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Abstract
Background T he decrease in sperm motility has 
a potent influence on fertilisation. Sperm motility, 
represented as the percentage of motile sperm in 
ejaculated sperms, is influenced by lifestyle habits or 
environmental factors and by inherited factors. However, 
genetic factors contributing to individual differences in 
sperm motility remain unclear. To identify genetic factors 
that influence human sperm motility, we performed 
a genome-wide association study (GWAS) of sperm 
motility.
Methods A  two-stage GWAS was conducted using 
811 Japanese men in a discovery stage, followed by a 
replication study using an additional 779 Japanese men.
Results I n the two-staged GWAS, a single nucleotide 
polymorphism rs3791686 in the intron of gene 
for erb-b2 receptor tyrosine kinase 4 (ERBB4) on 
chromosome 2q34 was identified as a novel locus 
for sperm motility, as evident from the discovery and 
replication results using meta-analysis (β=−4.01, 
combined P=5.40×10−9).
Conclusions T ogether with the previous evidence 
that Sertoli cell-specific Erbb4-knockout mice display 
an impaired ability to produce motile sperm, this 
finding provides the first genetic evidence for further 
investigation of the genome-wide significant association 
at the ERBB4 locus in larger studies across diverse 
human populations.

Introduction
Approximately 10% couples display infertility 
issues, and half of these problems are related to 
men.1 2 Male factor infertility may arise from 
various medical conditions such as spermato-
genic failure, varicocele, obstructive azoospermia 
and congenital absence of vas deferens. Sperm 
motility—represented as the percentage of motile 
sperm in the ejaculated sperms—has a large influ-
ence on the fertilisation ability. Therefore, several 
studies are conducted to understand the factors that 
affect sperm motility.

Oxidative stress induced by alcohol consump-
tion, cigarette smoking, obesity, diabetes, physical 
exercise, psychological stress, ageing, infection 
and environment factors (pollutants such as nitric 
oxide, lead and electromagnetic waves from cell 
phones) is one of the major factors responsible 
for the reduction in sperm motility.3 4 Genetic 
background has also been shown to be associated 

with sperm motility. The gr/gr subdeletion in the 
azoospermia factor c region of the Y chromosome 
was shown to be strongly associated with decreased 
sperm motility in men from Japanese population.5 
Furthermore, polymorphisms in genes encoding 
cytochrome P450 family 19 subfamily A polypep-
tide 1,6  androgen receptor,7 follicle-stimulating 
hormone receptor,8 steroid 5α-reductase9 and 
oestrogen receptor10 11 were associated with sperm 
motility. These genes are related to the reproductive 
hormones and contribute to the testicular develop-
ment and spermatogenesis; these genes have been 
proposed based on their functions. However, the 
genetic determinants for human sperm motility are 
poorly understood.

Genome-wide association study (GWAS) is an 
approach to find the genetic variations associ-
ated with disease or quantitative traits. To date, 
four GWASs associated with male infertility have 
been reported. These include the non-obstructive 
azoospermia or oligozoospermia in Caucasians or 
Chinese men12–15 and the family size or birth rate 
in Hutterite men in the USA.16 In the latter, 9 of 
the 41 single nucleotide polymorphisms (SNPs) 
were significantly correlated with the family size or 
birth rate and found to be associated with reduced 
sperm quantity and/or function in the subsequent 
validation study using 123 ethnically diverse men. 
However, there are no reports on GWAS of sperm 
motility. Here, we clarified the genetic determinants 
for human sperm quality by conducting a GWAS of 
sperm motility in 811 Japanese men, with a subse-
quent validation of the association in an additional 
779 Japanese men.

