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Abstract
Overall descriptors of the information (determinicity) and entropy (uncertainty) content of complex molecular states are
reexamined. These resultant concepts combine the classical (probability) contributions of Fisher and Shannon, and the relevant
nonclassical supplements due to the state phase/current. The information-theoretic principles determining equilibria in molecules
and their fragments are explored and the nonadditive part of the global entropy is advocated as a descriptor of the classical index
of the quantum entanglement of molecular subsystems. Affinities associated with the probability and phase fluxes are identified
and the criterion of vanishing overall information-source is shown to identify the system stationary electronic states. The
production of resultant density of the gradient-information is expressed in terms of the conjugate affinities (forces, perturbations)
and fluxes (currents, responses). The Schrödinger dynamics of probability and phase components of molecular electronic states is
used to determine the temporal evolution of the overall gradient information and complex entropy. The global sources of the
resultant information/entropy descriptors are shown to be of purely nonclassical origin, thus identically vanishing in real
electronic states, e.g., the nondegenerate ground state of a molecule.

Keywords Entropic principles/equilibria . Information theory . Probability/phase dynamics . Quantum entropy . Resultant
entropy/information . Subsystem entanglement

Introduction

The electronic structure of molecules is embodied in their
quantum states generating both the system particle density
and current distributions. The continuity relation for the state
probability density, which relates these two structural aspects
of molecular wavefunctions, implies that the density dynamics

is determined by the current’s divergence. To paraphrase
Prigogine [1], while the electron density determines a static
facet of “being”, the probability current reflects the state dy-
namic aspect of “becoming”. A general electronic
wavefunction is a complex entity characterized by both its
modulus and phase components. The square of the former
determines the particle probability distribution marking the
structure of “being”, while the gradient of the latter generates
the state current density reflecting the structure of “becom-
ing”. These two structural manifestations give rise to the as-
sociated classical and nonclassical contributions in the resul-
tant measures of the information/entropy content in complex
electronic states [2]. Both the probability and phase/current
distributions carry partial information contributions to the
resultant entropic content of the underlying quantum state of
a molecule.

In entropic theories of molecular electronic structure, e.g.,
[2–5], one thus requires an appropriate quantum generaliza-
tion [2] of the familiar classical descriptors of information
theory (IT) [6–13], of the information content in the probabil-
ity distribution. The quantum extensions [2] of the Fisher
(gradient) [6, 7] and Shannon (global) [8, 9] measures,
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appropriate for complex amplitudes (wavefunctions) ofmolec-
ular quantum mechanics (QM), combine the partial contribu-
tions due to probability (wavefunction modulus) and current
(wavefunction phase) degrees-of-freedom. In the position rep-
resentation the electron probability distribution p(r) alone gen-
erates the state classical amount of information, i.e., the infor-
mation received from outcomes of incoherent (phase-unrelat-
ed) local events, outcomes of measurements of the particle
position r. Their nonclassical complements in the resultant
entropy/information measures, describing the coherent
(phase-related) local events, generate the corresponding
coherence entropy/information supplements [2, 14–20] due
to the state phase ϕ(r) or the current density j(r) ∝ ∇ϕ(r).
Similar generalized descriptors of both the overall information
content and entropy-deficiency (information-distance) [10,
11] can be introduced in the momentum space [2, 21].

The classical IT [6–13], an important branch of the applied
probability theory, has already provided new insights into mo-
lecular electronic structure and generated useful descriptors of
atoms in molecules, reactivity preferences and patterns of
chemical bonds, e.g., [2–5]. The classical information terms
are conceptually related to modern density functional theory
(DFT) [22–24]. They probe the entropic content of incoherent
localization events, the outcomes of experiments measuring
the particle position, while their nonclassical companions pro-
vide the information supplement due to the phase-coherence
between such local events, which is inherent in general
wavefunctions of QM. The familiar average information/
entropy measures of Fisher and Shannon reflect only the
information/entropy content in the system wavefunction due
to the probability distribution; thus, failing to distinguish
states exhibiting the same electron density but different cur-
rent compositions.

