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Abstract: Numerous factors need to be considered to develop a nanodrug delivery system that is
biocompatible, non-toxic, easy to synthesize, cost-effective, and feasible for scale up over and above
their therapeutic efficacy. With regards to this, worldwide, exosomes, which are nano-sized vesicles
obtained from mammalian cells, are being explored as a biomimetic drug delivery system that has
superior biocompatibility and high translational capability. However, the economics of undertaking
large-scale mammalian culture to derive exosomal vesicles for translation seems to be challenging and
unfeasible. Recently, Bacterial Membrane Vesicles (BMVs) derived from bacteria are being explored
as a viable alternative as biomimetic drug delivery systems that can be manufactured relatively
easily at much lower costs at a large scale. Until now, BMVs have been investigated extensively as
successful immunomodulating agents, but their capability as drug delivery systems remains to be
explored in detail. In this review, the use of BMVs as suitable cargo delivery vehicles is discussed
with focus on their use for in vivo treatment of cancer and bacterial infections reported thus far.
Additionally, the different types of BMVs, factors affecting their synthesis and different cargo loading
techniques used in BMVs are also discussed.
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1. Introduction

For developing translatable engineered nanomedical systems for therapeutic and
diagnostic applications, it is essential to consider the various different engineering and
biological roadblocks these would encounter on the path to translation. From the en-
gineering standpoint, large scale uniform production of nanoparticle (NP) systems is
difficult to achieve primarily because of the complexity in their design [1,2], which leads
to manufacturing difficulties in scale-up, quality control issues, downstream purification
complexities, and increased cost of production. While from the biological standpoint,
the immunogenicity of the NP system as a whole as well as its individual components,
nanotoxicity, and overall therapeutic efficacy can further hinder its translatability [3,4]
(Figure 1). In the past decade, there has been a collective effort towards addressing these
issues, especially with concerns regarding the immunogenicity and biocompatibility of the
designed NPs. Specifically, there has been a rise in research related to the development of
NP systems that partly resemble or mimic non-immunogenic biological entities called as
biomimetic/bioinspired NPs [5–7]. Such biomimetic/bioinspired NPs are considered to
not only be non-immunogenic with reduced toxicity, but also possess superior pharmacoki-
netic properties [8–10] (due to lower macrophage clearance), paving the way for extensive
research regarding their use for various therapeutic and imaging applications.
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Figure 1. (A) Conventional NPs synthesized routinely in laboratories could face many more road-
blocks on the path to clinical translation as compared to (B) biomimetic NPs. On the other hand, (C) 
BMV-based nanomedical systems could benefit over other biomimetic NPs as they have the poten-
tial to be easily mass produced. 

These biomimetic/bioinspired nanoparticles are considered to possess several ad-
vantages as compared to conventional NP systems composed of polymeric and inorganic 
materials. The most important advantage that they provide is their high biodegradability 
and non-toxic degradation products that can be easily cleared from the body without elic-
iting any long-term toxicity and bioaccumulation effects. Additionally, as the building 
blocks for the synthesis of such NPs are biomolecules, they can be harnessed directly from 
biological sources, which in some cases (e.g., albumin) can be obtained in large scale at 
low cost. Biomimetic/bioinspired NPs have been reported to be synthesized through a 
number of different materials and approaches which include (a) nanoparticles derived 
directly from biomolecules, (b) biomaterial coated nanoparticles, and (c) cell membrane-
coated nanoparticles (Table 1, Figure 2). Nanoparticles that are derived directly from bio-
molecules are designed using a bottom to top synthesis strategy wherein biologically de-
rived components such as albumin [11], casein [12,13], starch [14,15], gelatin [16,17], etc. 
are used directly to engineer and assemble the NP system that is loaded with a cargo of 
interest. Of note, the FDA-approved nanomedicine Abraxane®, which consists of the 
chemotherapeutic drug paclitaxel bound to albumin [18], is a prime example of this type 
of NP. Additionally, these biomolecules have also been used for coating NP surfaces in 
order to combine their biocompatibility with the desired functional ability of engineered 
NPs [19,20]. This strategy is particularly important since the pharmacokinetic property of 
a drug delivery system is primarily dependent on its surface physicochemical properties. 
By appropriately coating a functional polymeric/inorganic NP system with suitable bio-
molecules (Table 1), its interaction with different blood components in the body (includ-
ing proteins and macrophages) is favorably altered so as to impart improved circulation 
time, higher bioavailability, and reduced clearance. Another widely used approach that 
has gained widespread attention involves the surface modification of synthetic NPs with 
cell membrane components [21] obtained from cells such as erythrocytes [22–24], platelets 
[25–27], macrophages [28–30], etc. This leads to the creation of a phospholipid bilayer sur-
face on the NPs, thus affording them advantageous properties similar to that of liposomal 
structures. This strategy can be considered to be superior as compared to biomolecule 
coating, since the transfer of cell membrane components and the corresponding functional 
proteins (including cell membrane receptors, signaling proteins, etc.) provide added 

Figure 1. (A) Conventional NPs synthesized routinely in laboratories could face many more road-
blocks on the path to clinical translation as compared to (B) biomimetic NPs. On the other hand,
(C) BMV-based nanomedical systems could benefit over other biomimetic NPs as they have the
potential to be easily mass produced.

These biomimetic/bioinspired nanoparticles are considered to possess several ad-
vantages as compared to conventional NP systems composed of polymeric and inorganic
materials. The most important advantage that they provide is their high biodegradability
and non-toxic degradation products that can be easily cleared from the body without
eliciting any long-term toxicity and bioaccumulation effects. Additionally, as the building
blocks for the synthesis of such NPs are biomolecules, they can be harnessed directly from
biological sources, which in some cases (e.g., albumin) can be obtained in large scale at low
cost. Biomimetic/bioinspired NPs have been reported to be synthesized through a number
of different materials and approaches which include (a) nanoparticles derived directly
from biomolecules, (b) biomaterial coated nanoparticles, and (c) cell membrane-coated
nanoparticles (Table 1, Figure 2). Nanoparticles that are derived directly from biomolecules
are designed using a bottom to top synthesis strategy wherein biologically derived com-
ponents such as albumin [11], casein [12,13], starch [14,15], gelatin [16,17], etc. are used
directly to engineer and assemble the NP system that is loaded with a cargo of interest. Of
note, the FDA-approved nanomedicine Abraxane®, which consists of the chemotherapeutic
drug paclitaxel bound to albumin [18], is a prime example of this type of NP. Additionally,
these biomolecules have also been used for coating NP surfaces in order to combine their
biocompatibility with the desired functional ability of engineered NPs [19,20]. This strategy
is particularly important since the pharmacokinetic property of a drug delivery system is
primarily dependent on its surface physicochemical properties. By appropriately coating a
functional polymeric/inorganic NP system with suitable biomolecules (Table 1), its interac-
tion with different blood components in the body (including proteins and macrophages)
is favorably altered so as to impart improved circulation time, higher bioavailability, and
reduced clearance. Another widely used approach that has gained widespread attention
involves the surface modification of synthetic NPs with cell membrane components [21]
obtained from cells such as erythrocytes [22–24], platelets [25–27], macrophages [28–30],
etc. This leads to the creation of a phospholipid bilayer surface on the NPs, thus affording
them advantageous properties similar to that of liposomal structures. This strategy can
be considered to be superior as compared to biomolecule coating, since the transfer of cell
membrane components and the corresponding functional proteins (including cell mem-
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brane receptors, signaling proteins, etc.) provide added functionality to the NP system as a
whole such as cancer cell targeting, immune evasion, biobarrier penetration, etc.

