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Abstract. To investigate the function of calmodulin 
(CAM) in the mitotic apparatus, the effect of microin- 
jected CaM and chemically modified CaMs on nocoda- 
zole-induced depolymerization of spindle microtubules 
was examined. When metaphase PtK~ cells were mi- 
croinjected with CaM or a CaM-TRITC conjugate, 
kinetochore microtubules (kMTs) were protected from 
the effect of nocodazole. The ability of microinjected 
CaM to subsequently protect kMTs from the depoly- 
merizing effect of nocodazole was dose dependent, and 
was effective for  ,~45 min, with protection decreas- 
ing if nocodazole treatment was delayed for more than 
60 min after injection of CaM. 

The CaM-TRITC conjugate, similar to native CaM, 
displayed the ability to activate bovine brain CaM- 
dependent adenylate cyclase in a Ca+÷-dependent man- 
ner and showed a Ca++-dependent mobility shift when 
subjected to PAGE. A heat-altered CaM-TRITC con- 

jugate also protected kMTs from the effect of nocoda- 
zole. However, this modified CaM was not able to ac- 
tivate adenylate cyclase nor did it display a Ca ++- 
dependent mobility shift when electrophoresed. In a 
permeabilized cell model system, both CaM analogs 
were observed to bind to the spindle in a Ca+÷-in - 
dependent manner. 

In contrast, a performic acid-oxidized CaM did not 
have a protective effect on spindle structure when 
microinjected into metaphase cells before nocodazole 
treatment. The oxidized CaM did not activate adenyl- 
ate cyclase and did not exhibit Ca÷+-dependent mobil- 
ity on polyacrylamide gels. 

These results are interpreted as supporting the hy- 
pothesis that CaM binds to the mitotic spindle in a 
Ca÷+-independent manner and that CaM may serve in 
the spindle, at least in part, to stabilize kMTs. 

S 
NCE the discovery of calmodulin (CAM) ~ in the mi- 
totic spindle (Welsh et al., 1978), many investigators 
have speculated about its role there. Several groups 

have shown that CaM can potentiate the depolymerizing ac- 
tivity of Ca ÷+ on microtubules (MTs) in vitro (Marcum et 
al., 1978; Job et al., 1981). Because of these observations, 
the most prominent hypothesis concerning CaM's role is that 
it acts in the spindle to regulate MT disassembly (for review 
see Welsh and Sweet, 1988). 

This hypothesis is supported by studies which demonstrate 
that raising intracellular Ca ÷+, by direct microinjection or 
treatment of cells with caffeine, will cause the depolymer- 
ization of cellular MTs (Kiehart, 1981; Salmon and Segall, 
1980). Microinjection of Ca++-bound CaM has been re- 
ported to depolymerize cytoplasmic MTs in interphase cells 
(Keith et al., 1983) and a recent paper suggests that Ca÷+/ 
CaM injection can prolong metaphase in mitotic cells, osten- 
sibly by causing a transient depolymerization of spindle 
MTs. (Keith, 1987). 

1. Abbreviations used in this paper: BSA-TRITC, TRITC-conjugated bovine 
serum albumin; CaM, calmodulin; CaM-TRITC, TRITC-conjugated cal- 
modulin; HA-CaM-TRITC, heat-altered TRITC-conjugated calmodulin; 
kMT, kinetochore microtubule; MA, mitotic apparatus; MT, microtubule; 
nkMT, nonkinetochore microtubule. 

Conversely, there are many reports of CaM association 
with MT structures that are not exhibiting net disassembly. 
The distribution of CaM in the mitotic apparatus (MA) is 
identical to that of the kinetochore MTs (kMTs), which are 
preferentially stable to the depolymerizing conditions of cold 
(Welsh et al., 1979). CaM has been found in association with 
the cold-stable subset of the cytoplasmic MT complex of in- 
terphase cells and with interphase MTs that are repolymeriz- 
ing after release from cold treatment (Deery et al., 1984). 
Furthermore, CaM is present on taxol-stabilized MT struc- 
tures (DeBrabander et al., 1986). 

In this report we describe experiments which suggest that 
CaM may have Ca++-independent stabilizing effects on the 
MA. When CaM was injected into living metaphase PtK~ 
cells, the kMTs were resistant to the effect of the MT inhibi- 
tor, nocodazole. Because similar results were obtained with 
an apparently Ca++-insensitive analog of CaM, we also ex- 
amined the Ca ++ dependence of the incorporation of CaM 
into the MA. In a permeabilized cell system, CaM assumed 
its usual distribution in the mitotic spindle in the absence of 
Ca ++ . These data support the hypothesis that the interaction 
of CaM with mitotic MTs is not dependent on the presence 
of Ca ++, and that CaM has a Ca+÷-independent stabilizing 
effect on kMT structure. 
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Materials and Methods 

Cell Culture 
PtKt cells were a gift from Dr. J. Richard Mclntosh, University of 
Colorado, Boulder, CO. They are grown in Ham's F12 medium sup- 
plemented with 10 % characterized or defined FBS (HyClone Laboratories, 
Logan, UT) in a 37°C humidified incubator with a 5% CO2, 95% air at- 
mosphere. Culture medium is changed daily. 