Therefore, in the quantum IT (QIT) description of the
phase equilibria in molecular systems and their constituent
fragments [2, 16–21, 25–29] one has to unite both the proba-
bility and phase/current aspects of the system quantum states,
in order to fully characterize the overall information content in
molecular wavefunctions, the equilibrium states of both the
system as a whole and its constituent parts, a degree of the
quantum entanglement (mutual bonding status) of subsys-
tems, or the electron diffusion processes [28]. The recently
introduced resultant IT descriptors combine the classical
probability contributions with their respective nonclassical
supplements due to the state phase/current. The densities of
nonclassical information/entropy terms exhibit the same mu-
tual relations as their classical analogs and they introduce the
nonvanishing source terms into their respective continuity re-
lations [2, 26]. They have been successfully used to establish
the phase equilibria in molecules, and to distinguish the mu-
tually bonded (phase-related, “entangled”) status of molecular
fragments and reactants from its nonbonded (phase-unrelated,
“disentangled”) analog [2, 27–31].

The complex global entropy [2, 25], the expectation value
of a non-Hermitian operator, generates the probability and
phase contributions in the resultant measure as its real and
imaginary parts. This two-component (“vector”) extension
satisfies the requirement that a classical dependence between
densities-per-electron of the ordinary Shannon and Fisher
entropy/information measures also covers the interrelation be-
tween their nonclassical supplements. The phase-dependent
concept of complex entropy will be related to the Shannon
entropy of information theory and von Neumann’s entropy
in density matrix. The gradient entropy (indeterminicity-infor-
mation) analog of the resultant Fisher (determinicity-informa-
tion) descriptor has also been conjectured [2]. It combines the
classical Fisher information with the negative nonclassical
phase/current supplement. Indeed, the presence of a finite cur-
rent introduces additional structure, “order” element, thus in-
creasing the state information (determinicity) content and de-
creasing its entropy (uncertainty) property of electronic
“disorder”.

Generalized information principles, formulated in terms of
resultant IT descriptors, identify extrema of the global and
gradient entropies, which mark the phase-equilibria in mole-
cules [14–20]. Such states exhibit a “thermodynamic” phase-
shift related to the logarithm of probability density. The phase
transformation defining the system equilibrium wavefunction
affects both the local probability source and the net entropy
production in the associated continuity equations [2, 18, 26].
Similar equilibria can be determined in the “entangled”
(bonded) and “disentangled” (nonbonded) states of molecular
fragments [2, 27–31].

In this work relations between densities of the the complex
entropy and resultant information measures will be
reexamined and the phase and information equilibria, marking
extrema of the resultant entropy and information measures,
respectively, will be explored. The nonadditive part of the
global entropy in the subsystem resolution will be advocated
as a classical information descriptor of the quantum entangle-
ment of the partition molecular fragments. The “vector” char-
acter of complex entropy density raises the natural question of
what “scalar” function of its real (probability) and imaginary
(phase) parts determines the information principle for estab-
lishing molecular phase-equilibria. This information quantity
will be identified as the resultant gradient entropy.

The source term in the continuity relation for the overall
gradient information will be examined and the underlying
state affinities (“forces”) and fluxes (“responses”) will be
identified; the equilibrium criterion of the vanishing informa-
tion production will be shown to determine the stationary
states of molecular QM. The time evolution of the QIT
entropy/information measures will be explored using the the
dynamical equations for the probability and phase compo-
nents of electronic wavefunctions implied by the molecular
Schrödinger Eq. (SE). The time dependence of the resultant
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information/entropy will be expressed in terms of the state
probability and phase degrees-of-freedom, and the nonclassi-
cal origins of these derivatives will be revealed.

Probability and phase components
of electronic states

Let us consider a single electron (N = 1) at time t0 = 0 in state
|ψ(t0)〉 ≡ |ψ(0)〉 ≡ |ψ〉 described by the complex wave function
in position-representation,

ψ r; 0ð Þ ¼ rjψ 0ð Þh i ¼ R rð Þ exp iϕ rð Þ½ � ≡ ψ rð Þ; ð1Þ
where R(r) and ϕ(r) stand for its modulus and phase parts. It
determines the probability distribution,

p r; 0ð Þ ¼ ψ 0ð Þjrh i rjψ 0ð Þh i ≡ ψjρ̂̂ rð Þjψh i ¼ ψ rð Þ*ψ rð Þ
¼ R rð Þ2≡ p rð Þ; ð2Þ

and its current

j r; 0ð Þ ¼ 2mð Þ−1 ψ 0ð Þ ρ rð Þpþ pρ rð Þf gj jψ 0ð Þh i ≡ ψ ĵ rð Þ
��� ���ψD E