Table 1. Different types of biomimetic/bioinspired NPs reported in literature.

Type Biological Source Cargo Loaded/NP Application Reference

Biomolecule assembly

Human Serum albumin Indocyanine green
Active targeting and

photothermal therapy of
NIH-3T6.7 tumor (in vivo)

[31]

Casein 10-hydroxycamptothecin Drug delivery to C6 glioma
tumor (in vivo) [32]

Human transferrin Near-infrared dye IR-780

Photodynamic and
photothermal therapy of

CT26 colon carcinoma
(in vivo)

[33]

Human H-ferritin Doxorubicin Drug delivery to U87MG
human glioma [34]

Surface modification

Bovine serum albumin Silver NPs
Photothermal ablation of

B16F10 murine melanoma
(in vitro)

[35]

Casein Iron-Oxide NPs
Active EGFR targeting

(in vitro) and MRI contrast
(in vivo)

[36]

High density
lipoprotein gold NPs

Nucleic acid delivery to
PC3 prostate cancer cells

(in vitro)
[37]

Mammalian cell
membrane-coated NPs

Erythrocytes poly(lactic-coglycolic) acid NPs
Toxin removal-

demonstrated in mouse
sepsis model

[22]

Neural stem cells poly(lactic-coglycolic) acid NPs Glyburide delivery for
stroke treatment (in vivo) [38]

Platelets poly(lactic-coglycolic) acid NPs
Rapamycin delivery for

atherosclerosis treatment
(in vivo)

[26]

Mouse leukemia cell
C1498 poly(lactic-coglycolic) acid NPs

Active targeting and
delivery of dexamethasone

del for treatment of lung
infection (in vivo)

[39]

In contrast to the above methods of synthesis of biomimetic/bioinspired NPs, there is
another approach that has recently gained widespread attention in the area of nanomedicine
research. This involves the direct use of naturally synthesized extracellular vesicles [40]
that are ubiquitously found to be produced by all cells (Figure 2D). Among the differ-
ent types of extracellular vesicles such as microvesicles, exosomes and apoptotic bodies,
the nano-sized extracellular vesicles called ‘exosomes’ obtained either from mammalian
cells [41–43] or ‘Bacterial Membrane Vesicles (BMV)’ obtained from bacteria [44,45], have
been demonstrated as excellent drug delivery agents particularly owing to their nanoscale
size. Unlike other conventional nanoparticles that could have a solid core structure, the
nanovesicle structures have a hollow hydrophilic interior (similar to liposomes) and can
be used to transport drugs and other cargo. These naturally derived vesicles will exhibit
a surface chemical composition identical to the parent cell from which they are obtained,
and therefore would demonstrate high biocompatibility and low immunogenicity. Such
favorable characteristics make them ideally suited for easy translation from a biological
standpoint. Moreover, as they are biologically synthesized by cells directly, no chemi-
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cal synthesis step would be required for their production and they can be produced by
optimizing the cell culture and growth condition.

Pharmaceutics 2021, 13, x  4 of 26 
 

 

 
Figure 2. Depiction of different types of biomimetic/bioinspired NPs that have been reported in 
literature. (A) NPs synthesized directly from a biomolecule. (B) Surface modification of synthesized 
NPs with biomolecular structures. (C) Coating of synthesized NPs with cell membrane surfaces de-
rived from mammalian cells. (D) Direct utilization of nano-sized extracellular vesicles/bacterial 
membrane vesicles isolated from mammalian or bacteria cells respectively. 

In contrast to the above methods of synthesis of biomimetic/bioinspired NPs, there 
is another approach that has recently gained widespread attention in the area of nano-
medicine research. This involves the direct use of naturally synthesized extracellular ves-
icles [40] that are ubiquitously found to be produced by all cells (Figure 2D). Among the 
different types of extracellular vesicles such as microvesicles, exosomes and apoptotic 
bodies, the nano-sized extracellular vesicles called ‘exosomes’ obtained either from mam-
malian cells [41–43] or ‘Bacterial Membrane Vesicles (BMV)’ obtained from bacteria 
[44,45], have been demonstrated as excellent drug delivery agents particularly owing to 
their nanoscale size. Unlike other conventional nanoparticles that could have a solid core 
structure, the nanovesicle structures have a hollow hydrophilic interior (similar to lipo-
somes) and can be used to transport drugs and other cargo. These naturally derived vesi-
cles will exhibit a surface chemical composition identical to the parent cell from which 
they are obtained, and therefore would demonstrate high biocompatibility and low im-
munogenicity. Such favorable characteristics make them ideally suited for easy translation 
from a biological standpoint. Moreover, as they are biologically synthesized by cells di-
rectly, no chemical synthesis step would be required for their production and they can be 
produced by optimizing the cell culture and growth condition. 

Figure 2. Depiction of different types of biomimetic/bioinspired NPs that have been reported in
literature. (A) NPs synthesized directly from a biomolecule. (B) Surface modification of synthesized
NPs with biomolecular structures. (C) Coating of synthesized NPs with cell membrane surfaces
derived from mammalian cells. (D) Direct utilization of nano-sized extracellular vesicles/bacterial
membrane vesicles isolated from mammalian or bacteria cells respectively.

Even though such biomimetic nanovesicles could make it easier to scale the biological
roadblock of clinical translation, it is important to overcome the large-scale design and
engineering roadblocks with regards to their synthesis. Taking this into consideration,
exosomes derived from mammalian cells would be particularly difficult to translate due
to the challenge involved in undertaking large-scale mammalian cell culture to obtain
exosomes in large quantities, in addition to the high cost for maintaining mammalian
cell culture conditions at an industrial scale [46]. In this regard, exosomes obtained from
bacterial sources, i.e., BMVs, could have high translation potential. The mass production
of bacteria in bacterial growth tanks would be relatively easier to accomplish and the
subsequent associated costs would also be relatively low [47], as compared to mammalian
cell cultures. Additionally, a unique advantage associated with utilizing bacteria for
BMV synthesis is their ease of genetic engineering which can help specifically design and
produce BMVs with functional moieties [48]. In this review, the biomedical applications of
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BMVs are discussed with regards to their use as drug delivery vehicles for cancer therapy
and antibacterial therapy. Particularly, attention will be focused on the bacterial sources
for BMV production, their separation and purification, characterization techniques, drug
loading strategies, and their in vivo biomedical applications reported thus far.

