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Abstract: Drug transporters are now recognized as major actors in pharmacokinetics, involved
notably in drug–drug interactions and drug adverse effects. Factors that govern their activity,
localization and expression are therefore important to consider. In the present review, the implications
of protein kinases C (PKCs) in transporter regulations are summarized and discussed. Both solute
carrier (SLC) and ATP-binding cassette (ABC) drug transporters can be regulated by PKCs-related
signaling pathways. PKCs thus target activity, membrane localization and/or expression level of
major influx and efflux drug transporters, in various normal and pathological types of cells and
tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion
of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic
effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation
of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug
toxicity remains however to be precisely determined. This issue is likely important to consider in the
context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating
notably cancers, diabetes or psychiatric disorders.
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1. Introduction

Mammalian drug transporters are integral membrane proteins mediating active transport or
facilitated diffusion of exogenous and endogenous compounds across cellular membranes, especially
plasma membranes. Transport systems are implicated in intestinal absorption, passage across
blood–tissue barriers and hepatobiliary or renal elimination of drugs [1,2]. Drug transporters are
consequently recognized as playing a major role in drug disposition and, beyond, in drug efficacy
and toxicity as well as in pharmacokinetic drug–drug interactions [3–5]. The study of the potential
interactions of new molecular entities with the main drug transporters is thereby now recommended
by drug regulatory agencies [6]. Besides, some drug transporters directly control anticancer drug
accumulation in cancer cells and, in this way, sensitivity to chemotherapeutic agents [7].

Various factors, including hormones, cytokines, drugs and environmental contaminants, can
modulate expression, localization and/or activity of drug transporters [8–12]. It is important to
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precisely characterize such regulations, owing notably to the major role played by transporters in
pharmacokinetics and some toxic effects of drugs. They may implicate various signaling pathways,
including those linked to serine/threonine protein kinases C (PKCs). Indeed, PKCs-mediated
phosphorylation of some drug transporters has been shown to directly control their activity [13,14].
Activation of PKCs also modulates drug transporter localization in plasma membrane of polarized
cells such as hepatocytes [15,16]. PKC activation additionally impairs messenger ribonucleic acid
(mRNA) and/or protein levels of drug transporters [17,18]. As graphically summarized in Figure 1,
PKCs can thus theoretically affect different aspects of drug transporter regulation, e.g., transcriptional
or translational mechanisms controlling transporter expression, membrane insertion or internalization
processes and phosphorylation status of transporters.
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Figure 1. Schematic representation of putative cellular targets of protein kinases C (PKCs, in red) with
respect to regulation of drug transporter activity, localization and/or expression. Arrows in red indicate
the putative effects of PKCs on transporter regulatory pathways. Arrows in blue correspond to the
different transporter processing steps, from gene (DNA) to activity regulation at the plasma membrane
by phosphorylation (P, in red). DNA: deoxyribonucleic acid; mRNA: messenger ribonucleic acid.

PKCs play an important, although often complex, role in various diseases, including cancer,
cardiovascular dysfunctions, psychiatric pathologies and metabolic disorders like diabetes [19,20].
PKCs are consequently considered as potential attractive therapeutic targets [21]. Therefore, the
search for PKC inhibitors is an active area of drug development [22] and it may be hypothesized
that the clinical use of such novel chemical entities may directly or indirectly affect PKCs-mediated
regulation of drug transporters. Moreover, PKCs can be directly activated by some drugs, like ingenol
mebutate (a drug used for the treatment of actinic keratoses, also known as ingenol 3-angelate or
PEP005) [23]. Such PKCs-activating drugs may therefore trigger PKCs-related transporter regulation.
PKCs-related regulatory ways for drug transporters are therefore important to be considered. In the
present review, we summarize the reported effects of PKCs on drug transporter activity, localization
and expression. Furthermore, we discuss the possible clinical consequences of such PKCs-related
regulations of membrane transporters in response to physiological or pharmacological effectors,
including PKC inhibitors.

2. The Drug Transportome

The drug transportome can be defined as the set of membrane transporters handling drugs.
Such transporters are usually expressed at the plasma membrane and are grouped into two classes,
the solute carriers (SLC) and the ATP-binding cassette (ABC) transporters. SLC transporters behave
as influx or efflux transporters, through mediating facilitated diffusion or secondary active transport
(co-transport or anti-port), whereas ABC drug transporters act as ATPase-based primary active drug
efflux pumps [2].
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SLC transporters constitute a large super family of transporters, currently comprising over
400 members organized into 52 families [24,25]. Many of these SLC transporters however await being
functionally characterized [26]. The main SLC drug transporters are presented in Table 1. They are
usually expressed in organs implicated in drug absorption, metabolism and elimination such as the
intestines, liver and kidney. Some of them are also present at blood–tissue barriers, notably at the
blood–brain barrier [27].