Protein Preparation 
CaM was purified from bovine testis by Ca++-dependent phenyl-Sepha- 
rose-affinity chromatography (Gopalakrishna and Anderson, 1982). TRITC 
(Research Organics, Inc., Cleveland, OH) was coupled to CaM (CAM- 
TRITC) as described by Welsh (1983). TRITC was conjugated to BSA 
(BSA-TRITC) in a similar fashion. 

Heat-altered CaM-TRITC (HA-CaM-TRITC) was prepared by boiling a 
2 mg/ml solution of CaM-TRITC in PBS, pH 12, for 2 h. The resulting solu- 
tion was dialyzed against PBS, 1 mM Ca ++, pH 7.0, and mixed with 1 ml 
of phenyl-Sepharose CL-4B (Pharmacia Fine Chemicals; Piscataway, NJ) 
which had been equilibrated against the PBS/Ca *+ buffer. The mixture was 
gently centrifuged and the supernatant was collected and designated heat- 
altered (i.e., it failed to bind to phenyl-Sepharose in a Ca÷+-dependent 
manner). 

Performic acid-oxidized CaM was made by mixing 1.0 ml formic acid 
(Aldrich Chemical Co., Milwaukee, WI) with 0.1 ml 30% H202 (Mal- 
linkrodt, Paris, KY) and incubating at room temperature for 15 min. 440 
Izl of this solution was added to 2 mg of lyophilized CaM and incubated at 
room temperature for 15 min. The reaction was stopped by addition of 2 
ml H20, then frozen and lyophilized. 

Before microinjection, all solutions were dialyzed against a buffer con- 
sisting of 40 mM KOH (Mallinkrodt), 100 mM monopotassium glutamate 
(Sigma Chemical Co., St. Louis, MO), 100 mM NaOH (Mallinkrodt), 1 
mM EGTA (Sigma Chemical Co.), 1 mM MgSO4 (MCB, Cincinnati, OH), 
adjusted to pH 7.0 with citric acid (Sigma Chemical Co.). 

Protein concentrations in injection solutions were for native CaM, 2.0 
mg/ml; CaM-TRITC, 2.0 mg/ml; HA-CaM-TRITC, 1.5 mg/ml; Performic 
acid-oxidized CaM, 2 mg/ml; BSA-TRITC, 1 mg/ml. 

Antibodies and Immunofluorescence 
Antibodies to tubulin (a, 13 dimer) were raised in sheep and affinity purified 
using an Affi-gel-15 (Bio-Rad Laboratories, Richmond, CA) tubulin-affinity 
column. Indirect immunofluorescence was performed essentially as de- 
scribed by Welsh (1983), using fluorescein-labeled rabbit anti-sheep IgG 
(Cappell Laboratories, Cochranville, PA) as a secondary antibody. 

Microinjection 
For microinjection, cells were grown on 25-mm-diam #1 thickness glass 
coverslips (VWR Scientific, San Francisco, CA) affixed with a silicone 
adhesive to the underside of a 35-mm-diam plastic tissue culture dish (Fal- 
con Labware, Oxnard, CA) in which a 20-mm-diam hole had been bored. 
With this construction, we were able to perform microinjection, imaging, 
and immunofluorescence processing without remounting the coverslip. 

Micropipettes were pulled from self-filling capillary tubes (model 
1B100F; World Precision Instruments, Inc., New Haven, CT) using a Sutter 
Instruments Sachs-Flaming PC-84 micropipette puller. Micropipettes were 
positioned with a micromanipulator (E. Leitz, Inc., Rockleigh, NJ). Injec- 
tion was accomplished by applying pressure to a 50-ml syringe connected 
to the micropipette with Silastic TM tubing (model 602-175; Dow Coming 
Corp., Midland, MI). 

Permeabilization 
Cells were lysed by a method modified from Cande et al. (1981) in order 
to allow interaction of CaM-TRITC with the MA under conditions in which 
the Ca ++ concentration could be controlled. Cells were grown in the 
microinjection dishes described above. Before permeabilization, the culture 
was rinsed twice with 2 ml of a solution containing 85 mM Pipes (Research 
Organics, Inc.), pH 6.94 (buffer A), and either 10 I.tM Ca ++ (A /C)  or 10 
mM EGTA (A/E). The cells were then lyzed for 90 s with 2 ml of A/C or 
A/E containing 0.08% Brij 58 (ICI Americas, Wilmington, DE). The lysis 
solution was removed and replaced with 20 Ixl of CaM-TRITC which had 

been dialyzed against the lysis solution. The solution was spread over the 
dish by placing an 18-mm-diam coverslip over the drop. After 90 s, this so- 
lution was rinsed off with 2 ml of A/C or AlE and the cells were either ob- 
served immediately or fixed with 3% formaldehyde in A/C or A/E. 