2. Types of BMVs and Factors Affecting Their Synthesis

Broadly, two different types of BMVs can be considered to exist based on the Gram
staining of the bacterial source from which they are produced. BMVs that are secreted
from Gram-negative bacteria are generally termed Outer Membrane Vesicles (OMVs),
while those that are secreted from Gram-positive bacteria are simply called membrane
vesicles (MVs) or Cytoplasmic Membrane Vesicles (CMVs). The reason the BMVs secreted
from Gram-negative bacteria are called OMVs is because they originate from the outer
membrane of the complex cell envelope [49] that encompasses the Gram-negative bacteria
(Figure 3). On the other hand, MVs synthesized from Gram-positive bacteria originate
directly from the cytoplasmic membrane of the simple Gram-positive bacterial cell wall [50].
Apart from these typical BMVs, several other structures such as Outer–Inner Membrane
vesicles [51], Explosive Outer Membrane Vesicles [52], and Tube-shaped Membranous
structures [53] have also been identified to be secreted by bacterial cells.
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Figure 3. Origin of BMVs differ in gram negative and gram positive bacteria due to the inherent
differences in the cell membrane structure.

Even though the route of synthesis of BMVs is not clearly understood, several hypothe-
ses for the same can be made by evaluating their composition and relative concentrations
of protein, lipids, and nucleic acid contents [54]. As OMVs contain lipids and proteins that
are typically present in the outer membrane and periplasmic space of their parent source
bacteria, they are considered to originate from the gram negative bacterial outer membrane
through cell membrane blebbing mechanisms [55]. On the other hand, Outer–Inner Mem-
brane vesicles, which consist of two membrane layers (from both the outer membrane and
inner membrane), additionally contain cytoplasmic protein and DNA and are considered to
originate from the inner membrane of Gram-negative bacteria, by pinching off cytoplasmic
cell components [51,56,57]. Outer–Inner Membrane vesicles are sometimes also found to
contain chromosomal DNA, in which case they are considered to originate due to explosive
cell lysis that result in cell death [52,58]. The synthesis of OMVs in Gram-negative bacteria
are thought to occur due to defects in the peptidoglycan layer of the bacterial cell wall
which can lead to the dissociation of the outer membrane. These defects can arise due to a
number of factors such as disrupted crosslinking between the peptidoglycan and the outer
membrane [59,60], accumulation of misfolded proteins in the periplasmic space [61,62],
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and through ‘bilayer coupling’ effects that are brought about by molecules that induce
membrane curvatures [63,64]. Another possible mechanism for vesicle blebbing involves
the action of the endolysin/autolysin enzyme, that can degrade the peptidoglycan layer.
In Gram-negative bacteria, the action of endolysin leads to membrane instability that
causes explosive cell lysis and eventual vesiculation [52,65]. For Gram-positive bacteria,
the cytoplasmic membrane vesicles are considered to arise either from dying cells [65] or
from other conservative blebbing mechanisms [56]. Here, the action of endolysin/autolysin
is also considered to play a key role in the formation of CMVs. However, as Gram-positive
bacteria have a thicker peptidoglycan layer, membrane instability effects are relatively less
pronounced which led to the protrusion of the cytoplasmic membrane through pores in
the peptidoglycan layer eventually leading to the release of CMVs.

A number of different genetic and environmental factors can affect vesicle formation
in bacteria. Genetic factors can predispose a bacterium to produce more vesicles due to the
accumulation of misfolded proteins in the peptidoglycan layer or due to lipid and protein
composition in the outer membrane that can affect membrane curvature or cell envelope
cross-linking. An example of a hypervesiculating bacteria is the Escherichia coli JC8031
produced by the genetic knockout of tolRA gene, that leads to membrane instability in
the E. coli cell envelope [66]. Due to this hypervesiculating nature, E. coli JC8031 has been
explored for various biomedical applications including the development of vaccines [67,68]
and for drug delivery (discussed below). Environmental factors including bacterial growth
conditions, medium composition, and other stress factors (including thermal stress [69,70]
and antibiotic stress [71]) can also increase the release of BMVs.

BMVs play important roles including intracellular communication such as horizontal
gene transfer between different bacterial species [72,73], immunomodulation in a potential
host [74], aiding the formation of bacterial biofilms [75], and many others. In the human
body, BMVs not only play important role in bacterial infection, but also play a protective
role in preventing inflammation such as from commensal bacteria that reside in the gut [76].
Information regarding their structural composition, functions and mechanism of action are
not yet fully unraveled, however readers are referred to exhaustive resources [77,78] that
provide up-to date knowledge regarding these.

3. BMV Source for Cargo Delivery

BMVs for cargo delivery have been reported to be procured from a wide variety of
different Gram-negative (Escherichia coli [79], Acinetobacter baumannii [71], Cystobacter vela-
tus [80], Klebsiella pneumoniae [81], Salmonella typhimurium [82], and Salmonella enterica [83])
and Gram-positive bacteria (Staphylococcus Aureus [84] and Lactobacillus acidophilus [83])
sources which have been demonstrated for use in various biomedical applications (Table 2).
Unlike other biomimetic NPs such as exosomes [41] or erythrocyte membrane mimicking
NPs [23], BMVs generated from bacteria have the potential to produce an immunogenic
response in vivo due to the presence of LPS (Gram-negative) or LTA (Gram-positive) and
other non-human bacterial proteins on the BMV surface [85]. To counter this effect or
to increase their tolerability, attenuated bacterial strains such as the E. coli K-12 W3110
strain [86] (carrying an msbB mutation which produces under-acylated LPS) or the attenu-
ated S. Typhimurium strains [82] have been reported, which can exhibit reduced endotoxicity
when used in vivo. However, the immunogenic potential of BMVs from non-attenuated
bacterial strains have also been reported successfully for different applications including
immunotherapy [87] and antibiotic delivery [71]. Additionally, BMVs have also been
obtained from genetically engineered bacteria such that the synthesized BMVs have surface
modifications that impart specific functions (IgG [88] and anti-HER2 affibody [86]) or are
pre-loaded with cargo such as enzymes (luciferase [89] and phosphotriesterase [90]) or
a therapeutic agent (melanin [91]). For successful translation, however, it is imperative
that BMVs be either generated in large quantities using bacterial bioreactors or through
the use of hypersecreting BMV strains such as the E. coli JC8031 [89]. Additionally, to
circumvent issues related to toxicity and safety during clinical translation, utilizing non-
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pathogenic commensal bacteria such as Bacteroides thetaiotaomicron (that are part of the
intestinal microbiota) could also be a viable alternative [92].

Table 2. BMVs isolated from different sources utilized for various applications.