Methods
Subjects
We performed a two-staged genetic association 
study. The discovery stage included 816 men 
(20.7±1.7 years old, mean±SD) from the young 
Japanese population. These were recruited from 
university students in three study centres based in 
departments of urology at university hospitals in 
Japan (Kawasaki, Kanazawa and Nagasaki) as previ-
ously reported.17 The inclusion criteria were that 
the man was 18–24 years and that both he and his 
mother were born in Japan. The replication stage 
included 779 men (31.2±4.8 years old, mean±SD) 
of proven fertility recruited from the partners of 
pregnant women who attended obstetric clinics in 
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four cities in Japan (Sapporo, Kanazawa, Osaka and Fukuoka).18 
The inclusion criteria for the men were as follows: age 20–45 
years and both he and his mother had to be born and live in 
Japan. In addition, the current pregnancy of the female partner 
had to be achieved by normal sexual relations and not as a result 
of fertility treatment. We excluded sample with complete dele-
tion of AZF region in both subjects. The characteristics of the 
two-staged subjects are summarised in table 1Table 1. No differ-
ence in sperm motility was observed between the two-staged 
subjects. Some of the subjects in this study have been described 
in previous reports.19–26

Clinical trait measurements
The measurement of clinical trait of these subjects has been 
described in previous reports.17 18 Briefly, age, body weight, 
height and ejaculation abstinence period were self-reported. 
Body mass index (BMI) (kg/m2) was calculated from the body 
weight and height. Semen samples were obtained once by 
masturbation after sexual abstinence for at least 48 hours and 
ejaculated into clean, wide-necked, sterile, non-toxic collec-
tion containers. The samples were protected from extremes of 
temperature and liquefied at 37°C prior to their examination. 
At each semen collection site, sperm motility was assessed from 
10 µL of well-mixed semen, which was placed on a clean glass 
slide, covered and examined at a total magnification of 400× at 
37°C. Sperm motility (%) was calculated as ([number of motile 
sperm in the ejaculate]/[number of sperm in the ejaculate])×100. 
The motility assessment was repeated on a second 10 µL aliquot 
of semen and the average value calculated. Sperms were assessed 
using the WHO motility classes A, B, C and D,27 wherein sperms 
from classes A and B were considered as motile. Technicians 
from each centre were initially trained by one technician from 
St. Marianna University in Kawasaki, and these clinical trait 
measurements were similarly performed in both cohorts.

Genotyping, quality control and imputation
Genomic DNA was extracted from the peripheral blood samples 
of subjects using a QIAamp DNA blood kit (Qiagen, Tokyo, 
Japan). In the discovery stage, 816 men were genotyped using the 
Illumina HumanCore V.1.0 DNA Analysis Kit (Illumina, Tokyo, 
Japan) following the manufacturer’s instructions. We genotyped 
298 930 SNPs, and the quality control of genotyped SNPs and 
samples was conducted using PLINK V.1.07 software package 
(http://​pngu.​mgh.​harvard.​edu/~​purcell/​plink/).28 Of the 816 
samples, four were excluded because these were duplicates or 
familial relationships (PI_HAT>0.25), as revealed by pairwise 
identical-by-state/identity-by-descent estimation. Furthermore, 
we excluded one sample that was identified as a genetic outlier 
by the principle component analysis-based method using the 
genotype data of the HapMap CHB and JPT as the internal 

controls (online supplementary figure S1). Finally, 811 samples 
were included for genome-wide association analysis.

For genotype imputation analysis, only non-redundant poly-
morphic SNPs with reference SNP (rs) IDs fulfilling the following 
criteria were included: (1) per-SNP call rate  ≥0.98 and (2) 
P value for Hardy-Weinberg equilibrium (HWE) ≥10−6 in our 
sample set. Genotype data were flipped to forward strand with 
conform-gt, which is the utility program of BEAGLE V.4.1,29 30 
using genotype data for Asian samples (JPT and CHB) of the 
1000 Genomes Project31 32 as a reference panel. Imputation 
was performed with BEAGLE V.4.1, using the 1000 Genomes 
Project Phase 3 V.5 as a reference panel. We excluded SNPs with 
R2 <0.8 and all indels from the imputed genotype data to obtain 
genotypes for 3 901 256 SNPs, which were used for subsequent 
association analyses.