Transport of anionic drugs is notably assumed by the organic anion transporting polypeptide
(OATP, SLCO) (protein name, gene name) family [28], that comprises in humans eleven members,
including OATP1A2 (SLCO1A2), ubiquitously expressed, and OATP1B1 (SLCO1B1), OATP2B1
(SLCO2B1) and OATP1B3 (SLCO1B3), present at the sinusoidal pole of hepatocytes where they
mediate uptake of drugs such as statins into the liver. OATP2B1 is also a key actor of the intestinal
transport system [29]. The SLC22A family comprises (1) organic cation transporters (OCTs), like the
uptake transporters OCT1 (SLC22A1), expressed at the sinusoidal pole of hepatocytes, and OCT2
(SLC22A2) [30], present on the basolateral pole of renal proximal tubule cells, respectively; (2) organic
anion transporters (OATs), such as the renal OAT1 (SLC22A6), OAT3 (SLC22A8) and OAT4 (SLC22A11),
and the sinusoidal hepatic OAT2 (SLC22A7) [31]; and (3) organic cation/carnitine transporter (also
known as organic cation transporter novel) (OCTN) 1 (SLC22A4) and OCTN2 (SLC22A5), sharing
numerous substrates with OCTs [32]. The SLC47A family corresponds to multidrug and toxin extrusion
transporters (MATEs) present at the apical pole of hepatocytes (MATE1/SLC47A1) and renal proximal
tubule cells (MATE1 and MATE2-K/SLC47A2), where they act as H+/organic cation antiporters
for putatively secreting drugs into bile or urine [33]. Additional main SLC transporters handling
drugs correspond to the hepatic sodium-taurocholate co-transporting polypeptide (NTCP/SLC10A1),
that can mediate statin transport [34], and proton-coupled peptide transporters (PEPTs/SLC15A)
PEPT1 (SLC15A1) and PEPT2 (SLC15A2) [35], notably located in intestine and kidney, respectively,
as well as nucleoside transporter proteins [36]. These nucleoside transporters handle a variety of
nucleoside-derived drugs, mostly used in anticancer or antiviral therapy. They are split into two
families, i.e., the sodium-dependent concentrative nucleoside transporters (CNT/SLC28A) containing
three members (CNT1/SLC28A1, CNT2/SLC28A2 and CNT3/SLC28A3) and the equilibrative
nucleoside transporters (ENT/SLC29A), containing four members, notably ENT1/SLC29A1 and
ENT2/SLC29A2.

Classification of the main ABC drug transporters, which belong to 3 of the 7 families of ABC
transporters, is shown in Table 1. The historically first identified mammalian ABC drug transporter
was P-glycoprotein (P-gp), encoded by multidrug resistance gene 1 (MDR1/ABCB1) and conferring
multidrug resistance by expelling a wide range of structurally unrelated anticancer drugs out of cancer
cells [7,37,38]. P-gp also transports a lot of non-anticancer drugs like digoxin. It is physiologically
expressed in absorptive or excretory organs such as the gut, the liver and the kidney [39]. P-gp is also
present at various blood–tissue barriers. It is thus expressed at the luminal pole of brain capillary
endothelial cells and prevents the entry of drugs into brain by actively expelling them into the
blood stream [40]. In this way, P-gp contributes to the blood–brain barrier in a major way [41].
Multidrug resistance-associated protein (MRP) 1 (ABCC1) is another ABC transporter implicated in
cancer multidrug resistance. MRP1 exhibits a broad tissue distribution and handles a wide range of
xenobiotics, including anionic drugs and drug conjugates [42]. Other members of the MRP/ABCC
family expelling drugs from cells include (1) MRP2 (ABCC2), sharing numerous substrates with MRP1,
and expressed in many epithelia and at the canalicular pole of hepatocytes [43]; (2) MRP3 (ABCC3),
present at the sinusoidal pole of hepatocytes where it transports xenobiotics from the liver to blood for
secondary renal elimination; (3) MRP4 (ABCC4) also expressed at the sinusoidal pole of hepatocytes,
but additionally in kidney and at blood–brain barrier, and having a wide substrate specificity, including
nucleoside analogues and antiviral drugs [44], and (4) MRP5 (ABCC5), almost ubiquitously expressed
in humans and exporting a broad range of natural and xenobiotic compounds such as cyclic guanosine
monophosphate, antiviral agents and chemotherapeutic drugs [45]. Like P-gp and MRP1, the ABC
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transporter breast cancer resistance protein (BCRP/ABCG2) transports both anticancer drugs and
non-anticancer drugs and is found at blood–tissue barriers and in the gut and excretory organs like the
liver and kidney [46]. The bile salt export pump (BSEP/ABCB11), almost exclusively expressed at the
canalicular pole of hepatocytes, plays an important role in bile salt secretion into bile [47] and in vitro
can transport rosuvastatin [48].

Table 1. Classification of main drug transporters. OATP: organic anion transporting polypeptide;
NTCP: sodium-taurocholate co-transporting polypeptide; PEPT: peptide transporter; OCT: organic
cation transporter; OCTN: organic cation transporter novel; OAT: organic anion transporter; CNT:
concentrative nucleoside transporter; ENT: equilibrative nucleoside transporter; MATE: multidrug and
toxin extrusion transporter; P-gp: P-glycoprotein; BSEP: bile salt export pump; MRP: multidrug
resistance-associated protein; BCRP: breast cancer resistance protein; SLC: solute carrier; ABC:
ATP-binding cassette.

Transporter
Family Transporter Main Expression Main Type of Substrates

SLCOs

OATP1A2 (SLCO1A2) Ubiquitous Organic anions
OATP1B1 (SLCO1B1) Liver Organic anions
OATP1B3 (SLCO1B3) Liver Organic anions
OATP2B1 (SLCO2B1) Liver, intestine Organic anions

SLC10A NTCP (SLC10A1) Liver Bile acids

SLC15A
PEPT1 (SLC15A1) Intestine Peptides
PEPT2 (SLC15A2) Kidney Peptides

SLC22A

OCT1 (SLC22A1) Liver Organic cations
OCT2 (SLC22A2) Kidney Organic cations

OCTN1 (SLC22A4) Kidney Organic cations/carnitine
OCTN2 (SLC22A5) Kidney Organic cations/carnitine
OAT1 (SLC22A6) Kidney Organic anions
OAT2 (SLC22A7) Liver Organic anions
OAT3 (SLC22A8) Kidney Organic anions

OAT4 (SLC22A11) Kidney, placenta Organic anions

SLC28A
CNT1 (SLC28A1) Kidney, liver, intestine Nucleosides
CNT2 (SLC28A2) Ubiquitous Nucleosides
CNT3 (SLC28A3) Ubiquitous Nucleosides