≡ j rð Þ
¼ ħ= 2mið Þ½ � ψ rð Þ*∇ψ rð Þ−ψ rð Þ∇ψ rð Þ*

h i
¼ ħ=mð ÞIm ψ rð Þ*∇ψ rð Þ

h i
¼ ħ=mð Þp rð Þ∇ϕ rð Þ ≡ p rð ÞV rð Þ;

ð3Þ
here the momentum operator p̂ is defined by its action on the
wavefunction 〈r|p̂ψ 〉 = −iħ∇ψ(r), and the average velocity
V(r) of the probability fluid, measuring the current-per-parti-
cle, reflects the state phase-gradient:

V rð Þ ¼ j rð Þ=p rð Þ ¼ ħ=mð Þ ∇ϕ rð Þ: ð4Þ
The wavefunction modulus, the classical amplitude of the
particle probability density, and the state phase or its gradient,
determining the effective velocity and probability flux, thus
constitute two fundamental degrees-of-freedom in the full
quantum IT treatment of electronic states: ψ⇔ (R, ϕ)⇔ (p, j).

One envisages the electron moving in the external potential
v(r) due to the “frozen” nuclei of the molecule, described by
the electronic Hamiltonian

Ĥ rð Þ ¼ − ħ2=2m
� �

∇ 2 þ v rð Þ ≡ T̂ rð Þ þ v rð Þ; ð5Þ

where T̂ rð Þ denotes its kinetic part. The quantum dynamics of
a general electronic state |ψ(t)〉, giving rise to the associated
wavefunction

ψ r; tð Þ ¼ rjψ tð Þh i
¼ R r; tð Þ exp iϕ r; tð Þ½ � ≡ R tð Þ exp iϕ tð Þ½ � ≡ ψ tð Þ; ð6Þ

is generated by SE,

∂ψ tð Þ=∂t ¼ iħð Þ−1Ĥψ tð Þ; ð7Þ

which also determines temporal evolutions of the state
two physical components: the instantaneous probability
density p(r, t) = |ψ(r, t)|2 = R(r, t)2 ≡ p(t), and the state
phase ϕ(r, t) ≡ ϕ(t). The total time derivative of the former
expresses the sourceless continuity relation for the proba-
bility distribution,

σp r; tð Þ ≡ dp r; tð Þ=dt ¼ ∂p r; tð Þ=∂t þ ∇ ⋅ j r; tð Þ

¼ ∂p r; tð Þ=∂t þ V r; tð Þ⋅∇ p r; tð Þ þ p r; tð Þ∇ ⋅V r; tð Þ

¼ ∂p r; tð Þ=∂t þ dr=dtð Þ⋅ ∂p r; tð Þ=∂r½ �

¼ ∂p r; tð Þ=∂t þ V r; tð Þ⋅∇ p r; tð Þ ¼ 0 or

ð8aÞ

∂p r; tð Þ=∂t ¼ −∇ ⋅ j r; tð Þ ¼ − ħ=2mið Þ ψ r; tð Þ*Δψ r; tð Þ−ψ r; tð ÞΔψ r; tð Þ*
h i

¼ − ħ=mð Þ ∇ϕ r; tð Þ⋅∇ p r; tð Þ þ p r; tð Þ∇ 2ϕ r; tð Þ� �
:

ð8bÞ
The total derivative,

dp r; tð Þ=dt ¼ ∂p r; tð Þ=∂t þ dr=dt⋅∂p r; tð Þ=∂r
¼ ∂p r; tð Þ=∂t þ V r; tð Þ⋅∇ p r; tð Þ; ð9Þ

determining the local probability “source” σp(r, t), has been
interpreted above as the time rate of change in a moving in-
finitesimal volume element of the probability fluid, while the
partial derivative ∂p(r, t)/∂t represents the corresponding rate
at the fixed point in space. The probability continuity thus
implies:

dp r; tð Þ=dt þ p r; tð Þ ∇ ⋅V r; tð Þ ¼ 0: ð10Þ
Thus, the vanishing probability source of Eq. (8a) also implies
the vanishing divergence of the velocity field: ∇⋅V(r, t) = 0.
This probability continuity equation also determines the dy-
namics of the state modulus component:

∂R r; tð Þ=∂t ¼ − ħ=mð Þ ∇ϕ r; tð Þ⋅∇R r; tð Þ þ R r; tð Þ=2½ � Δϕ r; tð Þ½ �: ð11Þ

The particle effective velocity also determines the current
concept associated with the state phase: J(r, t) = ϕ(r, t) V(r, t).
The scalar field ϕ(r, t) and its conjugate current density J(r, t)
determine a nonvanishing phase source [2] in the associated
continuity equation:

σϕ r; tð Þ ≡ dϕ r; tð Þ=dt ¼ ∂ϕ r; tð Þ=∂t þ ∇ ⋅J r; tð Þ

¼ ∂ϕ r; tð Þ=∂t þ V r; tð Þ⋅∇ϕ r; tð Þ≠0 or

∂ϕ r; tð Þ=∂t−σϕ r; tð Þ ¼ −∇ ⋅J r; tð Þ

¼ − ħ=mð Þ ∇ϕ r; tð Þ½ �2 þ ϕ r; tð ÞΔϕ r; tð Þ
n o

:

ð12Þ

The phase dynamics from SE,
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∂ϕ=∂t ¼ ħ= 2mð Þ½ � R−1ΔR− ∇ϕð Þ2
h i

−v=ħ; ð13Þ

finally identifies the phase source:

σϕ ¼ ħ= 2mð Þ½ � R−1ΔRþ ∇ϕð Þ2
h i

−v=ħ: ð14Þ

As an illustration consider the stationary wavefunction cor-
responding to energy Es,

ψs r; tð Þ ¼ Rs rð Þ exp iϕs tð Þ½ �; ϕs tð Þ ¼ − Es=ħð Þt ¼ −ωst;
ps r; tð Þ ¼ Rs rð Þ2 ¼ ps rð Þ; js r; tð Þ ¼ Vs r; tð Þ ¼ 0;

ð15Þ
representing an eigenstate of the Hamiltonian:

Ĥ rð Þ Rs rð Þ ¼ − ħ2=2m
� �

ΔRs rð Þ þ v rð ÞRs rð Þ
¼ EsRs rð Þ: ð16Þ

The phase dynamics of Eq. (13) then recovers the stationary
SE and identifies a constant phase source:

∂ϕs=∂tð Þ ¼ σϕ ¼ ħ= 2mð Þ½ � Rs
−1ΔRs

� �
−v ¼ −ωs

¼ const: ð17Þ

Resultant information/entropy concepts
and uncertainty principle

At a given instant t = t0 the average Fisher [6] measure
of the classical gradient information for locality events,
contained in the molecular probability density p(r) =
R(r)2, is reminiscent of von Weizsäcker’s [32] inhomo-
geneity correction to the kinetic energy functional in
Thomas-Fermi theory,

I[p] = (r) [ lnp(r)]
2 dr (r) Ip(r) dr

= p(r)]
2
/p(r) dr p(r) dr = 4 R(r)]

2 dr I[R];

ð18Þ
here ℐp(r) = p(r) Ip(r) denotes the functional density and
Ip(r) stands for the associated density-per-electron. The
amplitude form I[R] reveals that this classical descriptor
measures the average length of the modulus gradient
∇R. This classical, probability descriptor characterizes
an effective “narrowness” of p(r), i.e., a degree of
determinicity of the particle position.

The classical Shannon (S) [8] descriptor of the global en-
tropy in p(r),

S[p] = (r) lnp(r) dr (r) Sp(r) dr p(r) dr = 2
2
(r) lnR(r) dr S[R], ð19Þ

similarly reflects the distribution “spread” (uncertainty), i.e., a
degree of the position indeterminacy. It also provides the
amount of information received, when this uncertainty is re-
moved by an appropriate particle-localization experiment:
IS[p] ≡ S[p]. The densities-per-electron of these complemen-
tary information and entropy functionals are seen to satisfy the
classical relation:

Ip rð Þ ¼ ∇ Sp rð Þ� �2 ð20Þ

These probability functionals of the classical information/
entropy content generalize naturally into the corresponding
resultant quantum descriptors combining the probability and
phase/current contributions to the overall entropy/information
descriptors of the electronic state |ψ〉 [2, 14–20]. Such gener-
alized concepts are applicable to complex wavefunctions of
molecular QM. They are defined as average values of the
associated operators: the Hermitian operator of the gradient

information [33] related to the kinetic energy operator T̂ rð Þ,

Î rð Þ ¼ −4Δ ¼ 2i∇ð Þ2 ¼ 8m=ħ2
� �

T̂ rð Þ; ð21Þ

and the non-Hermitian (multiplicative) operator of the state
complex entropy [25],

Ŝψ r; tð Þ ¼ −2lnψ r; tð Þ ≡ Sψ r; tð Þ ¼ −lnp r; tð Þ−2iϕ r; tð Þ: ð22Þ

Therefore, their quantum expectation values in state |ψ〉
give rise to real and complex average IT descriptors,
respectively.

The overall gradient infomation combines the classical
(probability) and nonclassical (phase/current) contributions:

I[ ] = = rrrrrrr dIpdd )()()()(4
2

= I[p] + rrr dp 2)]([)(4 I[p] + I[ ] I[p, ]

= I[p] + rrjr dpm 212
)()(/2 I[p] + I[j] I[p, j]. 

ð23Þ
This resultant (real) gradient information is proportional to the
state average kinetic energy:
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T ψ½ � ¼ 〈ψjT̂jψ〉 ¼ ħ2=8m
� �

I ψ½ �:

The resultant complex (“vector”) measure of the state glob-
al entropy is similarly determined by its real (classical) and
imaginary (nonclassical) contributions:

H[ ] = = 2 rrrrrrrr dHpdd )()()()(ln)(
2

= S[p] rrr dp )()(i2 S[p] + iS[ ] H[p] + H[ ] H[p, ]. 

ð24Þ
The densities-per-electron of these functionals,

Iψ rð Þ ¼ Ip rð Þ þ 2∇ϕ rð Þ½ �2≡ Ip rð Þ þ Iϕ rð Þ
¼ Ip rð Þ þ 2m=ħð Þ j rð Þ=p rð Þf g2

¼ Ip rð Þ þ 2m=ħð ÞV rð Þ½ �2≡ Ip rð Þ þ I j rð Þ

ð25Þ

and

Hψ rð Þ ¼ Sp rð Þ−2iϕ rð Þ≡ Sp rð Þ þ iSϕ rð Þ; ð26Þ

now satisfy the complex generalized relation

Iψ rð Þ ¼ ∇Hψ rð Þ�� ��2 ¼ ∇ Sp rð Þ� �2 þ ∇ Sϕ rð Þ� �2
: ð27Þ

One also introduces the resultant gradient entropy [2], the
state local uncertainty descriptor (indeterminicity-informa-
tion),

M[ ] M (r) dr = I[p] I[ ] M[p] + M[ ] 

= (r) [Mp(r) + M (r)] dr (r) M (r) dr, 

ð28Þ
exhibiting a nonpositive phase supplement Mϕ(r) = − I[ϕ] in
its overall density-per-electron:Mψ(r) ≡Mp(r) +Mϕ(r) = Ip(r)
− Iϕ(r). Indeed, the presence of a finite probability current j(r)
≠ 0, generated by the local phase ϕ(r) > 0, implies an addi-
tional “structure” element of the current distribution in the
electronic state, thus increasing its resultant information (“or-
der”) density, Iϕ(r) > 0, and lowering the associated entropy
(“disorder”) contribution: Mϕ(r) < 0.

The global entropy of probability distribution has also been
generalized in the resultant “scalar”measure of the uncertainty
content in the specified quantum state ψ [2]:

S[ ] = 
*
(r) [ lnp(r) 2 (r)] (r) dr

= S[p] + S[ ] p(r) [Sp(r) + S (r)] dr p(r) S (r) dr (r) dr.

ð29Þ
It represents the expectation value of the Hermitian operator of
the scalar measure of resultant global entropy,

)(r = [lnp(r) + 2 (r)], ð30Þ

and combines the classical contribution S[p] ≥ 0 of Shannon
with its nonclassical supplement S[ϕ] = −2〈ϕ〉ψ ≤ 0 reflecting
the average phase in state |ψ〉: 〈ϕ〉ψ = ∫p(r) ϕ(r) dr ≥ 0.