In the replication stage, SNP rs3791686 was genotyped using 
TaqMan probe (C_ 27517144_10; Applied Biosystems, Tokyo, 
Japan) with the ABI 7900HT real-time PCR system (Applied 
Biosystems). rs3791686 in randomly selected 100 samples of 
discovery subject was directly genotyped to confirm the concor-
dance of the imputed results. The concordance of typing results 
between genotyped and imputed was 100%. The genotypes of 
rs3791686 were in HWE in a total of 1590 samples.

Statistical analysis
In discovery and replication stages, associations between each 
SNP and sperm motility were assessed using a multiple linear 
regression under an additive genetic model, with adjustments for 
age, BMI, ejaculation abstinence period and time from mastur-
bation to semen evaluation using PLINK or R V.3.1.2 software 
package (http://www.​R-​project.​org/). Since the raw value was 
closest to the normal distribution than some converted values, we 
decided to use the raw value for analysis in the present study. We 
set a suggestive threshold of P values <1×10−6 in the discovery 
stage. The results were combined in a meta-analysis using the 
meta package for the R software. The extent of heterogeneity 
among studies was quantified by the I2 statistic33 and statisti-
cally assessed by the Cochran’s Q test. No heterogeneity was 
observed in this study, as determined by the I2 statistic <50% or 
P value >0.1; hence, a fixed-effect model using the inverse vari-
ance method was used. Genome-wide statistical significance was 
considered at P values <5×10−8.

The Manhattan and quantile–quantile plots were generated 
using qqman package for the R software, while a regional plot 
was created by LocusZoom using the 1000 Genomes project 
Asian (ASN) data (November 2014).34 With the exception of 
annotations, linkage disequilibrium (LD) was calculated using 
PLINK software V.1.07 with genotype imputation data. Signif-
icant  expression quantitative trait loci (eQTL) by SNP was 
searched on GTEx Portal database (http://www.​gtexportal.​
org/​home/).35 HaploReg V.4.1 (http://​archive.​broadinstitute.​
org/​mammals/​haploreg/​haploreg.​php) was used for functional 
annotation analysis of variants,36 and RegulomeDB (http://​
regulome.​stanford.​edu/​index) was employed to identify poten-
tial regulatory functions.37 Pathway analysis of GWAS data-
sets for sperm motility was conducted using iGSEA4GWAS 
V.2 (http://​gesea4gwas-​v2.​psycho.​ac.​cn/).38 The SNPs were 
mapped to the nearest genes within 20 kb upstream/down-
stream and searched KEGG (http://www/​genome.​jp/​kegg/), 
BioCarta (http://www.​biocarta.​com) and GO (http://www.​
geneontology.​org) gene set/pathway databases. The threshold 
of false discovery rate (FDR)<0.05 is statistically significant 
in this analysis.

Table 1  Characteristics of subjects

Discovery (n=811) Replication (n=779) P value

Age (years) 20.7±1.7 31.2±4.8 <0.0001

BMI (kg/m2) 21.5±2.5 23.3±3.0 <0.0001

Ejaculation abstinence 
(hours)

79.8±39.5 194.6±326.8 <0.0001

Sperm motility (%) 60.3±14.5 59.4±20.7 0.32

Data are presented as mean±SD. P values were obtained with Student’s unpaired 
t-test.
BMI, body mass index.

http://pngu.mgh.harvard.edu/~purcell/plink/
https://dx.doi.org/10.1136/jmedgenet-2017-104991
http://www.R-project.org/
http://www.gtexportal.org/home/
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http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://regulome.stanford.edu/index
http://regulome.stanford.edu/index
http://gesea4gwas-v2.psycho.ac.cn/
http://www/genome.jp/kegg/
http://www.biocarta.com
http://www.geneontology.org
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Results
We conducted a two-staged GWAS to identify genetic loci asso-
ciated with human sperm motility. We enrolled 816 Japanese 
men from the university students for the discovery stage and 
779 Japanese men from the partners of pregnant women for 
the replication stage of GWAS. After quality control of samples 
using initially genotyped 298 930 SNP data in the discovery 
stage, 811 Japanese men were selected. We performed imputa-
tion analysis, which provided typed and imputed genotypes for 
3 901 256 SNPs that passed quality control. Finally, 811 samples 
and 3 901 256 SNPs were included for the discovery stage. The 
characteristics of subjects are presented in table 1.