SLC29A
ENT1 (SLC29A1) Ubiquitous Nucleosides
ENT2 (SLC29A2) Ubiquitous Nucleosides

SLC47A
MATE1 (SLC47A1) Liver, kidney Organic cations

MATE2-K (SLC47A2) Kidney Organic cations

ABCB
P-gp (ABCB1) Intestine, liver, kidney, blood-brain barrier Hydrophobic compounds

BSEP (ABCB11) Liver Bile acids

ABCC

MRP1 (ABCC1) Ubiquitous Hydrophobic compounds,
hydrophilic anions, conjugates

MRP2 (ABCC2) Intestine, liver, kidney Hydrophilic anions, conjugates
MRP3 (ABCC3) Liver, kidney Hydrophilic anions, conjugates
MRP4 (ABCC4) Liver, kidney, blood-brain barrier Nucleotides
MRP5 (ABCC5) Ubiquitous Nucleotides

ABCG BCRP (ABCG2) Intestine, liver, kidney, blood-brain barrier,
stem cells

Hydrophobic compounds,
hydrophilic anions, conjugates

3. The Protein Kinases C (PKCs) Family

The mammalian PKC family comprises 10 members that represent the products of nine different
genes located in different chromosomes. These PKC isozymes have been classified into three groups:
(1) “conventional” or “classical” PKCs (cPKCs) that are composed of PKCα, two splice variants of
PKCβ (PKCβI and PKCβII) and PKCγ; (2) “novel” PKCs (nPKCs), a group that includes PKCδ, PKCε,
PKCη and PKCθ; and (3) “atypical” PKCs (aPKCs) ζ and ι/λ (PKCι is found only in primates and PKCλ
is its mouse counterpart) (Table 2) [49]. The protein kinase D1 was additionally initially considered as
a PKC isoform under the name of PKCµ [50], before being definitively classified as a novel subgroup
of the calcium/calmodulin-dependent protein kinase family [51]. While some PKC isoforms are
expressed in a tissue-specific manner, i.e., PKCθ is expressed primarily by skeletal muscle, lymphoid
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organs, and hematopoietic cell lines and PKCγ is detected largely in human neuronal tissues, most
PKC isoforms are ubiquitous. Moreover, many cells coexpress multiple PKC family members [52].
Like many other protein kinases, PKCs have a regulatory region and a catalytic region [53]. cPKCs and
nPKCs are activated by diacylglycerol (DAG), a lipid-derived second messenger that is transiently
generated upon activation of phospholipase C following stimulation of membrane receptors such
as tyrosine-kinase and G-protein-coupled receptors [54]. DAG activates cPKCs and nPKCs through
binding to the C1 domain of the regulatory region of these PKCs. Activation of cPKCs, known as
calcium-sensitive, additionally requires the binding of calcium to the C2 domain of their regulatory
region [53]. aPKCs display unique regulatory properties: they are unable to bind DAG or calcium and
rather depend on protein-protein interactions and phosphorylation for their activation [55].

Table 2. Classification of protein kinase C (PKC) isoforms.

Class
Dependence

Isoform
Calcium Diacylglycerol

Classical/Conventional cPKC (cPKC) Yes Yes

PKCα
PKCβ1
PKCβ2
PKCγ

Novel PKC (nPKC) No Yes

PKCδ
PKCε
PKCη
PKCθ

Atypical PKC (aPKC) No No
PKCζ

PKCλ/ι

Phorbol esters such as phorbol-12-myristate-13-acetate (PMA) mimic the effects of DAG [56].
They bind to the C1 region of cPKCs and nPKCs and by this way directly and potently activate them.
It is noteworthy that PMA can be considered as a reference activator of PKCs and its main effects on
drug transporter activity, localization and expression are consequently summarized in Table 3.

Upon physiological or pharmacological activation, PKCs usually translocate from the cytosolic
(soluble) fraction to the cell particulate fraction, which includes the plasma membrane as well as
many other cellular organelles, including mitochondria, Golgi, endoplasmic reticulum and nuclear
membrane. PKCs primarily trigger their biological effects through phosphorylating serine/threonine
sites of their substrates, which may have diverse biological roles and/or may downstream activate
other signal transduction pathways. In this way, PKC activation is thought to regulate many cellular
functions, including cell proliferation and cell death, gene transcription and translation, alteration of
cell morphology and cell migration, regulation of ion channels and receptors, cell–cell contact and cell
polarity [19–21,53,57,58].

Table 3. Main effects of the reference protein kinase C (PKC) activator phorbol-12-myristate-13-acetate
(PMA) on drug transporter activity, localization and/or expression. P-gp: P-glycoprotein; BSEP: bile
salt export pump; MRP: multidrug resistance-associated protein; BCRP: breast cancer resistance
protein; OATP: organic anion transporting polypeptide; OAT: organic anion transporter; NTCP:
sodium-taurocholate co-transporting polypeptide; OCT: organic cation transporter; OCTN: organic
cation transporter novel; ENT: equilibrative nucleoside transporter; PEPT: peptide transporter.

Transporter Activity Localization Expression

P-gp
Increase (human cancer cell lines,

mouse renal proximal
tubules) [13,59–61]

Increase (human cancer cells and
primary human

hepatocytes) [17,62,63]

BSEP Internalization (rat liver) [64] Decrease (primary human
hepatocytes) [18]
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Table 3. Cont.