To summarize, the modulus (probability) and phase
(current) components of electronic states are both accounted
for in the resultant measures of the gradient or global descrip-
tors of the information/entropy content in generally complex
wavefunctions of molecular QM. These overall descriptors
combine the familiar classical functionals of the system prob-
ability density and their nonclassical supplements due to the
state phase or its current density. Their densities-per-electron
satisfy classical relations linking the gradient and global de-
scriptors, appropriately generalized to cover a complex char-

acter of electronic states. The Hermitian operator Î rð Þ gives
rise to the real expectation value of the state content of resul-
tant determinicity information I[ψ], related to the average ki-
netic energy T[ψ], while the non-Hermitian entropy operator

Ŝψ rð Þ generates the complex average measure H[ψ] of the
global uncertainty in ψ. The classical and nonclassical
densities-per-electron of the resultant gradient information
and the overall global entropy then separately obey the clas-
sical relations:

Ip rð Þ ¼ ∇Hp rð Þ� �2
and

Iϕ rð Þ ¼ ∇Hϕ rð Þ� �2 ¼ i∇ Sϕ rð Þ� �2 ¼ − ∇ Sϕ rð Þ� �2
:

ð31Þ

The squared gradient of the classical and nonclassical com-
ponents in the Shannon-type entropy density is thus seen to
determine densities of the associated contributions to the re-
sultant Fisher-type information:

Î rð Þ ¼ ∇ Ŝψ rð Þ⋅∇ Ŝψ rð Þ† ¼ ∇ Ŝψ rð Þ
��� ���2

¼ ∇ lnp rð Þ 2þ� �
−2∇ϕ rð Þ� �2

¼ ∇ p rð Þ
p rð Þ

� �2
þ 4 ∇ϕ rð Þ½ �2≥0:

ð32Þ

Therefore, the gradient of complex entropy can be regarded as
the quantum amplitude of the resultant information content. In

other words, ∇Ŝψ rð Þ appears as the “square root” of Î rð Þ. This
development is thus in spirit of the quadratic approach of
Prigogine [1].

The (Hermitian) operator of the gradient entropy is seen to
involve the sum of the ordinary squares of gradients of the
operator components:

M̂ψ rð Þ ¼ ∇ Ŝp rð Þ
h i2

þ ∇ Ŝϕ rð Þ
h i2

¼ ∇ lnp rð Þ½ �2−4 ∇ϕ rð Þ½ �2: ð33Þ
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This relation establishes the scalar information principle for
determining the phase-equilibria [2, 14–20],

ψeq: rð Þ ¼ R rð Þ exp i ϕ rð Þ þ ϕeq: rð Þ� �	 

≡R rð Þ exp iΦeq: rð Þ� �

;

ð34Þ
corresponding to “thermodynamic” phase shift ϕeq. (r) ≥ 0.
More specifically, the extremum of M[ψ] with respect to ψ*,

〈δψ|M̂ψ |ψ〉 = 0, gives the Euler equation

∇ lnp rð Þ½ �2 ¼ 4 ∇ϕeq: rð Þ� �2
; ð35Þ

which identifies the equilibrium phase

ϕeq: rð Þ ¼ − 1=2ð Þ lnp rð Þ≥0: ð36Þ

The same optimum solution follows from the extremum rule

for S[ψ], 〈δψ| |ψ〉 = 0, or

)(r = [lnp(r) + 2 (r)] = 0. ð37Þ

It should be observed, however, that the associated extremum
principle for the resultant gradient information I[ψ], 〈δψ|̂I |ψ〉 =
0, predicts a pure-imaginary optimum phase ϕopt.(r) = iϕeq.(r).