We performed GWAS between a total of 3 901 256 SNPs and 
sperm motility in 811 men in the discovery stage. Manhattan 
and quantile–quantile plots of GWAS are presented in figure 1 
and online supplementary figure S2, respectively. The genomic 
inflation factor (λ) was reported to be 1.0, indicating the unlike-
lihood of the inflation of the false-positive association. The top 
50 GWAS candidate SNPs for sperm motility were presented 
in online  supplementary table S1. We failed to find any SNPs 
to reach a genome-wide significance level (P<5×10−8) in the 
discovery stage. When setting a suggestive significance threshold 
of P values <1×10−6, we identified that two SNPs, rs3791686 
and rs1836719 on 2q34, were suggestively associated with 
sperm motility (β=−4.25, discovery P=4.47×10−7; β=−4.22, 
discovery P=5.29×10−7, respectively) (online  supplementary 
table S1). These two SNPs are in strong LD (r2=0.99); thus, 
we selected only the most significant SNP (rs3791686) for the 
subsequent replication genotyping.

In the replication study involving 779 proven fertile men, 
SNP rs3791686 on 2q34 showed a significant association 
with sperm motility (β=−3.51, replication P=3.88×10−3) 
(table  2). When we combined the discovery and replication 
results using meta-analysis, rs3791686 surpassed the threshold 

for genome-wide significance (β=−4.01, combined P=5.40 
× 10−9), with no evidence of heterogeneity between the two 
studies. The variance in sperm motility explained by rs3791686 
was 2.0%.

Figure  2 shows a regional association plot for the genomic 
region 400 kb upstream and downstream of the lead SNP 
rs3791686 in the discovery stage. Within the region, 24 geno-
typed and 289 imputed SNPs, including rs3791686, were asso-
ciated with sperm motility, with discovery P values <0.05 from 
the association analysis in discovery stage (online  supplemen-
tary table S2). The sperm motility-associated genomic interval 
indexed by rs3791686 on 2q34 overlapped with a single known 
gene, erb-b2 receptor tyrosine kinase 4 (ERBB4), while the lead 
SNP rs3791686 was located in the intron of ERBB4. Of a total 
of 313 SNPs with discovery P  values <0.05 within the associ-
ated interval, none resulted in amino acid substitution or protein 
truncation or affected the splicing of ERBB4; one synonymous 
SNP (rs3748962) and seven SNPs in the 3′-untranslated region of 
ERBB4 were observed (online supplementary table S2). To obtain 
putative functional annotations of rs3791686 and other 13 SNPs 
in high LD (r2>0.80 in East Asians from the 1000 Genomes 
Project) with rs3791686 (online supplementary table S3) within 
the associated interval, we used the following three databases: 
GTEx Portal,35 HaploReg36 and RegulomeDB.37 We assessed 
if the 14 SNPs, including rs3791686 on 2q34, were involved 
in eQTLs using the GTEx Portal database and found that no 
significant eQTLs were associated with all the SNPs examined. 
HaploReg and RegulomeDB databases search revealed that the 
14 SNPs examined within the associated interval may be regarded 
as candidate regulatory SNPs (online supplementary table S3). In 
the HaploReg database, the lead SNP rs3791686 itself was asso-
ciated with enhancer histone marks and DNase I hypersensitive 
region in embryonic stem-derived cells and resided in regula-
tory motifs of four transcription factors—Maf, Nkx2, Nkx3 and 
TATA-binding protein (online supplementary table S3). Of the 
13 SNPs in high LD with the lead SNP rs3791686, five were 
associated with enhancer histone marks and/or DNase I hyper-
sensitive regions in various types of cells and tissues, while 12 
SNPs had the potential to alter nucleotide sequences of several 
regulatory motifs. The RegulomeDB database provided the 
experimental evidence that three SNPs (rs13003941, rs1836720 
and rs1836719) were located in DNase I hypersensitive and/or 
TF-binding regions in various cells. The iGSEA4GWAS analysis 
identified 421 significant pathway (FDR <0.05) (online supple-
mentary table S4). Numerous pathways were identified in this 
analysis; this finding suggests that sperm motile ability is likely 
to affect by a complicated process involving interaction between 
multiple genes and pathways.