Transporter Activity Localization Expression

MRP2 Internalization (human hepatic
HepG2 cell line) [65]

No change (primary human
hepatocytes) [18]

MRP3 Increase (primary human
hepatocytes) [18]

BCRP No change (primary human
hepatocytes) [18]

OATP1A2 Internalization (OATP1A2- COS-7
cells) [66]

OATP1B1 Internalization
(OATP1B1-HEK293 cells) [67]

Decrease (primary human
hepatocytes) [18]

OATP1B3 Decrease (primary human
hepatocytes) [14]

Decrease (primary human
hepatocytes) [18]

OATP2B1

Internalization
(OATP2B1-MDCKII cells, Caco-2
cell line, human placenta, human

hepatic HepaRG cell line) [68],
(Figure 2a)

Decrease (primary human
hepatocytes) [18]

OAT1 Internalization (OAT1-COS-7
cells) [69]

OAT3 Decrease (rabbit renal proximal
tubules) [70]

NTCP
Internalization (primary rat
hepatocytes, NTCP-HepG2

cells) [64,71]

Decrease (primary human
hepatocytes) [18]

OCT1 No change (Figure 2b) Decrease (primary human
hepatocytes) [18]

OCTN2 Increase in membrane expression
(rat astrocytes) [72]

ENT1 Increase (ENT1-PK15-NTD
cells) [73]

Increase in membrane expression
(ENT1- PK15-NTD cells) [73]

PEPT1 Decrease (human intestinal Caco-2
cell line) [74]

PEPT2 Decrease (porcine kidney
LLC-PK1 cell line) [75]

4. PKCs-Dependent Regulation of Drug Transporter Activity

Drug transporters, as many proteins, usually contain several consensus phosphorylation sites,
which may be, at least for some of them, targeted by PKCs. This may in turn affects drug
transport activity.

P-gp has thus been described as a phosphoglycoprotein, i.e., the pump can be phosphorylated on
serine residues [76] by PKCs, thus establishing a link between PKCs and multidrug resistance [77].
Indeed, PKC activators such as PMA increase P-gp phosphorylation [78], which generally results
in enhanced activity of the efflux pump in human cancer cell lines [13] and thus multidrug
resistance [59,60]. The ubiquitination/degradation of the transporter is however not affected [79].
The fact that human multidrug resistant cancerous cell lines overexpress PKCs, which likely potentiates
P-gp phosphorylation, has consequently been hypothesized as contributing to drug resistance [80].
This highlights the interest of modulating PKC activity for reversing resistance [81,82]. PMA also
enhances P-gp activity in normal cells/tissues such as isolated mouse proximal tubule segments [61].
The sites of P-gp phosphorylated by PKCs are thought to correspond to Ser661 and Ser671, and one or
more of Ser667, Ser675, and Ser683 [83]. Different PKC isoenzymes are thought to be involved in these
phosphorylations, notably the cPKCs α, βI, βII and γ, the nPKCs δ, ε and η as well as the aPKC ζ [84].
Some of these PKC isoenzymes, including cPKCs, but not PKCδ, have been additionally shown to
physically interact with P-gp in co-immunoprecipitation assays in human cancer cells [85]. Among PKC
isoforms, PKCαmay play a major role because specifically targeting this PKC isoform through chemical
inhibition or transcriptional suppression permits attenuation or reversal of drug resistance of human
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cancer cell lines [86–89], whereas its overexpression enhances P-gp phosphorylation and multidrug
resistance [90,91].

It is however noteworthy that the link between PKC activity and P-gp-mediated drug resistance
has been challenged [92]. Indeed, the major P-gp phosphorylation sites are in fact located within
the linker region, not directly implicated in transport activity [93]. Moreover, various PKC inhibitors
like the pan-PKC inhibitors staurosporine and chelerythrine, the PKCβ inhibitor enzastaurin and the
bisindolylmaleimide (BIM) PKC inhibitors GF 109203X (also known as BIM-I or Gö 6850) and Ro
32-2241 can suppress drug resistance by directly binding to and inhibiting P-gp, independently of P-gp
phosphorylation [94–97]. The findings that bryostatin 1, which represses PKC expression, failed to
reverse multidrug resistance of human cancer cells [98], and that PMA decreased P-gp activity in teleost
renal proximal tubules [99], is conflicting with the assertion that PKC activity is positively correlated
with P-gp-mediated transport, or, at least, suggests that it has to be relativized according to the cell type
and/or the species [100]. Moreover, at the blood–brain barrier, activation of the PKCβ1 isoform rapidly
decreases P-gp activity and enhances drug delivery to the rat brain [101]. Certain St. John’s Wort
constituents, especially quercetine, also down-modulate P-gp transport activity in porcine brain
capillaries in a PKCs-dependent manner [102]. Finally, a PMA-mediated decrease in drug accumulation
into human cancer cells has been postulated to occur in a P-gp-independent manner [103].

MRP2 transport activity is likely to be also regulated by PKCs. For example, MRP2 could be
phosphorylated by cPKCα and nPKCε, thus enhancing MRP2 activity, which contributes to the
anticholestatic effect of tauroursodeoxycholic acid, the taurine conjugate of ursodeoxycholate, in
rat liver [104]. Some physiological effectors such as endothelin-1 may additionally regulate MRP2
activity via PKC activity in shark rectal salt gland tubules [105]. By contrast, activities of other
MRPs, as well as those of BCRP and BSEP, have not been formally demonstrated to be influenced
by PKCs-mediated phosphorylation. As for P-gp activity, that of BCRP was inhibited by the PKCβ
inhibitor enzastaurin in human cancer cell lines, probably via PKCs-independent reduction of BCRP
ATPase activity [95]. Similarly, various PKC inhibitors belonging to the chemical family of BIMs
blocked BCRP-mediated transport in a PKC-unrelated manner [106]. The efficient modulation of
MRP1-mediated drug resistance by the PKC inhibitor GF 109203X [107] is also probably due to direct
interaction of this PKC inhibitor with MRP1 and not to hypothetical alteration of PKC-dependent
alteration of MRP1 phosphorylation.