Imaging 
Cells were viewed through a Leitz 63 × 1.4NA phaco 4 plan apo fluores- 
cence objective mounted on a Leitz Diavert microscope equipped for 
epifluorescence illumination. The microscope is mounted on a micro-G 
vibration isolation table to minimize movement during microinjection. 

Images of cells were obtained with a DAGE/MTI, Inc. ISIT video camera 
(Michigan City, IN) coupled to the microscope through a Leitz vario- 
orthomat zoom lens adapter. Video output from the camera was digitized 
by an image processor (model 75; International Imaging Systems, Milipitas, 
CA), interfaced to a Masscomp DPS00 computer. All images consisted of 
a sliding average over 16 video frames, with an out-of-focus image interac- 
tively subtracted to enhance contrast and reduce background. Processed im- 
ages were photographed either directly from a 13" monitor (Mitsubishi Int'l 
Corp., New York, NY) or with a Matrix Instruments recorder equipped 
with a 35-mm film back. 

Drug Treatments and Experimental Protocol 

For nocodazole treatment, nocodazole (Sigma Chemical Co.) was dissolved 
in DMSO (Sigma Chemical Co.) at 100 Bg/ml. Aliquots of this stock 
solution were added directly to the culture medium to achieve the desired 
concentration. 

For each experiment, cells were removed from the incubator and placed 
on the microscope stage at room temperature (23 + 2°C). The dish was then 
searched, in a predefined pattern, for ceils which appeared to be in 
metaphase; these cells were injected with CaM or various analogs. After 
a 30-min microinjection period, the medium was replaced with medium 
containing 1 laM nocodazole, and the dish was left at room temperature for 
15 min. Finally, cells in the dish were fixed at room temperature for 30 min 
with a solution of 3 % formaldehyde (Fisher Scientific Co., Pittsburgh, PA) 
in phosphate buffer (Welsh, 1983) and processed for indirect tubulin 
immunofluorescence. 

Calculation of Spindle Index Distributions 
In a typical experiment 50-100 cells per dish were injected. Following tubu- 
lin immunofluorescence processing, the microinjection region was relo- 
cated, and injected cells in this region were scored with a "spindle index" 
value ranging from 0 to 3, based on the tubulin immunofiuorescence appear- 
ance of their MA (see Results, Fig. 4). The fraction of injected cells in each 
spindle index category was calculated and these values were denoted the 
"spindle index distribution." 

Injected cells were relocated in one of two ways. In the case of TRITC- 
labeled analogs, microinjected cells retained sufficient TRITC-tagged pro- 
tein after immunofluorescence processing to allow their identification. In 
other cases (e.g., free TRITC or unlabeled protein) we were not able to un- 
equivocally identify injected cells. For these treatments, all metaphase cells 
within a scribed area were microinjected and counted. After immuno- 
fluorescence processing, any mitotic cells found within this area that had 
not entered anaphase were scored. In these cases, the number of cells scored 
usually exceeded the number of cells initially injected. Because in previous 
experiments with labeled protein, we had determined that 85 + 5% of in- 
jected cells were relocatable, we estimated the overcount in cases where we 
could not identify injected cells by subtracting 85 % of the number of cells 
injected from the total number of cells counted. The overeount represents 
the number of uninjected cells in our raw count. Because we had previously 
determined the spindle index category distribution of uninjected cells, we 
could correct the count for each category by subtracting the fraction of the 
total overcount calculated to be in that category (based on the distribution 
for uninjected cells) from the raw count. The corrected counts were used 
to calculate the final distribution. 

Correlative Electron Microscopy 
Treated cells were located for EM in the following manner: an injected cell 
was located after fixation by the presence of fluorescent analog. A square 
was scribed around this cell with a micropipette and fluorescence and phase- 
contrast video images were taken. Before embedding for EM, the cell loca- 
tion was recorded using the cell list function of an ACAS 470 (Meridian 
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Instruments, Okemos, MI). After embedding, cells were relocated on the 
ACAS 470. A thin film of ink was placed on the bottom surface of the plastic 
and the laser of the ACAS 470 was used at sufficient power output to ablate 
a region of the ink circumscribing the regions in the plastic containing each 
cell of interest. These regions could be visually located without magnifica- 
tion and were then cut out and remounted for EM sectioning. 

Adenylate Cyclase Assay 
CaM and CaM analogs were assayed for the ability to stimulate partially 
purified CaM-sensitive adenylate cyclase from bovine cortex. 5 ~tg of CaM 
or CaM analog and varying amounts of Ca ++ were added to a reaction 
mixture containing 20 mM Hepas, ph 7.5; 3 mM MgCI2; 0.5 mM EGTA; 
2 mM cAMP; 4 mM phosphocnolpyruvate; 0.12 mM isobutyl methyl xan- 
thine; 0.5 mM ¢t-[32P]ATP (1 I~Ci/assay tube); 10 ~tg pyruvate kinase and 
3.5 I~g cyclase. After incubation at 30°C for 15 rain, [32plcAMP was iso- 
latexi by Dowex-50 anion exchange chromatography followed by Zn++/Ba ++ 
precipitations (Krishna et al., 1968). 