Discussion
In the first two-staged GWAS of sperm motility in Japanese 
men, we identified a novel sperm motility-associated locus at 

Figure 1  Manhattan plot of associations from the discovery stage of 
GWAS of sperm motility. The negative log10-transformed P values (Y axis) 
of genotyped and imputed SNPs are shown according to their positions on 
chromosome. The horizontal line represents suggestive (blue) and genome-
wide (red) significance thresholds. GWAS, genome-wide association study; 
SNPs, single nucleotide polymorphisms.

Table 2  Genome-wide significant SNP identified in GWAS for sperm motility

SNP (effect/reference) Chr. Position (hg 19) Gene locus Stage Genotype EAF Beta (SE) P value Var (%)*

rs3791686 (C/T) 2 212 221 870 ERBB4 intron Discovery 40/307/464 0.24 −4.25 (0.84) 4.47×10−7

Replication 48/268/463 0.23 −3.51 (1.21) 3.88×10−3

Meta-analysis −4.01 (0.69) 5.40×10−9 2.0

Data are shown as the estimated linear regression statistic beta, SE and P value using an additive genetic model with adjustments for age, BMI, ejaculation abstinence and time 
from masturbation to test.
*Var (%): percentage of phenotypic variance explained by SNP.
BMI, body mass index; Chr, chromosome; EAF, effect allele frequency; GWAS, genome-wide association study; SNP, single nucleotide polymorphism.

https://dx.doi.org/10.1136/jmedgenet-2017-104991
https://dx.doi.org/10.1136/jmedgenet-2017-104991
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https://dx.doi.org/10.1136/jmedgenet-2017-104991
https://dx.doi.org/10.1136/jmedgenet-2017-104991
https://dx.doi.org/10.1136/jmedgenet-2017-104991
https://dx.doi.org/10.1136/jmedgenet-2017-104991
https://dx.doi.org/10.1136/jmedgenet-2017-104991
https://dx.doi.org/10.1136/jmedgenet-2017-104991
https://dx.doi.org/10.1136/jmedgenet-2017-104991
https://dx.doi.org/10.1136/jmedgenet-2017-104991
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ERBB4 on chromosome 2q34. The most strongly associated SNP 
was typed by imputation analysis. In this study, the subjects of 
discovery stage were genotyped using the Illumina HumanCore 
V.1.0 DNA Analysis Kit with a total of 298 930 SNPs. Subse-
quently, to enhance the coverage, untyped SNPs were imputed. 
Sometimes, imputation methods may be less accurate for typing 
of SNPs. To confirm the accuracy of this imputation method, 
randomly selected samples were directly genotyped for the 
GWAS-lead SNP rs3791686. The result of imputation analysis 
was validated by the genotyping.

SNP rs3791686 lies in the intron of ERBB4 gene, which is a 
member of the receptor tyrosine kinase family and epidermal 
growth factor receptor subfamily. ERBB4 is expressed in several 
tissues, including kidney, breast, cerebrum, heart, bone, ovary 
and testis. On activation by its ligands, ERBB4 forms a dimer on 
the cell surface. Following cleavage of the ERBB4 ectodomain 
by a disintegrin and metalloprotease domain 17 (ADAM17) and 
γ-secretase, the intracellular domain of ERBB4 is translocated 
into the nucleus. Inside the nucleus, ERBB4 is involved in the 
regulation of cell proliferation and differentiation.39–42 ERBB4 
is thought to be both necessary and sufficient to trigger an 
antiproliferative response in human breast cancer cells.43 Kim 
et al44 reported that the SNP rs13393577 in ERBB4 is associ-
ated with breast cancer risk in Koreans by GWAS. In addition, 
previous GWASs in the National Human Genome Research 
Institue (NHGRI) GWAS Catalog demonstrate that SNPs in 
ERBB4 are genome-wide significantly associated with poly-
cystic ovary syndrome (lead SNP rs1351592)45 and BMI (lead 
SNP rs7599312).46 The lead SNPs at ERBB4 from the previous 
GWASs are  >1 Mb distally localised from the sperm  motili-
ty-lead SNP rs3791686 and show no pairwise LD (r2 <0.01 in 

East Asians) with rs3791686. This indicates a novel association 
for sperm motility at ERBB4 on 2q34, which is independent of 
other human diseases and traits.