Among SLC drug transporters, OCT1, as well as OCT2, possesses several potential PKC
phosphorylation sites in the intracellular loops [108]. PKC-phosphorylation sites moreover determine
substrate selectivity and transport regulation for rat OCT1 [109]. PKC activation by PMA however
failed to stimulate activity of human OCT1 and OCT2 [108,110]. Whether PMA may modulate transport
mediated by other organic cation transporters such as MATE1 and MATE2-K is not known. Activity of
these MATE transporters can however be blocked by the BIM Ro 31-8220 (also known as BIM-IX), that
also inhibits that of OCT1 in a PKC-independent manner in human OCT1-transfected HEK293 cells,
whereas that of OCT2 is cis-stimulated [111]. Among SLCs handling organic anions such as OATPs and
OATs, OATP1B3, that mediates hepatic uptake of various drugs and endogenous compounds, has been
demonstrated to be phosphorylated by PKCs; such a post-translational regulation results in decreased
OATP1B3 transport activity in primary human hepatocytes in response to PMA [14]. The phorbol
ester also reduces rat OATP-mediated transport in transfected Xenopus laevis oocytes [112] and
OAT3 activity in isolated rabbit renal proximal tubules [70], suggesting that this OAT constitutes
a target for PKCs. For nucleoside transporter proteins, ENT1 can be phosphorylated by PKCs at
multiple sites [113]. At least phosphorylation at Ser281 increases ENT1 activity in pig kidney epithelial
nucleoside transporter deficient (PK15-NTD) cells transfected with human ENT1 [73]. Otherwise,
various PKC inhibitors such as GF 109203X, Ro 31-8220 and arcyriarubin A (also known as BIM-IV) act
as potent inhibitors of ENT1 [114]. The BIM Ro 31-6045, a staurosporine analog that does not inhibit
PKCs, also blocks ENT1 and ENT2 [114,115], suggesting that ENT1/2 inhibition may be shared by
BIMs, irrespective of PKC inhibition. Peptide transport by PEPT1 and PEPT2 in human intestinal
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Caco-2 cells and porcine renal LLC-PK1 cells has finally been demonstrated to be down-regulated by
PMA [74,75]. Such data support the idea that PEPT1 and PEPT2 activity may be directly modulated by
PKCs-mediated phosphorylation of these transporters.

5. PKCs-Dependent Regulation of Drug Transporter Localization

Plasma membrane localization of drug transporters is a prerequisite for drug transporter activity.
Moreover, in polarized epithelial cells such as hepatocytes, proximal tubular cells or enterocytes, drug
transporters have to be targeted to the correct location, e.g., the canalicular membrane of hepatocytes
for P-gp, MRP2 and BSEP. Among PKC isoforms, aPKCs play a major role in the polarization process
of epithelial cells through the partitioning-defective (PAR)-aPKC polarity complex [116,117], and may
thus be considered as indirectly governing polarized expression of drug transporters. Trafficking
between intracellular vesicles and plasma membrane, including endocytosis and recycling steps, also
contributes to polarization [118]. This occurs for various SLC and ABC drug transporters [119–123]
and may be a notable method of post-translational regulation of drug transporter function, even if
in vivo relevance in physiological situations remains to be fully established. Such trafficking has been
demonstrated to constitute a target for PKCs, which, in this way, can control transporter activity.

The PKC activator agent PMA has thus been shown to stimulate internalization of OATP
transporters such as OATP1A2, OATP1B1 and OATP2B1 in cultured cells [66–68]. As an example,
cell surface expression of OATP2B1 at the sinusoidal pole of human highly-differentiated hepatoma
HepaRG cells was markedly decreased in response to a short 1-h treatment with 100 nM of PMA
(Figure 2a). In parallel, OATP transport activity, determined through measuring probenecid-inhibitable
uptake of estrone-3-sulfate [124], was significantly reduced by PMA (Figure 2b). Co-treatment by
the pan-PKC inhibitor Gö6983 fully prevented PMA-mediated decreased of OATP activity (data not
shown), thus confirming that PMA effect towards OATP2B1 was related to PKC activation. By contrast,
the phorbol ester failed to alter sinusoidal membrane expression of OCT1 in HepaRG cells (Figure 2a);
it concomitantly did not impair verapamil-inhibitable uptake of tetraethylammonium (Figure 2b),
which corresponds to OCT1 activity [124]. Such data therefore demonstrated that localization of OCT1
transporter was not regulated by PKCs in hepatic cells. PKC-triggered OATP1A2 internalization
in COS-7 cells transfected with OATP1A2 was blocked by the cPKC inhibitor Gö6976 and was
dependent on clathrin-dependent endocytosis, but not on the caveolin-dependent pathway [66].
Similarly, OATP2B1 internalization caused by PMA was related to clathrin-mediated endocytosis,
followed by lysosomal degradation in OATP2B1-transfected MDCKII cells [68], whereas internalized
OATP1B1 co-localized with early and recycling endosomal markers in OATP1B1-transfected HEK293
cells [67]. Activation of PKCs by PMA also results in altered trafficking of the ENT1 nucleoside
transporter, with significant increase in the plasma membrane localization of ENT1 [73]. Similarly, PKC
activation inhibits OAT1 activity by promoting ubiquitination of the transporter in OAT1-transfected
COS-7 cells, which then leads to an accelerated internalization of the transporter from cell surface to
intracellular compartments in response to PMA [69]. The PKC isoform PKCα is responsible for this
OAT1 ubiquitination [125] and is also involved in angiotensin II-induced retrieval of OAT1 and OAT3
from the plasma membrane [126,127]. By contrast, PKCζ activation leads to increased OAT1 and OAT3
activity in rodent renal cortical slices, which may result, at least for OAT3, from increased trafficking
into the plasma membrane [128]. With respect to the carnitine transporter OCTN2, its presence at the
cell surface, as well as its activity, have been shown to be enhanced by PMA in cultured rat astrocytes,
thus supporting the idea of a multi-protein complex regulated by PKCs and implicated in OCTN2
trafficking to the cell surface [72].
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stained nuclei. Arrows indicate transporter-related sinusoidal membrane fluorescence. Bar = 10 µm; 
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verapamil-inhibitable uptake of tetraethylammonium (TEA), reflecting OCT1 activity [124], were 
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Figure 2. Effect of the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA)
on (a) organic anion transporting polypeptide (OATP) 2B1 and organic cation transporter (OCT)
1 localization (a) and activity (b) in human highly-differentiated hepatoma HepaRG cells. Human
HepaRG cells were exposed or not to 100 nM PMA for 1 h. (a) OATP2B1 and OCT1 expression were
next analyzed by immunofluorescence as previously reported [129]. Green fluorescence corresponds to
transporter immunolabeling, whereas blue fluorescence reflects 4,6-diamidino-2-phenylindole-stained
nuclei. Arrows indicate transporter-related sinusoidal membrane fluorescence. Bar = 10 µm;
(b) Probenecid-inhibitable uptake of estrone-3-sulfate (E3S), reflecting OATP activity [124], and
verapamil-inhibitable uptake of tetraethylammonium (TEA), reflecting OCT1 activity [124], were
determined as previously described [129]. Data are expressed as % of transporter activity found in cells
not exposed to PMA, arbitrarily set at 100%. They are the means ± standard errors of the means (SEM)
of at least three independent assays. * p < 0.05 and NS, not statistically significant (Student’s t test).