Results 

kMT Stabilization 
When metaphase ceils were treated for a short period of time 
with a moderate dose of nocodazole (1 ~M for 15 min at 23 
+ 2°C), and then processed for tubulin immunofluores- 
cence, the normal spindle structure was significantly altered 
(Fig. 1, compare a and b). The nonkinetochore MTs 
(nkMTs) were no longer apparent. A few MTs remained 
which were attached at one end to a kinetochore and appar- 
ently free at the other. They are presumed from their appear- 
ance to be remnants of kMTs. In general, no orientation of 
MTs toward recognizable spindle poles was observed. In 
serial EM sections, the only MTs observed were a few frag- 
ments located near or attached to the kinetochores (not 
shown). Fragments of MTs attached only at the pole end 
were not observed. When anaphase cells were treated under 
similar conditions, recognizable spindle structure was usu- 
ally retained, and although it was difficult to determine 
whether the few MTs remaining in the pole to chromosome 
region were kMTs or nkMTs, at least some interzonal MTs, 
which are presumably precursors of the midbody, were re- 
tained (Fig. 1, compare e and f ) .  

In contrast, metaphase cells which were injected with 
CaM-TRITC before nocodazole treatment and immunofluo- 
rescence processing show a different morphology. The dis- 
tribution of MTs in these ceils was not completely normal, 
but resembled cold-treated cells: nkMTs were not apparent, 
but the kMT arrays usually appeared normally oriented to- 
ward clearly defined pole regions (Fig. 1 c). Spindles were 
often, but not always, shorter than normal. When injected 
cells were examined by serial sectioning and EM, the same 
results were found: in nocodazole-treated cells that had been 
injected with CaM, nkMTs were not apparent but kMTs were 
retained; the kMTs appeared normal, and converged toward 
a pole region (Fig. 2). Mitotic spindles in cells which had 
been injected with CaM-TRITC but not treated with nocoda- 
zole appeared essentially normal (Fig. 3). 

The appearances of the cells in Fig. 1, a and c, are the most 
common for the respective treatments. However, each popu- 
lation of cells contained cells whose kMTs ranged in appear- 
ance from completely disorganized to relatively normal. For 
this reason, we chose to analyze our experiments and con- 
trois by assigning each microinjected cell a value based on 
the tubulin immunofluorescence appearance of its kMTs 

Figure 1. (a) Metaphase cell treated with nocodazole (1 pM, 15 
min, 23 + 2°C). Tubulin immunofluorescence. (b) Metaphase con- 
trol cell. Tubulin immunofluorescence. (c and d) Metaphase cell 
injected with CaM-TRITC before treatment with nocodazole. (c) 
Tubulin immunofluorescence. (d) CaM-TRITC fluorescence. (e) 
Anaphase cell treated with nocodazole. Tubulin immunofluores- 
cence. (f) Anaphase control cell. Tubulin immunofluorescence. 
Bars, 5 ttm. 

(Fig. 4). We then prepared histograms of these values for 
spindles found in each treatment group in order to assess the 
effects of the treatments on the population as a whole. 

Fig. 5 illustrates the results of an analysis of several cell 
populations. When cells were not injected, or were injected 
with free TRITC, BSA-TRITC, or with performic acid-oxi- 
dized CaM, and then treated with nocodazole, the most com- 
mon morphology observed was a completely disorganized 
spindle (Fig. 5 a). On the other hand, when cells were in- 
jected with native CaM, CaM-TRITC, or HA-CaM-TRITC, 
the most common configuration had kMT arrays that ap- 
peared essentially normal (Fig. 5 b). When these distribu- 
tions were analyzed with a chi-squared analysis, it was found 
that cultures microinjected with native CaM, CaM-TRITC, 
and HA-CaM-TRITC differed significantly from microin- 
jected controls (free TRITC, BSA-TRITC, or oxidized CaM) 
at the 99% confidence level. The chi-squared statistics from 
comparisons between the distributions observed for native 
CaM, CaM-TRITC, and HA-CaM-TRITC did not indicate 
significant differences at the 90 % confidence level. 
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Figure 2. (a) Transmission electron micrograph from serial sections of a metaphase cell injected with CaM-TRITC, then treated with 
nocodazole (1 BM, 15 min, 23 + 2°C). (b) Spindle pole region. (c) Kinetochore and proximal portion ofa kMT bundle. (d) CaM-TRITC 
fluorescence image of this cell. Bars: (a and c) 0.5 gm; (b) 0.25 gin; (d) 5 gm. 