Bacterial Species BMV Size (nm) Cargo Loaded Loading Method Application

E. coli K-12 W3110
strain [86] 30–250 siRNA Electroporation Anti-tumor therapy

E. coli [88] 55 ± 1 NanoLuc Luciferase
enzyme

Genetic engineering of
parent bacteria Bioluminescence Imaging

E. coli strain BL21 [90] 136 ± 67 Phosphotriesterase
enzyme

Genetic engineering of
parent bacteria

Environmental
remediation

A. baumannii [71] 200–300

Antibiotics (ceftriaxone,
amikacin, azithromycin,
ampicillin, levofloxacin,

ciprofloxacin,
norfloxacin)

Antibiotic treatment of
parent bacteria Antibacterial Therapy

E. coli K-12 W3110
strain [91] 20–200 Melanin Genetic engineering of

parent bacteria Cancer theranostics

E. coli JC8031 [89] 40 NanoLuc Luciferase
enzyme

Genetic engineering of
parent bacteria

Ability to decorate
multiple functional

protein moieties
demonstrated

K. pneumoniae
(attenuated) [81] ~70 Doxorubicin Simple incubation of

drug with BMVs
Anti-tumor therapy

(drug + immunotherapy)

P. aeruginosa [93] 30–200 Gold NPs Electroporation Showed ability to load
gold NPs in BMV lumen

4. Separation, Purification, and Storage of BMVs

The separation and purification of BMVs from bacterial culture typically involves the
following steps (Figure 4): (1) Centrifugation—employed at low speeds for the separation
of bacteria from the culture suspension; (2) filtration and concentration—using 0.45 µm
filters followed by concentration of crude BMVs using a 100 KDa membrane; and finally,
(3) ultracentrifugation at reduced temperatures. Additional steps involving multiple
filtration and centrifugation steps are routinely employed to separate the BMVs. Caution
on multiple centrifugation steps must be taken as excessive centrifugal forces may disrupt
the vesicular structure of the BMVs or lead to vesicle clumping.
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For the purification of BMVs from extraneous proteins purification steps such as
sucrose density gradient centrifugation and size exclusion chromatography techniques
are utilized. However, these purification steps can affect total BMV yield, as BMVs have a
wide size distribution and composition that can affect their density leading to reduction in
BMV content in the final yield. Additionally, to remove the presence of free endotoxins,
BMV concentrates could be purified using endotoxin removing columns.

For long-term storage of BMVs, most studies have employed low temperature storage
condition of −80 ◦C wherein the BMVs themselves are resuspended either in PBS or
water with or without anti-freeze compounds such as glycerol. However, one report
which assessed the storage stability of BMVs at 4 ◦C, −20 ◦C, −80 ◦C, and lyophilized
powder conditions (for storage between 7 and 75 days) has found that compared to the low
temperature storage conditions, lyophilization of BMVs produced the lowest reduction in
BMV concentration and size [80]. It is therefore imperative that a universal storage protocol
be developed for long-term BMV use without affecting their size, physico-chemical stability
and surface protein activity.

5. BMV Characterization Techniques

The physicochemical characterization techniques that are routinely applied for nanopar-
ticles are also used for BMV characterization and consists of DLS and Zeta potential
measurements, NTA analysis and TEM imaging. Typically, BMVs are 30–300 nm in size
and are negatively charged. Figure 5A shows the TEM images of OMVs obtained from
both wild type E. coli and its ∆msbB mutant [83], and were found to have a similar hy-
drodynamic diameter of ~38 nm. However, upon comparing the yield of OMVs obtained
from both strains through protein quantification, the ∆msbB mutant was found to produce
significantly higher yield as compared to the wild type strain.

By undertaking such protein concentration measurements to quantify the yield of
BMVs obtained after separation and purification, bacterial growth culture conditions can be
optimized in order to improve BMV yield, as the external growth conditions and medium
can significantly alter bacterial growth rate and the corresponding vesicle release. This
was interestingly depicted for OMVs obtained from A. baumannii (Figure 5B) when grown
in the presence of different antibiotics at sub-lethal concentrations [71]. Through protein
content and particle number analysis (NTA), it was found that only in the presence of
levofloxacin, ~2.47-fold increase in the number of OMVs were observed. Correspondingly
under these conditions, a significant increase in protein yield and OMV hydrodynamic
diameter was also observed as compared to treatments with other tested antibiotics and
untreated control (discussed in detail below).

Apart from the above physicochemical characterizations, BMVs are also bio-chemically
characterized to determine the specific proteins that are expressed on its surface which
are derived from the bacterial parent source. This is particularly important to assess the
biological activity of the synthesized BMVs. These surface expressed proteins can be
utilized as an anchor point to selectively express other functional proteins of interest or to
load a suitable cargo. In one report, the bacterial membrane protein α-pore-forming toxin
Cytolysin A was used to anchor anti-HER2 affibody [86] on its surface, so as to impart
active targeting capability towards cancer cells that overexpress HER2. Similarly, in another
report, the bacterial membrane protein OmPA was used to selectively load an enzyme
cargo in vitro within the lumen of synthesized BMVs [90] (discussed later).
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6. Cargo Loading and Surface Modification Using BMVs

The loading of cargo into BMVs have been undertaken through many different active
(energy dependent) and passive (energy independent) loading mechanisms as reported
in literature (Figure 6, Table 1). Among the different active loading techniques discussed
below, co-extrusion and sonication have also been employed for the direct surface mod-
ification of NPs. By Np surface modification, the bio-(physicochemical) property of the
parent source bacteria can be transferred onto the NPs for harnessing their function as
discussed in specific examples below.

6.1. Active Cargo Loading
6.1.1. Electroporation

Electroporation is usually employed as a non-viral gene delivery technique in vitro
and in vivo. The technique involves the application of short high-voltage pulses to cells
to form pores within its cell membrane to create a transient state of permeability [94,95].
This state of permeability allows the entry of drugs and fluorochrome compounds and
even large-sized cargo such as nucleotides, which is optimized by varying the electric
pulse and its duration. If optimized correctly, the phospholipid membrane then recovers
its structure once this process is completed, without incurring any irreversible damage.
Being applicable to cells, particularly to cell surface membranes, this process has been
naturally extended for cargo loading of other lipid bilayer structures which can act as
delivery vehicles such as biomimetic exosomes [96–98].
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The first report on the use of electroporation to load cargo into BMVs was published
in 2014 wherein BMVs from Gram-negative E. coli was used for the delivery of therapeutic
siRNA [86]. The loading of siRNA in this case was achieved through the electroporation
technique (at 700 V and 50 µF) leading to a high loading efficiency of 15 wt% siRNA in BMVs
(Figure 7A). Here, fluorescent dye-labeled siRNA was loaded into BMVs, which extended
its usage as a theranostic agent for cancer. Apart from nucleotide loading, metallic gold
(Au) NP has also been loaded successfully into BMVs [93] (Figure 7B). In this study, small-
sized Au NPs (<10 nm) could be loaded into P. aeruginosa BMVs by applying an optimal
voltage of 470 V and 1 pulse yielding an encapsulation efficiency of ~35%. Note here
that when P. aeruginosa BMVs alone were subjected to a higher electroporation voltage of
1500 V, a reduction in their structural stability was observed, indicated by a reduction in its
protein concentration and an overall increase in the standard deviation of its hydrodynamic
diameter. Thus, it is important to optimize the parameters for electroporation in order to
successfully load BMVs with a desired cargo. Nevertheless, such Au NP-loaded BMVs
could have wide biomedical applications, and this process of electroporation could be used
for the loading of other types of cargo such as iron-oxides for MR imaging applications or
quantum dots for fluorescence imaging.