PKCs also play a major, but complex, role in plasma membrane location of transporters involved
in bile salt transport, i.e., NTCP, BSEP and MRP2. They are closely associated with bile formation, and
beyond, with cholestatic or choleretic effects of endogenous or exogenous compounds, as recently
reviewed [16,130]. A schematic overview of PKC effects towards bile salt transporters in hepatocytes
is depicted in Figure 3.
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Figure 3. Schematic representation of protein kinase C (PKC) effects on trafficking of
(a) sodium-taurocholate co-transporting polypeptide (NTCP), (b) bile salt export pump (BSEP)
and (c) multidrug resistance-associated protein (MRP) 2 in hepatocytes. Black arrows indicate
activation of PKCs by compounds. Red arrows indicate stimulation of transporter internalization
by PKCs. Green arrows show stimulation of membrane insertion of transporters by PKCs. Blue
arrows correspond to trafficking (internalization/membrane insertion) of transporters. PMA:
phorbol-12-myristate-13-acetate; TCDC: taurochenodeoxycholate; E17βG: estradiol 17β-D-glucuronide;
tBHP: tertio-butylhydroperoxide; TLC: taurolithocholate; cAMP: 3′,5′-cyclic adenosine monophosphate;
TUDC: tauroursodeoxycholate

For the sinusoidal bile salt uptake transporter NTCP (Figure 3a), PMA stimulates its endocytosis
in primary rat hepatocytes and in NTCP-transfected hepatoma HepG2 cells. This internalization
implicates cPKCs and is likely involved in the cholestatic effect of the phorbol ester [64,71]. Similarly,
PMA reduces plasma membrane content of the ileal apical sodium-dependent bile acid transporter
(ASBT/SLC10A2), suggesting modulation by vesicular recycling [131]. PKCs are also involved in
NTCP internalization caused by the bile acid taurochenodeoxycholate in rodent liver [132]; the exact
nature of the implicated PKC isoform(s) remains however to be characterized. The nPKCδ as well as
the aPKCζ are involved in cyclic adenosine monophosphate (cAMP)-mediated stimulation of NTCP
translocation to the plasma membrane in primary rat hepatocytes [15] or NTCP-transfected human
hepatoma HuH-7 cells [133]. Plasma membrane localization rather than kinase activity of PKCδ
may however be involved in cAMP-induced NTCP translocation [134], whereas PKCζ is required for
microtubule-based motility of vesicles containing NTCP [135].

With respect to BSEP (Figure 3b), its localization at the apical membrane of isolated rat
hepatocytes or NTCP-transfected human hepatoma HepG2 cells is stimulated by the choleretic agent
tauroursodeoxycholate in a PKC-dependent manner [136]. This effect was however not inhibited by
the selective cPKC inhibitor Gö6976, thus suggesting that it implicates nPKC or aPKC isoform(s) [136].
Such data therefore fully support the hypothesis that ursodeoxycholate conjugates may improve
impaired bile secretion of the cholestatic liver by stimulating insertion of carrier proteins into
the canalicular hepatocyte membrane [137,138]. BSEP may therefore be considered as a potential
therapeutic target [139]. cPKCs can however also trigger BSEP internalization, which likely contributes
in a major way to cholestatic effects of PMA and of thymeleatoxin, a selective activator of cPKCs, in rat
liver [64]. These Ca2+-dependent PKC isoforms are additionally involved in oxidative stress-triggered
retrieval of BSEP from canalicular membrane in isolated rat hepatocyte couplets [140]. Similarly, they
are implicated in BSEP internalization in response to the cholestatic agent estradiol 17β-D-glucuronide
in rat hepatocytes [141].