The above results suggested that the addition of exogenous 
CaM to a mitotic cell increases the stability of the kMTs. 
This effect is dose dependent (Fig. 6). Although precise 
doses are difficult to calculate because we cannot control the 
exact amount injected, we estimate that the half-maximum 
effective concentration in the microinjection solution is ,,o0.5 
rag/m1. Because microinjection is in effect a perturbation, we 
expected that the stabilization effect would be transient; as 
the cell presumably acts to return CaM levels to their prein- 
jection state, or as a new functional equilibrium is attained, 
the stabilization effect might be expected to disappear. To test 
this hypothesis, cultures were injected as above and then held 
at 25°C for varying times before adding nocodazole. Fig. 7 
shows the results of this experiment. The stabilizing effect of 
microinjected CaM disappeared after roughly 60 min. 

Ca++-Independent Interaction of CaM with 
the Spindle 
HA-CaM-TRITC, which was purified from CaM-TRITC 
based on its inability to bind to phenyl-Sepharose in the pres- 
ence of Ca ++, would also stabilize kMTs. This observation 
suggested that the interaction of CaM with the MA might not 
be dependent on the presence of Ca ++ . 

The CaM-TRITC used in this study has been shown to be 
active in standard biological assays for CaM (Zavortink et 

al., 1983). The HA-CaM-TRITC analog was assayed for its 
Ca++-dependent mobility shift on SDS-PAGE in the pres- 
ence and absence of Ca ++ (Fig. 8). In contrast to native 
CaM or CaM-TRITC, HA-CaM-TRITC did not show any 
component with an increased mobility in the presence of 
Ca ++. This suggests that compared to CaM-TRITC, HA- 
CaM-TRITC has a much less significant conformational 
change in the presence of Ca ++ . 

The CaM analogs were also assayed for their ability to 
stimulate partially purified CaM-dependent adenylate cy- 
clase from bovine cortex in a Ca++-dependent manner (Fig. 
9). Native CaM and CaM-TRITC showed Ca++-dependent 
stimulation of cyclase while HA-CaM-TRITC and performic 
acid-oxidized CaM showed no significant stimulation. 

To address the hypothesis that CaM might interact with 
spindle MTs in a Ca++-independent fashion, we examined 
the ability of CaM-TRITC to concentrate in the spindles of 
permeabilized cells. PtK~ cells were lysed in buffers con- 
taining l0 BM Ca ++ or 10 mM EGTA. At 10 ~tM Ca ++, we 
would expect to find significant Ca++ binding to CaM 
(Crouch and Klee, 1980) but little or no Ca++/CaM-depen- 
dent MT depolymerization (Job et al., 1981). With 10 mM 
EGTA present, we would expect that there would be virtually 
no free Ca++. In both cases, CaM-TRITC entered permea- 
bilized cells, concentrated in the spindle, and was retained 
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Figure 3. (a) Transmission electron micrograph from serial sections ofa metaphase cell injected with CaM-TRITC. (b) Spindle pole region. 
(c) Kinetochore and proximal portion of a kMT bundle. (d) CaM-TRITC fluorescence image of this cell. Bars: (a and c) 0.5 Ixm; (b) 
0.25 Ixm; (d) 5 I~m. 

after the fluorescent protein solution was washed away. The 
CaM-TR/TC distribution in the MA was indistinguishable 
from that observed by direct microinjection of the CaM- 
TRITC analog or immunofluorescence (Fig. 10). However, 
CaM-TRITC fluorescence in interphase cells appeared to be 
somewhat higher when cells were permeabilized in the pres- 
ence of 10 lxM Ca +÷ (Fig. 10 e, regions bordering mitotic 
cell). We also observed that HA-CaM-TRITC would concen- 
trate in the spindle in this system in a pattern indistinguish- 
able from that of CaM-TRITC (Fig. 11), while BSA-TRITC 
and free TRITC failed to concentrate in the MA (not shown). 

D i s c u s s i o n  

We have shown that microinjection of native CaM, CaM- 
TRITC, or HA-CaM-TRITC can transiently make the kMTs 
resistant to the effect of nocodazole, and that CaM-TRITC 
can concentrate in the spindle in an apparently Ca++-inde - 
pendent manner. 

There are several assumptions inherent in the conclusion 
that CaM can stabilize MTs. First, we assume that nocoda- 
zole and CaM-TRITC each act independently in the MA. 
Nocodazole is presumed to work by binding to free tubulin 
dimers, thus lowering the free tubulin concentration and in- 
hibiting first nucleation and then, at higher concentrations, 

polymerization (Hoebeke et al., 1976). For CaM to directly 
inhibit nocodazole, it would have to bind to the drug mol- 
ecule and prevent its binding to free tubulin dimers. CaM- 
TRITC was microinjected into selected cells while nocoda- 
zole was present in the culture medium and able to cross cell 
membranes. It is unlikely that the limited amount of CaM- 
TRITC present in '~,50-75 injected cells could bind to a 
significant fraction of the nocodazole molecules present in 
the culture dish. Furthermore, the stabilization effect was 
limited to the injected cells. If CaM were interacting directly 
with nocodazole, acting to lower its effective concentration, 
one would have expected to see stabilization of MTs in both 
injected and noninjected cells in the culture. This was not ob- 
served. The conclusion that the stabilization effect is not a 
result of direct interaction with nocodazole is supported by 
the observation that similar results were obtained when col- 
cemid was used as the MT inhibitor and the drug treatment 
was carried out at 37°C (data not shown). 

