer.
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F I G U R E  9  Establishment and validation of nomogram. (A) A prognostic nomogram was established for four hub gene expression level 
to predict 1– 5 years of overall survival. (B) Calibration chart for nomogram. The dotted line represents the prediction results, and the red line 
represents the actual results. The high degree of coincidence between the two indicated that the prediction results are reliable

F I G U R E  1 0  Oncomine database 
verified four hub gene expression. (A) 
Cho Gastric (n = 90) data sets. (B) Chen 
Gastric (n = 132) data sets. (C) Cui Gastric 
(n = 160) data sets. Blue represents normal, 
red represents GC, *P < 0.05, **P < 0.01, 
*** P < 0.001, ****P < 0.0001
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