6.1.2. Co-Extrusion/Surface Modification

Co-extrusion has been reported to be widely used as a technique for surface modifica-
tion of NPs, wherein a material of interest is mixed with the NP and extruded together so
as to force an interaction between them [99]. Specifically, a number of different biomimetic
NPs have been synthesized through this route by coating NP surface with cell mem-
brane structures such as those obtained from red blood cells [23], leukocytes [100], cancer
cells [101], platelets [102], etc. The technique mostly involves the isolation of the cell surface
membranes followed by repeated mechanical extrusion of these membranes with the NP
of interest through polycarbonate membranes of varying pore sizes. More recently, this has
been utilized for the synthesis of exosome membrane coated NPs [103–105] and has now
been extended to bacterial membranes and BMVs as discussed below.
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In one such study, 30 nm citrate stabilized Au NPs were surface modified (Figure 8(Ai)
using E. coli derived BMVs (~30–30 nm diameter) by extruding their mixture 7 times
through a 50 nm polycarbonate porous membrane resulting in the production of ~42 nm
surface modified Au nanoparticles [87]. This extrusion and surface coating process resulted
in a natural increase in the hydrodynamic diameter of the Au NPs which was caused by the
presence of BMV proteins on its surface. To further confirm the presence of surface-bound
proteins on Au NPs, a fluorescence quenching analysis was done using FITC-thiol fluo-
rochrome, as Au NP surfaces are known to be ultra-efficient quenchers (Figure 8(Aii) [106].
Due to successful surface modification, fluorescence quenching was observed only when
unmodified Au NPs were mixed with FITC-thiol. It was found that the surface-modified
BMVs contained ~8 wt% surface proteins as measured through the BCA protein assay,
and this led to an increase in the stability of Au NPs in a physiological environment when
compared to unmodified bare Au NPs. Similar to the above study, the coating of BMVs
on drug loaded micelles have also been demonstrated [82]. Here, two different steps of
extrusion steps were carried out to create a unique BMV modified micelle structure. BMVs
isolated from S. typhimurium were first modified to incorporate a polymer, PEG-RGD by
extrusion through a 220 nm polycarbonate membrane. This was done initially to reduce
the immunogenicity of BMVs and to impart active targeting capability to them. These
modified BMVs were then further extruded with tegafur-loaded F127 micelles, to obtain
BMV coated micelle structures (Figure 8B).
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6.1.3. Sonication/Surface Modification

Similar to the co-extrusion technique, sonication is a simpler alternative which can
be used for surface modification of NPs. The application of ultrasonic frequencies to cell
membrane components can lead to their disruption and subsequent attachment on the
surface of NPs [22,107]. Such NPs have altered physico-chemical properties that mimic cell
surface characteristics in vivo.

In another report, antibiotic-loaded polymeric PLGA NPs were coated with BMVs
for investigating active delivery of antibiotics to infection sites in vivo [84]. Here, BMVs
isolated from S. aureus and E. coli bacteria were coated on vancomycin and rifampicin
loaded PLGA NPs by mixing the NPs and BMVs at a 2:1 mass ratio followed by bath
sonication of the resultant mixture. The protein loading on the surface modified PLGA
NPs were found to be ~7 wt%. An interesting observation that was observed in this
study, was the specific uptake of BMV membrane coated PLGA NPs by macrophages that
were previously infected with bacteria. Importantly, it was found that this uptake was
dependent on the specific bacteria that the macrophage had previously been infected to,
i.e., macrophages infected with S. aureus or E. coli bacteria specifically showed a significant
uptake of PLGA NPs that were either coated with S. aureus or E. coli BMVs, respectively.

6.2. Passive Cargo Loading
6.2.1. Simple Incubation

BMVs can also be loaded through a passive loading technique of simple incubation
with cargo. In one such study, Gram-negative K. pneumoniae BMVs were loaded with
chemotherapeutic drug doxorubicin-hydrochloride [81] by incubating the BMVs with the
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drug at 37 ◦C for 4 h, followed by the removal of free drug using 100 KDa membrane
ultrafiltration and PBS wash repeatedly. The encapsulated drug in BMVs were quantified
using mass spectrometry analysis which showed that maximum encapsulation efficiency
of ~78% could be obtained when the drug and BMVs were incubated at a mass ratio of 1:45.
In other reported studies, the simple incubation technique was used for the fluorescent
labelling of BMVs for in-vivo imaging applications. [79,83] Here, the BMVs were incubated
with an NIR dye Cy7 mono NHS ester for 2 h at 37 ◦C followed by their separation from
excess dye through ultracentrifugation.

6.2.2. Incubation with Parent Bacteria

A simple mode of loading BMVs is achieved through incubating the cargo material
with the bacteria of interest during its growth phase. The bacteria in this case would
engulf the cargo present in the extra cellular environment and sort the same into BMVs
which are shed from the bacteria. In one such extensive study, antibiotic-loaded BMVs were
synthesized from A. baumanii by culturing the bacteria in antibiotic containing medium [71].
Specifically, different antibiotics such as ceftriaxone, amikacin, azithromycin, ampicillin,
levofloxacin, ciprofloxacin, and norfloxacin were added at different fractions of their
respective Minimum Inhibitory Concentrations (1/2, 1/4, 1/8). Characterization studies
post drug loading showed that the phospholipid wall in BMVs had thickened when they
were loaded with ceftriaxone, amikacin, azithromycin, and levofloxacin. Additionally,
it was found that the antibiotic levofloxacin at 1/8 minimum inhibitory concentration
produced the highest encapsulation efficiency in the generated BMVs, with ~120 µg of
Levofloxacin/1012 BMV particles, while, on the other hand, ciprofloxacin, azithromycin,
and ampicillin antibiotics failed to be loaded into the secreted BMVs. The authors report
that the reason for this wide difference and preferential loading of drugs into BMVs could
be complex and further studies are therefore needed to understand the same. Interestingly,
this study also reports that mere incubation of drug cargo with empty BMVs did not lead to
any cargo loading. This phenomenon could suggest that the loading of antibiotics internally
through bacteria in this case could have occurred through a drug efflux mechanism.

In another report with a similar objective of developing BMVs for anti-bacterial
applications, BMVs were synthesized and isolated from non-pathogenic myxobacteria
(soil bacteria) C. velatus, Sorangiineae species strain SBSr073 [80]. Here, the BMVs were
studied directly for their antibacterial property since the myxobacterial species are known
to be predatory towards other competing Gram-positive and Gram-negative bacteria while
using them as a nutrient source.