We also assume that our method of quantitating the stabili- 
zation effect is reasonably accurate. During a typical experi- 
ment, all of the metaphase cells within a marked region 
would be microinjected. A significant number of prophase 
and prometaphase cells would also be found in this region 
but not injected because their spindles were not sufficiently 
organized; in such cells the poles are not distinctly separate 
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Figure 4. Examples of metaphase spindles fitting each index cate- 
gory. (a) Spindle index 0. Disorganized remnants of kMTs. (b) 
Spindle index 1. Remnants of kMTs. Possibly some organization 
into parallel arrays. (c) Spindle index 2. Well-defined parallel arrays 
of kMTs with clearly defined poles remaining within or bordering 
the chromosome mass. (d) Spindle index 3. Well-defined parallel 
kMT arrays oriented towards discrete poles distinctly separate from 
the chromosome mass. Bars, 5 Ixm. 

from the chromosomes,  so any stabilization of MTs which 
might occur could not be easily evaluated within our scheme. 
The presence of uninjected cells in the microinjection region 
does not present a problem when injected cells can be 
identified by the presence of  fluorescently labeled protein in 
the cell. However, in cases where sufficient labeled protein 
was not retained after immunofluorescence processing, or 
when the injection solution did not contain a fluorescent 
marker, unequivocal identification of injected cells was not 
possible. We chose to address this problem by scoring every 
mitotic cell in the injection region which might have been in- 
jected, and then adjusting the data as described in Materials 
and Methods to correct for the presence of uninjected cells. 
Without adjustment, the data would be falsely biased toward 
the uninjected distribution; thus a correction is mandatory 
in order to validate the controls. 

Based on this analysis, we can conclude that the stabilizing 
effect was due to the injected CaM (or analogs), and not an 
artifact of  the protocol. We did not observe stabilization 
when free TRITC, BSA-TRITC, or oxidized CaM were in- 
jected. Hence, the effect was not due to the injection process, 
TRITC alone, or a nonspecific protein effect. In contrast, the 
stabilizing effect was observed when native CaM, CaM-  
TRITC, and HA-CaM-TRI ' IC were injected. Therefore CaM 
was required for stabilization. CaM-TRITC shows slightly 
more effective stabilization than native CaM. It is possible 
that the presence of TRITC in this analog might contribute 
to the stabilization effect, but TRITC cannot be responsible 
for the entire effect. The fact that the effect is dependent on 
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Figure 5. Spindle index distribution in populations of cells after var- 
ious injections and nocodazole treatment. (a) Treatments without 
stabilizing effect. (F-I) No injections (n = 89)~,(1~) Cells injected 
with free TRITC (n = 176). (1~) Cells injected with BSA-TRITC 
(n = 66). (~1)Cells injected with a performic acid-oxidized ana- 
log of CaM (n = 97). (B) Treatments with stabilizing effect. (E3) 
Cells injected with native CaM (n = 239). (1~) Cells injected with 
CaM-TRITC (n = 142). (F///I) Cells injected with HA-CaM- 
TRITC (n = 137). Results are presented as fraction of cells + SD. 

CaM concentration further supports the assumption that the 
observed stabilization is not an artifact. 

A final assumption is that the effect observed for CaM is 
due to an interaction with the kMTs in the MA. The appear- 
ance of MTs in CaM-TRITC-injected,  nocodazole-treated 
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Figure 6. Dependence of spindle stabilization effect on concentra- 
tion of CaM-TRITC in the injected solution. Cells were injected 
with various concentrations of CaM-TRITC followed by noeoda- 
zole treatment. The average spindle index value + SEM (n = 100) 
at each concentration is plotted vs. relative CaM-TRITC concentra- 
tion (concentrations relative to 1.5 mg/ml). 
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Figure 7. Duration of spindle stabilization effect. Cells were in- 
jected with CaM-TRITC, then left at 25°C for various times before 
treatment with nocodazole. The average spindle index value -t- 
SEM (n = 40) at each time point is plotted vs. length of time delay. 

cells is very similar to the MT distribution in cold-treated 
ceils, which contain only kMTs (Brinkley and Cartwright, 
1975). CaM appears to be primarily associated with kMTs 
during mitosis (Welsh et al., 1979) and based on our serial 
sectioning EM observations, nkMTs were not apparent in 
our cells after CaM-TRITC injection and nocodazole treat- 
ment (e.g., Fig. 2 a). Nonetheless, it is impossible to rule 
out a mechanism which involves actions of CaM on other 
cellular components. If  this were the case, however, one 
might expect that the stabilizing effect on spindle MTs would 
not be restricted to kMTs. 