For MRP2 (Figure 3c), cPKCs, notably the isoform PKCα, are additionally implicated in MRP2
internalization due to estradiol 17β-D-glucuronide, thus pointing out their major role in cholestasis
caused by some estrogenic metabolites [141]. The implication of PKCs in MRP2 retrieval from the
apical membrane is also supported by the fact that PMA triggers PKC-dependent redistribution of
MRP2 from the apical membrane to its basolateral counterpart in human HepG2 cells [65]. By contrast,
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MRP3 localization as well as its activity are not impaired. In the same way, the selective cPKC
activator thymeleatoxin reduces apical localization of MRP2 in rat intestine through modulating the
protein–protein interaction between MRP2 and ezrin [142], which serves as an intermediate between
the plasma membrane and the actin cytoskeleton. Ezrin additionally appears to regulate membrane
expression of MRP2 and also of P-gp in human intestinal Caco-2 cells [143]. PKCα, but also PKCδ
and PKCε, can in fact directly stimulate ezrin Thr567 phosphorylation, which in turn results in
reduced expression of MRP2 at the apical membrane of hepatocytes [144]. Such PKC/ezrin-dependent
regulation of MRP2 localization may be responsible for MRP2 internalization during human obstructive
cholestasis [144]. In addition to ezrin, radixin, a cytoskeletal protein linking MRP2 to F-actin, is involved
in MRP2 internalization in rat hepatocytes in response to the oxidative agent tertio-butylhydroperoxide,
which implicates one nPKC isoform that remains to be formally identified [145]. The nPKCε has
additionally been shown to mediate MRP2 retrieval from the apical membrane in response to the
cholestatic agent taurolithocholate through phosphorylating myristoylated alanine-rich C kinase
substrate in human NTCP-transfected hepatoma HuH-7 cells [146]. It is however noteworthy that the
effects of PKCs on MRP2 localization are rather complex and may notably depend on the nature of the
stimulus activating PKC or of additional signaling ways. Indeed, nPKCδ, whose overexpression
stimulates MRP2 internalization through ezrin-dependent mechanism as described above, may
also trigger MRP2 translocation to the apical membrane of rat hepatocytes, notably in response
to cAMP, which primarily activates this nPKC isoform [15]. In the same way, tauroursodeoxycholate
inserts MRP2 into canalicular membranes and stimulates organic anion secretion by PKC-dependent
mechanism in rat cholestatic liver [147]. Among PKC isoforms, PKCα is likely to be implicated
in these anticholestatic effects of tauroursodeoxycholate [104]. Therefore, this PKC isoform may
prevent (membrane insertion of MRP2) or stimulate (MRP2 internalization, notably in response to
estradiol 17β glucuronide, as reported above) cholestasis, according to the initial stimulus leading to
PKCα activation.

6. PKCs-Dependent Regulation of Drug Transporter Expression

Besides localization, expression levels of various drug transporters have been shown to be
regulated by PKCs.

In human tumoral cell lines, P-gp expression is usually increased by exposure to PMA and other
PKC-activating agents [17,62,63], in a PKC-dependent manner and independently of mitogen activated
protein kinase (MAPK) signaling pathways [148]. Such an up-regulation implicates transcriptional
activation of MDR1 promoter activity [149]. Among PKC isoforms, PKCε as well as PKCα and
PKCθ are likely implicated in P-gp up-regulation. Indeed, PKCε activation mediates the induction
of P-gp in cultured cancer prostate cells [150], whereas the MDR1 promoter has been shown to be
regulated PKCα and PKCθ [151]. Moreover, silencing PKCα by RNA interference increased drug
sensitivity of ovarian cancer cells through decreasing P-gp levels [152]. PKCα activation is also
associated with induced P-gp expression in non-cancerous tissues such as the liver of diabetic rats,
suggesting a link between hyperglycemia and P-gp overexpression via PKC [153]. MDR1/ABCB1
mRNA expression has additionally been shown to be transiently induced by PMA in primary human
hepatocytes [18]. However, inhibition of PKCα isoform enhances P-gp expression and the survival of
cultured LoVo human colon adenocarcinoma cells to doxorubicin exposure [154]. Such data, that are
rather contradictory with those discussed above, suggest that the exact nature of the effects of PKCα
towards P-gp expression may depend on the cell type.

Expression of other transporters has been shown to be regulated by PKCs. Indeed, induction of
MRP1 and MRP2 mRNA levels by the anticancer drug doxorubicin alone or associated to the fibroblast
growth factor 2 is inhibited by the PKC inhibitor chelerythrin in cultured rat cardiomyocytes, thus
indicating that it depends on PKC activity [155]. ENT1 suppression by high glucose in rat cardiac
fibroblasts is mediated by aPKCζ [156]. Finally, PMA treatment of primary human hepatocytes,
that induces MDR1/ABCB1 mRNA expression as reported above, concomitantly reduces those of
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OATP1B1, OATP1B3, OATP2B1, NTCP, OCT1 and BSEP and enhances that of MRP3, without impairing
those of MRP2 and BCRP [18]. Such PKCs-dependent changes in transporter expression have been
hypothesized to be linked to epithelial–mesenchymal transition triggered by PKC activation in hepatic
cells like human hepatoma HepaRG cells [18].