6.2.3. Transformation of Parent Bacteria

Cargo loading of BMVs can also be employed intrinsically by transformation of the
parent bacteria (genetic engineering) wherein a plasmid expressing the desired protein
cargo is engineered. In one such report, multifunctional BMVs were synthesized using
genetically engineered E. coli [88,89]. To load cargo within BMV lumen, native proteins
anchored to the periplasmic side of the outer membrane were utilized as an anchor point.
Specifically, a bioluminescent agent, NanoLuciferase enzyme, was loaded within BMV
lumen by anchoring it to SlyB protein by co-expressing them in a bacterial expression
system. Further, a protein scaffold was used to anchor IgG antibody to BMV surface by
binding to an BMV surface membrane expressed Ice Nucleation protein. The loading of
NanoLuciferase within BMVs was confirmed by Western blotting analysis which showed
that the cargo protein degraded upon the use proteinase K only when the BMVs were
lysed using SDS. Such synthesized BMVs could be used for biosensing applications for
the detection of any antigen. In another report, BMVs were utilized for the packaging
of a bioremediating enzyme phosphotriesterase within BMV lumen. [90] For this, a Spy-
Catcher/SpyTag bioconjugation system was employed in E. coli bacteria, wherein the
native surface membrane protein, OmpA was bound to the SpyCatcher domain while the
phosphotriesterase enzyme was bound to the SpyTag domain. The packaging of cargo
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was attempted by co-transformation using expression vectors containing the appropriately
modified SpyCatcher and SpyTag genes, which could lead to the formation of the hybrid
protein within the bacteria, and its release in BMVs. It was found that the cargo packaging
into BMVs increased its stability and robustness, possibly allowing its usage in harsh
environmental conditions for bioremediation.

An interesting study on the use of BMVs for theranostic application was recently
reported, wherein genetic engineering techniques were employed for loading a theranostic
agent, melanin into E. coli generated BMVs [91]. Here, the enzyme tyrosinase, which is
responsible for the production of melanin, was encoded into an expression vector. Upon
the introduction of the tyrosin substrate, the tyrosinase enzyme catalyzed its conversion to
melanin within bacterial cytosol and periplasmic space which could then be packaged into
released BMVs (Figure 9). Thus, the versatility of genetic engineering techniques enables it
to be employed for the loading of many different types of cargo.
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7. Drug Delivery Applications of BMVs

The therapeutic application of BMVs has largely been explored pre-clinically for its
use as an immune-modulating agent [108–110]. This is primarily because of the presence
of antigenic protein molecules in BMVs which when used, may trigger a favorable immune
response in the body. Until now this phenomenon has been successfully translated to
clinics for the development of a vaccine against Neisseria meningitidis serogroup B (Bexsero®

developed by Novartis) [111]. In some cases, BMVs have been demonstrated to amplify
the immunogenicity of a low immunogenic protein antigen by acting as a vaccine delivery
system [112,113]. Additionally, the ease of genetic modification of the bacterial source has
also contributed to it being utilized as an efficient and promising immunomodulator.

The use of BMVs for drug/cargo delivery applications has only been explored recently
with only a handful of published literature reports. Most of the applications for BMVs has
primarily been focused either on cancer therapy or antibacterial therapy (Figure 10).
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7.1. Cancer Therapy

In one such report, BMVs isolated from non-pathogenic attenuated K. pneumoniae
were utilized for the delivery of doxorubicin [81]. Anti-tumor studies carried out using
such BMVs at a dose of 2 mg/Kg of DOX (injected intraperitoneally every day for 11 days)
in A549 tumor bearing BALB/c nude mice showed a significant reduction in tumor volume
as compared to the use of free drug, empty BMVs, and even doxorubicin-loaded liposomes
(Figure 11A). In fact, it was observed that the rate of reduction in tumor volumes was found
to be greater for DOX-loaded BMVs as compared to DOX-loaded liposomes, signifying that
BMVs showed a better therapeutic response. This added therapeutic response observed in
DOX-loaded BMVs could be attributed to the favorable immune response that BMVs can
induce in vivo which in conjunction with chemotherapeutic drugs leads to generation of
a higher therapeutic efficacy. This was supported by tumor volume reduction studies in
the same report that showed that the use of bare BMVs alone in vivo lead to a significant
reduction in tumor volume as compared to untreated controls. Further, it was also observed
that there occurred a significant accumulation of murine macrophages in tumor tissues
that were treated with both doxorubicin loaded BMVs and empty BMVs. Pharmacokinetic
analysis showed that the use of drug loaded BMVs lead to a greater drug retention in
tumors that lasted for longer periods of time as compared to DOX-loaded liposomes
with a concurrently lower retention found in the heart (Figure 11B). As a result, the
cardiac toxicity (which is notable in the use of doxorubicin) was found to be significantly
reduced when DOX-loaded BMVs were used (as measured through analysis of lactate
dehydrogenase, aspartate aminotransferase, and creatine kinase isoenzyme in blood),
which were further supported through histopathological analysis of cardiac tissues. Overall,
the pharmacokinetic profile of the loaded drug was improved (characterized by an increase
in the drug half-life, reduction in clearance rate, and improved bioavailability) when BMVs
were utilized as a drug delivery vehicle. Immunotoxicity analysis in C57BL/6 normal mice
at the therapeutic dosage (over a period of 11 days) showed that the administration of
both DOX-loaded BMVs and bare BMVs lead to a significant increase in serum cytokine
levels which returned back to basal levels over a period of time. These results therefore
showed that BMVs could be well tolerated in vivo and could be used as an effective drug
delivery vehicle.
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Similar to the above, a study depicting the use of S. typhimurium BMVs for combined
drug delivery and immunotherapy against cancer was reported [82]. In vivo tumor therapy
studies carried out using hybrid BMVs (BMV/micelle/drug) in B16F10 melanoma and
4T1 mammary tumor in C57BL/6 mice at a dose of 30 µg of BMVs (once/3 days for
a total of 3 injections) lead to a significant reduction in tumor volume and increase in
survival as compared to controls. Furthermore, this treatment also limited the spread of
cancer metastatic nodules in lung tissues, which otherwise are prevalent in the B16F10
tumor model, which could explain the increase survival of mice observed on treatment.
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Interestingly, the synthesized BMVs also showed an immunoprotective effect against tumor.
Mice that were pretreated with BMVs, when challenged with tumor cells later on, showed
a delayed tumor growth response with significantly small tumor volumes (Figure 12).
Even though the exact reasons for the same have not been elucidated in this report, these
results show overall the promising effect that BMVs have towards developing a strategy for
tumor prevention and treatment. Upon BMV administration, the in vivo cytokine analysis
of blood and tumor samples showed that even though there occurred an increase in the
cytokine levels of TNF-α, IFN-γ, IL-12, IL-4, and IL-17, the levels of these cytokine reduced
to basal levels after 24 h. Overall, no blood toxicity and organ toxicity (including liver and
renal functions) were found upon BMV administration.
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Even though the above studies showed the ability of BMVs as a promising drug deliv-
ery agent, an interesting study has demonstrated its ability to be used as in its native form
as a potential anti-tumor immunotherapeutic agent [83]. To demonstrate its applicability,
unmodified BMVs isolated from both Gram-negative and -positive bacterial species were
assessed for their ability to actuate an anti-tumor immune response in different tumor
models in mice. Specifically, BMVs isolated from Gram-negative E. coli and S. Enterica
and Gram-positive S. aureus and L. acidophilus were injected intravenously in BALB/c
mice bearing CT26 colon adenocarcinoma at a 5 µg BMV dose (4 times at 3 days interval),
significant tumor volume reductions were observed as compared to PBS injected controls
(Figure 13A,B). Additionally, to demonstrate its diverse potential, BMVs from E. coli were
assessed for their therapeutic response in CT26 colon adenocarcinoma and 4T1 mouse mam-
mary tumor of BALB/c mice, and MC38 mouse colon adenocarcinoma and B16BL6 mouse
melanoma cancer of C57BL/6 mice. At a 5 µg E. coli BMV dose injected intravenously
(4 times at 3 days interval), significant tumor volume reductions were observed for all the
treated tumor types. However, the reduction in tumor volumes in 4T1 and B16BL6 tumors
were found to be less effective as compared to those observed in CT26 and MC38 tumors,
which shows the important role tumor biology and characteristics have on the net thera-
peutic outcome. Interestingly, for the treatment of CT26 tumors, a long-term memory effect
was observed for treatment using E. coli BMVs wherein secondary and tertiary challenges
of CT-26 tumor cells were rejected in mice that recovered from the primary tumor challenge
post BMV administration. These results show how BMVs have the ability to favorably
modulate the immune system and possibly provide a protective environment to prevent
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tumor relapse as observed for other immunotherapeutic modalities [114]. Similar to other
reports on the use of BMVs in vivo, an increase in the levels of cytokines and chemokines
such as IL-12p40, IFN-γ, CXCL10, TNF-α, IL-6, and IL-12p70 were also observed in this
study. However, it was observed that the cytokines CXCL10 and IFN-γ specifically showed
elevated levels in the tumor tissues over 24 and 48 h which could imply that these cytokines
play an important role in eliciting an anti-tumor immune response (Figure 13C,D).
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Measurement of (C) IFN-γ and (D) CXCL10 cytokine levels in tumor cell lysate at different time
points after E. coli BMV administration in CT26 tumors (** p < 0.01, and *** p < 0.001). Reproduced
with permission from [83], Springer Nature, 2017.