The expression of ERBB4 is evident in male reproduc-
tive tissues, including testis. In the testicular tissue, ERBB4 is 
expressed in both somatic cells (Sertoli cells and Leydig cells) and 
germ cells.47 It is notable that Sertoli cell-specific Erbb4-knockout 
mice exhibit a developmental defect in the organisation of the 
testicular seminiferous tubules, which reduces male fertility. 
Aberration in the testicular cell adhesion machinery caused by 
Erbb4 deficiency leads to a compromised capacity of the testes to 
produce motile sperms.47 Thus, ERBB4 signalling in the Sertoli 
cells may influence the sperm motility, suggestive of the prom-
ising functional role of ERBB4 in sperm motility. The lead SNP 
rs3791686 identified in this GWAS is an intronic SNP of ERBB4 
and displays the potential to act as a functional regulatory SNP 
based on the multiple functional annotations. As the functional 
annotation analyses reveal an association between other SNPs in 
high LD with rs3791686 and potential regulatory domains and 
motifs, the sperm motility locus at ERBB4 may have a role in 
the regulation of ERBB4 expression via a cis-regulatory mech-
anism. Sandholm et al,48 reported that a cis-eQTL for ERBB4 
in tubulointerstitial-enriched kidney biopsies maps to intronic 
ERBB4 SNPs, rs17418640 and rs17418814. Both of these SNPs 
are proxies for rs7588550, representing a suggestive association 
with diabetic nephropathy; however, these eQTL SNPs are not 
in LD (r2<0.01 in East Asians) with the sperm motility-lead SNP 
rs3791686. Further studies are warranted to assess the potential 
contribution of the sperm motility-associated locus indexed by 
rs3791686 to the regulation of EBRR4 expression. These studies 
will also help explore the possible involvement of this locus in 

Figure 2  Regional association plot for a sperm motility-associated locus on chromosome 2q34. The negative log10-transformed P values (Y axis) 
of genotyped and imputed SNPs that are located in 400 kb upstream and downstream regions of the GWAS-lead SNP rs3791686 in the discovery 
stage are shown according to their chromosomal positions. Purple diamond and circles represent the lead SNP rs3791686 and other SNPs within the 
region, respectively, with the colour of each circle indicating the range of pairwise r2 value with rs3791686. The right Y axis shows the recombination 
rates estimated from the 1000 Genomes project Asian (ASN) data (November 2014). The RefSeq gene, ERBB4, within the region is shown in the panel 
below. SNPs, single nucleotide polymorphisms.
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the expression regulation on a genome-wide scale via transregu-
latory mechanisms.

Liu et al49 have reported that five SNPs (rs215702, rs6476866, 
rs10129954, rs2477686 and rs10841496) were significantly 
correlated with sperm progressive motility. However, present 
study did not detect the variants associated with sperm motility 
including the region 400 kb upstream and downstream of these 
five SNPs. Previously, we also have reported that four SNPs as 
being significantly associated with risk factors for non-obstruc-
tive azoospermia (NOA) by Chinese GWAS13 were not associated 
with NOA in Japanese population.21 The reason for these may 
be that there are small genetic differences between Han Chinese 
and Japanese population by a principal component analysis using 
genotype data of the HapMap CHB and JPT (online  supple-
mentary figure S1). Additionally, we found a strong association 
between Y-haplogroup and sperm motility in the same Japanese 
populations.22 However, none of the SNPs on Y chromosome 
display a significant association (P<0.05) with sperm motility 
in this study. The Illumina Human Core V.1.0 DNA analysis kit 
includes 1943 Y-chromosome markers. However, of these, only 
177 markers could be examined in the discovery stage. Because 
this kit does not include Japanese Y-haplogroup specific markers, 
we did not find a significant association between Y-chromosome 
variants and sperm motility in this study.