We conclude that we have observed the independent effects 
of CaM and nocodazole on the MA. In the case of nocoda- 
zole, we believe that the drug treatment provides a measure 
of the relative turnover rates of MTs in the MA. There is no 
evidence that nocodazole can act directly to depolymerize 
existing MTs. When MTs disappear from cells being treated 
with nocodazole (and for that matter other anti-MT drugs), 
one assumes that the MTs are being removed as part of the 
normal turnover of the cell's complement of MTs. They are 
not replaced because the action of the drug is to inhibit MT 
regrowth. The idea that the cell has an active role in remov- 
ing MTs that disappear during drug treatment is supported 
by the observation that metabolic inhibitors block the action 
of anti-MT drugs in vivo (DeBrabander et al., 1981; Spurck 
et al., 1986a, b). Similarly, anti-MT drugs have little or no 
effect on MTs in permeabilized cell systems in the absence 
of ATP (Spurck et al., 1986a, b). 
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Figure 9. Ability of CaM and CaM analogs to stimulate partially 
purified CaM-dependent adenylate cyclase from bovine cortex in a 
Ca++-dependent manner. (o) Control; (o) native CaM; (A) CaM- 
TRITC; (A) HA-CaM-TRITC; (D) performic acid-oxidized CaM. 
Data points represent the mean of duplicate samples. 

Based on this argument, we conclude that differences in 
resistance to nocodazole observed between mitotic MT sub- 
classes reflect different turnover rates of these MTs. We have 
observed that the relative resistance of spindle MT sub- 

Figure 8. SDS-PAGE of CaM and CaM analogs in the presence and 
absence of Ca ++. (a and b) Native CaM; (c and d) CaM-TRITC; 
(e and f )  HA-CaM-TRITC; (g and h) performic acid-oxidized 
CaM. (a, c, e, and g) 1 mM Ca ++ added. (b, d, f, and h) 1 mM 
EGTA added. 

Figure 10 Incorporation of CaM-TRITC into permeabilized cells 
in the presence and absence of Ca ++. (a-d) Permeabilization in 
the presence of 10 mM EGTA. (a, c, and e) CaM-TRITC fluores- 
cence. (b, d, and f )  Phase-contrast images. (a and b) Metaphase 
cell. (c and d) Anaphase cell. (e and f )  Permeabilization in the 
presence of 10 gM Ca ++. Bars, 5 I.tm. 
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Figure 11. Incorporation of HA-CaM-TRITC into permeabilized 
cells in the presence of 10 mM EGTA. (a and b) Metaphase cell. 
(c, d) Anaphase cell. (a and c) HA-CaM-TRITC fluorescence. (b 
and d) Phase-contrast images. Bars, 5 ~tm. 

classes to nocodazole is as follows (from most to least stable): 
interzonal-anaphase, kinetochore-anaphase, kinetochore- 
metaphase, nonkinetochore-metaphase (data not shown). In 
the case of kMTs, under the treatment conditions used in this 
work, net disassembly appeared to occur at the spindle pole; 
MTs were frequently seen attached to kinetochores at one 
end but apparently not associated with a pole at the other. 
Conversely, spindle poles with MT fragments attached were 
not observed. 

There are several possible mechanisms which could ac- 
count for differing turnover rates of mitotic MTs. First of all, 
differences in free tubulin concentrations at the kinetochore 
vs. the spindle equator and cell margin could alter MT poly- 
merization kinetics. The physical structure of the MTs could 
differ between subclasses. It has been reported that addition 
of MT-associated proteins to MTs in vitro can increase their 
stability (Murphy and Borisy, 1975; Sloboda et al., 1976; Job 
et al., 1985). Studies using antibodies to posttranslationally 
altered tubulin subunits suggest the MTs containing acetyl- 
ated (Hubulin may also be more stable (Piperno et al., 
1987). Subclass-specific regulation of GTPase activity could 
create different levels of dynamic instability (Mitchison and 
Kirschner, 1984). Finally, associations between MTs and 
other spindle structures such as the kinetochore might create 
a physical cap of the MT which could inhibit depolymer- 
ization. 

The injection of CaM into metaphase cells before nocoda- 
zole treatment apparently decreased the turnover rate of the 
kMTs such that they showed less net disassembly during the 
drug treatment period. The precise amount of CaM injected 
is difficult to estimate because of the variability in injection 
volume and cell size. Based on previous work using nearly 
identical equipment (Zavortink et al., 1983), we estimate 
that the injections increased the amount of CaM in the cell 

by 60-100%. We conclude that the increased CaM concen- 
tration was responsible for the stabilization effect, and the 
time-dependent disappearance of the effect reflected the cell 
reaching a new functional equilibrium. 

Our observation that CaM can stabilize kMTs is in agree- 
ment with previous evidence that CaM associates with stable 
MTs. CaM has been shown to be associated with cold- and 
drug-stable mitotic MTs (Welsh et al. 1979), cold-stable in- 
terphase MTs (Deery et al., 1984), taxol-stabilized MT ar- 
rays (DeBrabander et al., 1986), and MTs forming at the 
centrosomes and kinetochores in mitotic cells recovering 
from nocodazole treatment (Sweet, S. C., and M. J. Welsh, 
unpublished observations). 