Apart from utilizing BMVs for drug loading, BMVs have also been utilized for the
delivery of therapeutic nucleic acids for the treatment of cancer. By loading siRNA tar-
geting kinetic spindle protein, a protein essential for spindle formation and continuation
of cell cycle, into BMVs obtained from ∆msbB E. coli, in vivo treatment of liver cancer
was demonstrated [86]. Significant reduction of HCC-1954 xenografts in nude mice was
observed upon intravenous administration of siRNA-loaded BMVs at a 4 µg dose siRNA
injected on alternate days over a 22-day treatment period as compared to controls. Serum
cytokine analysis showed elevated levels of TNF alpha, IL6, and IFNγ in C57BL/6 mice
upon repeated dosing (at 10–20 µg siRNA) over 4 consecutive days. However, this eleva-
tion was observed only for a brief period of 3 h post-administration and would return back
to basal levels in 24 h. Note that lethal dose toxicity studies showed that the BMVs obtained
from ∆msbB E. coli did not cause any mortality even at a single high dose of 100 µg, while,
on the other hand, administration of 50 µg of BMVs obtained from wild type E. coli lead to
mortality within 48 h post administration. This shows how the biochemical composition of
the surface moieties of BMVs play a crucial role in its toxicity response. Here, the ∆msbB
mutation in E. coli produces underacylated LPS which shows reduced endotoxicity.

While BMVs show great promise as a drug delivery vehicle, one report has gone fur-
ther to evaluate its potential as a stimuli-responsive multifunctional theranostic agent [91].
To do so, BMVs synthesized from ∆msbB E. coli were loaded with melanin (which can act
both as a photoacoustic and photothermal agent), by introducing the required plasmid
to the bacteria. This led to the generation of melanin which is packed within the BMV
lumen. Upon laser exposure, a concentration dependent thermal response was observed for
melanin loaded BMVs, which when used in vitro produced significant cell death due to the
photothermal effect (Figure 14A,B). When such melanin-loaded BMVs were administered
in 4T1 mammary tumor-bearing FOX-N-1 nude mice intravenously at a single dose of
~150 µg protein, optoacoustic signals could be observed in tumor, liver, and kidneys, en-
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abling the study of its biodistribution profile. The imaging results demonstrated that these
BMVs accumulated in the tumor through EPR effects, underwent continuous circulation
in vivo, and cleared slowly from the system over a period of 24 h. Photothermal treatment
of the 4T1 tumors 3 h post-injection of a single dose of ~75 µg BMVs lead to a significant
thermal response of 56 ◦C and 47 ◦C for intratumoral and intravenous administration
respectively. This resulted in a significant reduction in tumor volume over an 8 days period
after just a single treatment and laser therapy which its high effectiveness in cancer therapy
(Figure 14C,D). As previous studies have pointed out, there occurred a significant increase
in the cytokine levels of TNF-α, IL-6, and IFN-γ 2 h post administration of BMVs, which
however reduced near to the baseline levels after 25 h.
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7.2. Antibacterial Therapy

The use of BMVs for antibacterial applications has mostly been investigated by uti-
lizing the inherent antigenic molecules present on BMV surface for eliciting a favorable
immune response against the invading pathogen. In this regard, BMVs have been uti-
lized either directly in its unmodified form [80] or modified appropriately to present the
antigenic proteins with a suitable material to elicit a desired immune response. One way
of presenting antigenic proteins to the immune system is through the use of NPs, which
can maximize immune cell recognition owing to their large surface area and size scale
that facilitates particle uptake [115–117]. Numerous literature reports have utilized this
methodology to develop nanotechnology-based vaccines and similar approaches have
been demonstrated with BMVs for antibacterial therapy.

To demonstrate the potential of NP-based immunomodulation by utilizing BMV
antigen proteins, surface-modified Au NPs have been investigated in vivo for antibacterial
therapy applications [87]. Upon intravenous administration of BMV protein-coated Au
NPs (2.5 µg dose) into immunocompetent CD-1 mice, a number of highly precise immune
responses were observed as compared to bare BMVs and PBS injected controls. Specifically,
it was observed that BMV-coated Au NPs lead to a heighted activation and maturation of
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dendritic cells and T cells and an increased B cell response and a consequent increase in
antibody titers. Note, in this study, that when smaller sized Au NPs (~30 nm) were used as
compared to larger sized Au NPs (~90 nm) a relatively heighted dendritic cell activation
and maturation was observed. This was found to be due to the better accumulation of
smaller sized Au NPs in the lymph nodes of mice, thereby making them more suitable
for immune activation. However, in this study the application of these BMV protein
surface-modified Au NPs was not evaluated in an infection model.