7. Putative Clinical Relevance of PKCs-Related Alteration of Transporter Activity, Localization
and/or Expression

The exact clinical relevance of the multiple, and sometimes opposite, effects of PKCs on drug
transporter activity, localization and expression constitutes likely an important issue to consider.
Indeed, PKCs are activated in a large set of physiological and pathological signaling pathways related,
for example, to hormone effects, cell growth, immune response and cancer progression [21,157].
Such PKCs-activating situations may thus be susceptible to regulating in vivo drug transporter
functions. Moreover, PKCs represent potential therapeutic targets for various diseases, including
cancers, diabetes, immune disorders and psychiatric pathologies [21,158]. In addition, inhibitors of
PKCδ can be used therapeutically to reduce irradiation- and chemotherapy-induced toxicity [159].
There is consequently an increasing number of new molecular entities that target PKCs and have
entered clinical trials [22], some of which are listed in Table 4. Such drugs can be hypothesized
to interfere with PKCs-related drug transporter regulation, and in this way, may cause potential
drug–drug interactions. Such a kinase modulation-based alteration of pharmacokinetics has been
recently reported for the tyrosine kinase inhibitor dasatinib and renal OCT2 [160]. The in vivo
demonstration of alteration of transporters-related pharmacokinetics due to PKC activity regulation
by physiological or pathological effectors or by drugs is however still lacking. In the same way, the
exact implication of PKCs in clinical multidrug resistance of cancer cells through putative regulation of
ABC transporters like P-gp remains to be precisely determined. Moreover, the effects of PKCs towards
drug transporters are rather complex; they may additionally vary, or even antagonize, according to the
nature of the incriminated PKC isoform. Such PKC isoform-dependent regulations of transporters
may be consequently difficult to evaluate in vivo, owing notably to the limited specificity of activators
or inhibitors of PKC isoforms [54]. Indeed, phorbol esters can activate both cPKCs and nPKCs [56],
whereas various PKC inhibitors presented as specifically inhibiting one PKC isoform, such as the
PKCδ inhibitor rottlerin [161], can in fact hinder various signaling pathways [162]. In addition,
besides interfering with PKCs-related pathways, various PKC inhibitors can directly inhibit drug
transporters [111], which complicates the interpretation of their effects on PKC-related drug transporter
regulation in terms of pharmacokinetics. Consequently, experimental approaches based on knockout,
knockdown, and constitutively active and dominant negative mutants may be useful to establish the
in vivo relevance and consequences of putative PKCs-mediated regulations of drug transporters.

Table 4. Examples of new molecular entities targeting protein kinases C (PKCs). FLT3: Fms-like
tyrosine kinase 3; cPKCs: classical/conventional PKCs; nPKCs: novel PKCs.

Drug Nature of Effect Targeted PKC(s) Putative Therapeutic Indication

Rubixostaurin PKC inhibition PKCβ Microvascular complications of
diabetes [163,164]

Enzastaurin PKC inhibition PKCβ Cancers [165]

Tamoxifen PKC inhibition Pan-PKC Bipolar disorders [166]

Sotrastaurin (AEB071) PKC inhibition Pan-PKC Organ transplantation [167],
psoriasis [168]

KAI-9803 PKC inhibition PKCδ Coronary intervention for
myocardial infarction [169]

Midostaurin PKC/FLT3/multikinase inhibition Pan-PKC Leukemias [170]

Ingenol mebutate PKC activation cPKCs/nPKCs Actinic keratoses [171]
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The fact that PKC activation can, in vivo, regulate transporter function is nevertheless supported
by the cholestatic effects of PMA in rat liver [64]. In the same way, exposure to estrogens, through
oral contraceptive administration or pregnancy, is known to clinically induce cholestasis in genetically
susceptible women [172], which is likely at least partly related to impaired functional expression
of PKCs-regulated bile acid transporters like BSEP [141,173]. This highlights the probable in vivo
relevance of PKCs-related regulatory ways for transporter expression and regulation. The fact that
PMA can trigger OATP2B1 internalization in isolated human placenta [68] supports this conclusion.
In this context, modulation of PKC pathways for treating cholestasis through regulating transporter
activity or expression may have to be considered in the future. The fact that PKCs-related insertion
of the transporters MRP2 and BSEP into canalicular membrane is likely implicated in beneficial
anticholestatic effects of tauroursodeoxycholate agrees with this assertion [147] and fully supports
the standard use of ursodeoxycholate for treating intrahepatic cholestasis during pregnancy [174].
In addition, human NTCP plays an important role in the entry of hepatitis B and D viruses into
hepatocytes and consequent infection [175]. Thus, PKCs, by regulating NTCP trafficking, may also
play an important role in hepatic viral infections and, by this way, may constitute attractive therapeutic
targets for preventing or treating viral hepatitis.

8. Conclusions

PKCs-related signaling pathways can regulate activity, localization and/or expression of various
drug transporters in different types of cells or tissues. These transporter regulations often depend
of the nature of the incriminated PKC isoform, as well as that of the initial effector activating PKCs.
Their exact clinical relevance in terms of drug resistance, pharmacokinetics and potential drug–drug
interactions remain however yet to be established. They are nevertheless most likely involved in some
pathological processes, such as cholestasis, through modulation of bile acid transporter insertion at
the plasma membrane of hepatocytes. Targeting PKCs-related signaling pathways using chemical
PKC activators or inhibitors may therefore constitute an attractive therapeutic approach for treating
cholestasis. Various other major diseases, including cancers and diabetes, for which PKCs play a
crucial role, also represent potential targets for PKC inhibitors. In the context of development of
PKCs-interfering drugs, extensive characterization of PKCs-related ways of transporter regulation in
terms of pharmacokinetics and potential toxicity deserves further studies. The fact that drugs acting as
PKC inhibitors may also impair transporter activity in a PKCs-independent manner through direct
interaction with drug binding sites of transporters has however to be kept in mind.
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Abbreviations

PKC Protein kinase
mRNA Messenger ribonucleic acid
cPKC Classical/conventional PKC
nPKC Novel PKC
aPKC Atypical PKC
DAG Diacylglycerol
SLC Solute carrier
ABC ATP-binding cassette
OATP Organic anion transporting polypeptide
OAT Organic anion transporter
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OCT Organic cation transporter
NTCP Sodium-taurocholate co-transporting polypeptide
MATE Multidrug and toxin extrusion protein
OCTN Organic cation/carnitine transporter
PEPT Peptide transporter
CNT Concentrative nucleoside transporter
ENT Equilibrative nucleoside transporter
P-gp P-glycoprotein
MRP Multidrug resistance-associate protein
BCRP Breast cancer resistance protein
BSEP Bile salt export pump
PMA Phorbol myristate acetate
BIM Bisindolylmaleimide
PK15-NTD Pig kidney epithelial nucleoside transporter deficient
cAMP 3′,5′-cyclic adenosine monophosphate
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