Several limitations of this study should be noted. In this study, 
men of proven fertility were used, instead of randomly selected 
subjects as the replication samples. These were the only samples 
available for the current replication analysis. Using samples 
selected on the basis of fertility may cause bias. In fact, absti-
nence periods were significantly different between two cohorts 
(table 1). In general, longer abstinence period is correlated with 
lower sperm motility. As the  previous study described, absti-
nence period was nagatively correlated with sperm motility in 
both cohorts.22 To reduce the influence of the abstinence period 
on sperm motility, we included this as a covariate for a multiple 
linear regression analysis. Therefore, we think that the effect of 
abstinence period on the power to detect sperm motility-associ-
ated SNPs is minimized in this study. Additionally, all the partic-
ipants in the current two-staged GWAS were Japanese men. 
Independent validation studies are required to test the observed 
association between ERBB4 SNPs and sperm motility using other 
general populations and ethnicities. The transethnic association 
analyses at the ERBB4 locus will also enable us to narrow the 
association signal to smaller sets of SNPs, when leveraging differ-
ences in LD structures across diverse populations. The limited 
statistical power of this two-staged GWAS prevented the detec-
tion of other true positive associations at a genome-wide signifi-
cance level because the sample size was not large. We believe that 
other genetic loci may account for the interindividual variation 
in sperm motility, and therefore, larger scale GWAS analyses may 
be expected to identify novel associations between genetic vari-
ants and sperm motility.

It is one of the limitations that sperm motility may show 
sometimes intraindividual variation between samples from the 
same individual. When phenotypic repeatability is low, setting 
the upper boundary of heritability of a trait may decrease sensi-
tivity to detect genetic variant/variants associated with a trait. 
As aforementioned, sperm motility depends on the abstinence 
period; in general, abstinence period and sperm motility shows a 
negative relationship. In our samples, although there is a differ-
ence in the strength of association, the abstinence period was 
indicated to be negatively correlated with sperm motility in 
both cohorts,22 which is not contradictory. In this study, we 
set a significance threshold of P values <1×10−6 in discovery 

stage and performed the replication analysis of the selected SNP. 
The strength of the SNP-trait association between cohorts was 
slightly different, but there was no significant heterogeneity. As 
well as intraindividual variation of sperm motility between indi-
vidual samples, the measurement of sperm motility may have 
variability by operators (individual technicians). To reduce the 
between-centre  variability, technicians from each centre were 
initially trained by one technician from St. Marianna University 
in Kawasaki. In addition, to statistically reduce the influence of 
differences in sperm assessment between the centres, we added 
each centre as a covariate and further conducted an association 
analysis between sperm motility and rs3791686. We found that 
rs3791686 was associated with sperm motility in the discovery 
stage (β=−4.35, P=1.62×10−7) and in the replication stage 
(β=−3.16, P=0.012). When we combined two results using 
meta-analysis, rs3791686 was genome-wide significantly asso-
ciated with sperm motility (β=−3.99, P=6.60×10−9). This 
finding was very similar to the result (table 2) from the asso-
ciation analysis without adjustment for semen analysis centre. 
Although the measurements of the semen analysis may not neces-
sarily be  representatives of individual sperm motility, together 
with the previous finding of Sertoli cell-specific Erbb4-knockout 
mice, we are confident that the results of our GWAS are valid.

In conclusion, this first two-staged GWAS for sperm motility 
identifies a novel sperm motility-associated locus at ERBB4 on 
2q34. The genetic evidence suggests that ERBB4 is a promising 
candidate for future association studies in diverse populations 
with larger sample sizes. Further studies such as fine-scale genetic 
mapping are needed to uncover a functional variant at this locus 
as well as the underlying molecular mechanism.
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