In an interesting report, BMVs were utilized to surface modify polymeric NP-based
antibiotic delivery systems such that target specificity could be achieved [84]. Preliminary
in vitro studies undertaken by this group showed that BMVs isolated either from E. coli
or S. aureus showed specific uptake in macrophages that were pre-infected with E. coli or
S. aureus, respectively. As a result, antibiotic-loaded PLGA NPs surface modified with S.
aureus BMVs were found to show significantly greater accumulation in major organs of an
S. aureus infected BALB/c mice model as compared to E. coli BMV-coated PLGA NPs and
liposome-coated PLGA NPs. This greater internalization was explained to be caused by the
greater ability of infected macrophages to internalize the NPs first, followed by the natural
biodistribution of these macrophages to the infected organs. As a result of this greater
accumulation observed for the S. aureus BMV-coated antibiotic loaded PLGA NPs, effective
reduction of bacterial CFU counts could be observed in kidneys and lungs of the infected
mice. However, note here that effective therapeutic efficacy could not be achieved for all
major organs, and more studies need to be carried out to exploit this specific property of
BMV-coated NPs. It would be interesting to study in this case if the specific uptake of
BMV-coated NPs in infected macrophages could be extended to other infected mammalian
cells and cancer cells. If such a specificity could be achieved, it could open up the possibility
of treating patients with tumors bearing bacterial load. Such infected tumor conditions are
nowadays observed in clinical investigations and the presence of these bacteria in tumors
are found to play an important role in inhibiting the efficacy of chemotherapeutic drug
treatments [118,119].

Beyond the use of BMVs, one unique report demonstrated the direct use of bacterial
cells for NP surface modification [120]. Here, bacterial protoplasts were first isolated by
treating bacteria with lysozyme to remove the bacterial cell wall, followed by its serial
extrusion through 10, 5, and 1 µm sized polycarbonate membrane filters. These protoplast-
derived nanovesicles (PDNVs) show inherent advantage over BMVs as they can be directly
synthesized in large amounts from the bacterial suspension. Additionally, due to removal of
the bacterial cell wall, the resultant PDNVs were depleted of the outer membrane proteins
OmpA and lipid A which are components of LPS, thus making them less immunogenic
and more favorable for drug delivery and theranostic applications. Here, for investigating
its immunotherapeutic potential, PDNVs were loaded separately either with E. coli antigen
OmpA and S. aureus antigen Scoagulase by expressing the desired antigen in the parent
E. coli bacterium. The resultant PDNVs, when administered in vivo in C57BL/6 mice,
showed high specificity in developing an immune-protective response against bacterial
challenge. Specifically, it was observed that PDNVs harboring either the OmpA antigen
or the Scoagulase antigen showed effective immune response in vivo when challenged
with lethal doses of E. coli or S. aureus respectively. This response was found to be highly
specific with respect to the antigen that the PDNVs harbored such that mice that were
administered with PDNVs harbouring E. coli antigen OmpA succumbed when challenged
with S. aureus infection, and vice versa. The protective immunity offered by such PDNVs
could be observed in mice up to 6 weeks post-administration. Interestingly, these PDNVs
were found to show low in vitro and in vivo toxicity as compared to E. coli-derived BMVs.
Specifically, it was observed that even upon administration of upto 1 mg of PDNVs in
C57BL/6 mice all animals survived, while a dosage of only 25 µg of BMVs lead to the death
of 80% of the animals. Overall, PDNVs show great promise towards the development of
biomimetic drug delivery vehicles and show several advantages as compared to BMVs.



Pharmaceutics 2021, 13, 1430 20 of 25

8. Challenges and Future Perspective of Utilizing BMVs for Drug Delivery

The use of BMVs for drug delivery applications would encounter challenges that
are similar to the design and synthesis of other drug delivery systems as well as other
unique challenges that pertain to it alone. One of the most important properties of drug
delivery systems over and above its therapeutic efficacy is its safety and immunogenicity.
Unlike in the use of BMVs for vaccine development, for drug delivery applications, it is
imperative that BMVs do not elicit an immunogenic response in the body. The presence of
immunogenic molecules such as LPS and LTA and other bacterial proteins can impede the
utility of BMVs for such applications. In such cases, efforts need to be focused on utilizing
and developing bacterial strains that can produce BMVs containing lower amounts of
or attenuated immunogenic molecules (e.g., ∆msbB E. coli [83]). To prevent immune
recognition other methods such as pegylation [121] or the incorporation of anti-phagocytic
CD-47 molecules [122] on the surface of BMVs could be utilized. However, this could
lead to additional synthesis/modification steps which could add to the complexity of the
otherwise simple BMV system.

Another challenge that researchers face at this stage in utilizing BMVs for drug
delivery applications is the lack of knowledge regarding BMV synthesis routes, mechanism
of cargo packaging, and factors affecting the same. Knowledge regarding these can enable
the design of suitable strategies for maximizing vesicle synthesis and cargo loading such
that cargo loaded BMVs could be obtained in the first instance of BMV synthesis. This is
advantageous because separation and purification procedures would be comparatively
simple for preloaded BMVs as compared to post-loading strategies (after BMV separation)
wherein unloaded cargo, empty BMVs, and cargo-loaded BMVs have to be separated
individually. To overcome challenges related to separation, affinity-based separation could
be utilized if the cargo of interest is also coupled with a desired protein tag. However, in
this case the cargo and protein tag should be present on the BMV surface such that the
proteins face the outer surface of the vesicles in order to interact with the affinity molecule
used for separation. Magnetic separation of BMVs could also be a viable alternative if the
cargo of interest is coupled to magnetic NPs which can then be loaded into BMVs. Such a
separation technique has been demonstrated successfully for exosomes [123].

As the use of BMVs for drug delivery applications is still in its infancy, and BMVs
have very high heterogeneity (based on the parent bacterial source and strain and growth
conditions), it is absolutely essential that researchers working on this field quantify data
regarding BMV synthesis, cargo loading, and culture conditions such that comparative
analysis across various studies could be made effectively These standard parameters should
also include details such as number of BMVs obtained/CFU, isolation protocol, storge
conditions, and their effect on long-term stability, protein content, and concentration etc.
For drug delivery applications particularly, it is essential that %cargo loading be evaluated
and the cargo loading method be detailed. Additionally, it is also important to carry
out studies on evaluating the differences on utilizing BMVs of different sizes for drug
delivery obtained from the same bacterial source to understand if the size parameter plays
an important role in their overall cargo delivery/pharmacokinetics. Understanding and
cataloging such information would help steer and accelerate the use of BMVs for drug
delivery applications in the future.

From the engineering standpoint, one major challenge that BMVs would face for their
utility for biomedical application is their difficulty in separation and purification for clinical
translation. At present, a number of different steps are required to separate BMVs from
the parent bacterial growth culture and other extraneous proteins, which in the long-run
can increase their cost of production. Other alternative low-energy separation techniques
need to be developed and optimized for successful translation of BMVs for drug delivery.
Ultimately, the cost-to-benefit ratio of synthesizing and purifying BMVs from bacterial
culture must be assessed as compared to other promising biomimetic systems such as
exosomes which could require a large-scale mammalian culture facility.
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9. Conclusions

Even though the use of BMVs for drug delivery applications is still in its infancy, it
has tremendous potential to become a successfully translatable drug delivery system. This
is primarily because of their ability to be produced innately by bacteria in large quantities
using inexpensive medium and culture conditions. Until now, BMVs have been investi-
gated for the delivery of a number of different cargos including chemotherapeutic drugs,
therapeutic nucleic acids, antibiotics, NPs, etc. and have been evaluated in vivo in a few
studies with promising results. Nevertheless, more thorough and detailed investigations
are required on evaluating BMVs for different biomedical applications.
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