However, because CaM can mediate the depolymerizing 
effect of Ca ++ in vitro (Marcum et al., 1978; Job et al., 
1981), CaM is also thought to have the same action in vivo. 
There are two reports which support this hypothesis (Keith 
et al., 1983; Keith, 1987). These latter studies however, 
make the assumption that a Ca++-saturated form of CaM re- 
tains its Ca÷+-bound conformation for up to 15 min in the 
face of the cytoplasmic buffering of Ca ++ . Nonetheless, it is 
clear that Ca ÷÷ can act in vivo to depolymerize MTs (Kie- 
hart, 1981; Salmon and Segall, 1980), and therefore it is rea- 
sonable to consider that CaM might mediate a similar effect 
in vivo. 

To account for these two apparently opposite effects of 
CaM in the MA, we considered the possibility that CaM 
would stabilize MTs in the absence of Ca ++ and destabilize 
MTs in the presence of Ca ++. This hypothesis was sug- 
gested by the observation that HA-CaM-TRITC was able to 
protect kMTs from the effect of nocodazole. 

HA-CaM-TRITC was isolated by its failure to bind to 
phenyl-Sepharose in the presence of Ca++. CaM molecules 
which were able to expose a hydrophobic domain upon bind- 
ing Ca++ would be removed from the solution during this 
step. HA-CaM-TRITC fails to activate CaM-dependent ade- 
nylate cyclase in the presence of Ca +÷, even though the 
amount of protein used was such that native CaM would give 
more than 99 % of maximum stimulation of the enzyme (Fig. 
9). Furthermore, when examined by SDS-PAGE in the pres- 
ence and absence of Ca++ (Fig. 8, lanes e and f ) ,  the pro- 
tein shows no increase in mobility upon addition of Ca ++ . 
Although a component with a mobility similar to Ca ++- 
bound CaM appears in the HA-CaM-TRITC lanes, because 
of the purification scheme and the inability of the HA- 
CaM-TRITC to stimulate adenylate cyclase, we conclude 
that this component does not demonstrate Ca++-bound CaM 
activity. Thus, HA-CaM-TRITC was able to stabilize kMTs 
in spite of failing to demonstrate the Ca++-dependent prop- 
erties of CaM, suggesting that CaM can interact with the MA 
independent of the presence of Ca++. Although the idea that 
CaM might bind to MTs in a Ca++-independent manner has 
been mentioned before (Rebhun et al., 1980; Decry et al., 
1984), it had never been explicitly tested. 

We have tested this hypothesis, as described in the second 
portion of the Results section. By permeabilizing ceils, we 
were able to control the Ca ÷÷ concentration in the spindle 
environment. In this system, under conditions (10 mM 
EGTA) where we would expect that there was virtually no 
free Ca ÷÷, CaM incorporated in the MA in an apparently 
normal fashion, indicating that Ca++ is not required for the 
initial interaction of CaM with the spindle. In addition, the 
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heat-altered analog of CaM also concentrated normally in 
the MA. Thus neither Ca ++ nor Ca++-bound CaM activity 
appear to be required for CaM to concentrate in the MA. 

We believe that our data indicate that CaM initially associ- 
ates with kMTs in the MA in the Ca++-free conformation. 
This association appears to reduce the net kMT disassembly 
observed at the spindle pole during nocodazole treatment, ei- 
ther directly or possibly by stabilizing the kMT to spindle 
pole interaction. In normal cells, this effect could contribute 
to the ability of the kMT subclass to exhibit net assembly 
during prometaphase in the face of cytoplasmic conditions in 
which other MTs undergo net disassembly. Furthermore, 
bound to the MA independently of Ca ++, CaM would be in 
a position to mediate a Ca+÷-dependent alteration in MT 
stability. We believe that the Ca ++ pulse observed at the on- 
set of anaphase (Ratan et al., 1986) might result in a 
Ca++/CaM-dependent destabilization of kMTs, which would 
allow net depolymerization of the kMTs as the chromosomes 
move poleward. 

Evidence for such a system exists. The 145K STOP protein 
described by Margolis and co-workers confers cold stability 
to brain MTs (Margolis et al., 1986). MTs stabilized by the 
STOP protein depolymerize upon treatment with Ca +÷ and 
CaM (Job et al., 1982). This line of evidence suggests that 
a CaM/STOP protein complex might be an integral part of 
the kMTs, contributing to the differential stability of this MT 
subclass during mitosis. 

In summary, we believe that our observations support a 
model in which CaM acts to influence the stability of the 
kMTs. Before anaphase, the presence of Ca++-free CaM ap- 
parently stabilizes kMTs. Upon entry into anaphase, CaM 
could mediate a Ca++-dependent destabilization of these 
MTs, allowing chromosome movement toward the spindle 
pole to occur. 
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