It is also of interest to examine how the familiar Heisenberg
(“indeterminicity”) inequality for the product of squared dis-
persions in the particle position r and momentum p,

δrh iψ
h i2

δph iψ
h i2

> ħ2=4;

δxh iψ
h i2

¼ ψjx̂̂2jψ� �
− ψjx̂̂jψh i2; x ¼ r; p;

translates into the probability (modulus) and current (phase)
components of a general wavefunction of Eq. (1). The explicit
form of the momentum operator in position representation,
p̂ rð Þ = −iħ∇, gives the following expression for the momen-
tum factor,

δph iψ
h i2

¼ ħ2 δ∇ϕh iψ
h i2

þ 1


4
I p½ �

� �
;

involving the classical Fisher information I[p]. Here,
[〈δ∇ϕ〉ψ]2 = 〈(∇ϕ)2〉ψ − [〈∇ϕ〉ψ]2 denotes the squared disper-
sion in the phase gradient,

δ∇ϕh iψ
h i2

¼ ∫p ∇ϕð Þ2dr− ∫p ∇ϕð Þdr� �2

¼ 1


4
I ϕ½ �− m=ħð Þ∫ jdr� �2

¼ m=ħð Þ2 V2
� �

ψ− Vh iψ
h i2� �

¼ m=ħð Þ2 δVh iψ
h i2

;

related to the average velocity, 〈V〉ψ = ∫pVdr = ∫jdr, and the
state nonclassical gradient information I[ϕ]. The squared dis-
persion of the particle momentum can thus be expressed in
terms of the state result information content I[ψ],

δph iψ
h i2

¼ ħ2 1


4 I ψ½ �− m=ħð Þ Vh iψ

h i2� �
:

The Heisenberg uncertainty relation then reads:

δrh iψ
h i2

I ψ½ �− 2m=ħð Þ Vh iψ
h i2� �

> 1:

Entanglement entropy of molecular
fragments

Consider a division of the electron density ρ(r) in a molecular
system M =A—B containing N = ∫ρ(r)dr electrons in the
fragment distributions ρ(r) = {ρX(r)} corresponding to the
complementary subsystems A and B:

ρ ¼ ρA þ ρB; ∫ρXdr ¼ NX; NA þ NB ¼ N : ð38Þ

For example, these fragments can represent atoms-in-
molecules (AIM) or their collections, functional groups, reac-
tants, etc. This partition also applies to the associated division
of the probability (shape factor) distribution p(r) = ρ(r)/N,
∫p(r)dr = 1,

p ¼ ρA=N þ ρB=N ≡ πA þ πB

¼ NA=Nð Þ ρA=NAð Þ þ NB=Nð Þ ρB=NBð Þ ≡ PApA þ PBpB:

ð39Þ
Here the vectors π(r) = {πX(r)} and p(r) = {pX(r)} combine
the fragment probability densities, unity normalized within the
whole molecule and in individual subsystems, respectively,

∑X∫πX rð Þdr ¼ ∑XPX ¼ ∫pX rð Þ dr ¼ 1; X ¼ A;B; ð40Þ

while P = {PX = ∫πX(r)dr = NX/N} contains the condensed
probabilities of these constituent parts of M: PA + PB = 1.

These overall and subsystem probabilities generate the
classical Shannon entropies reflecting the corresponding clas-
sical uncertainty descriptors. The global entropy of the mole-
cule as a whole also defines the total entropy in division p,

S p½ � ¼ −∫p rð Þ lnp rð Þ dr ≡ Stotal p½ � ≥ 0; ð41Þ

while the component probabilities define the indeterminicity
measures of the probability density in individual fragments:

S pX½ � ¼ −∫pX rð ÞlnpX rð Þdr ≡ SX; X ¼ A;B: ð42Þ
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Together they determine the additive entropy for this
partitioning,

Sadd: p½ � ¼ PA SA þ PB SB ≥ 0; ð43Þ
and hence the associated nonadditive part of Stotal[p] = S[p]:

Snadd: p½ � ¼ Stotal p½ �−Sadd: p½ �: ð44Þ

The latter can also be expressed as the weighted average of
entropy deficiencies [10,11] in the fragment probability den-
sities relative to the molecular distribution,

ΔS pXjp½ � ¼ ∫pX rð Þ ln pX rð Þ=p rð Þ½ � dr≥0; ð45Þ
measuring the corresponding information distances:

Snadd: p½ � ¼ PA ΔS pAjp½ � þ PB ΔS pBjp½ �≥0: ð46Þ

The overall entropy in molecular electron density,

S ρ½ � ¼ −∫ρ rð Þ lnρ rð Þ dr
¼ −∑X∫ρX rð Þ lnρ rð Þ dr ≡ Stotal ρ½ �; ð47Þ

and its additive contribution,

Sadd: ρ½ � ¼ −∑X∫ρX rð ÞlnρX rð Þdr; ð48Þ

give the associated nonadditive component:

Snadd: ρ½ � ¼ Stotal ρ½ �−Sadd: ρ½ �
¼ ∑X ΔS ρXjρ½ � ≡ ΔSadd: ρjρ½ �: ð49Þ

This nonadditive entropy thus measures the additive
(molecularly-referenced) entropy deficiency in electron densi-
ties. It reflects the average information distance between the
fragment and molecular densities. It can be used to describe
the information similarity between constituent parts and the
whole system: the smaller this missing information, the more
the two fragments resemble the molecule [3, 34–36].

The IT descriptors of Eqs. (46) and (49) can be regarded as
measures of the “binding” entropy in the mutually-open
(entangled) subsystems for the specified molecular state Ψ
yielding ρ, denoted as Ψ→ρ, in the bonded (molecular) com-
posite system

Mopen Ψ½ � ¼ A* Ψ½ �$B* Ψ½ �� �
≡ A*$B*
� �

Ψ ¼ M; ð50Þ

since the additive entropies of Eqs. (43) and (48) characterize
the mutually-closed (disentangled) subsystems in the
nonbonded (“promolecular”) reference [27, 29, 31]

Mclosed ¼ Aþ ρ½ �jBþ ρ½ �ð Þ ≡ AþjBþð Þ: ð51Þ

Above the mutual “bonding” and “non-bonding” character of
the two fragments has been denoted by the vertical broken-
and solid-lines, respectively, which separate these subsystems
in the corresponding composite system.

One further observes that the molecularly-referenced
additive information-distance of Eq. (49) supplemented by
the local constraint of Eq. (38), of conserving the molecular
electron density in the partition, gives the variational similarity
criterion

δ ΔSadd: ρjρ½ � − ∑X∫λ rð Þ ρX rð Þ dr	 
 ¼ 0; ð52Þ

establishing the equal division of ρ between the two subsys-
tems: ρX = ρ/2, X = A, B. It has been shown elsewhere [3,
34–36], however, that the information variational rule in terms
of the nonadditive entropy-deficiency referenced to the densi-
ties ρ0 = {ρX

0} of separate subsystems,

δ ΔSnadd: ρjρ0
� �

−∑X∫λ
0 rð Þ ρX0 rð Þ dr	 
 ¼ 0; ð53Þ

generates the Hirshfeld [37] (“stockholder”) pieces of the mo-
lecular density:

ρX
H ¼ ρX

0 ρ=ρ0
� �

≡ ρX
0 w ≡ ρ dX0 or

dX0 ≡ ρX
0=ρ0 ¼ ρX

H=ρ ≡ dXH;

ð54Þ

The optimum pieces of the molecular density can thus be
regarded either as the local molecular enhancement w(r) =
ρ(r)/ρ0(r) of the subsystem density ρX

0, or as the promolecular
share dX

0(r) = ρX
0(r)/ρ0(r) in the molecular density ρ(r). The

promolecular distribution ρ0(r) = ∑X ρX
0(r) is determined by

the separate-fragment densities shifted to their actual positions
in the molecule [3, 37]. Here,

ΔSnadd: ρjρ0
� � ¼ ΔStotal ρjρ0

� �
−ΔSadd: ρjρ0

� �

¼ ∑X∫ρX rð Þln dX0 rð Þ=dX rð Þ� �
dr

¼ ∑X∫ρX rð Þln w rð Þ=wX rð Þ½ �dr;

wX rð Þ ¼ ρX rð Þ=ρX0 rð Þ;

ΔStotal ρjρ0
� � ¼ ΔS ρjρ0� �

;

ΔSadd: ρjρ0
� � ¼ ∑XΔS ρXjρX0

� �
:

ð55Þ

The “stockholder” fragments thus exhibit the maximum
information similarity to their isolated (promolecular)
analogs, giving rise to the minimum of the relevant
entropy-deficiency (missing-information) descriptors [3,
34–36]. A reference to Eq. (54) indicates that for this
particular division scheme the nonadditive missing in-
formation of Eq. (39) exactly vanishes [3]:

ΔSnadd: ρHjρ0
� � ¼ 0; ð56Þ
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since wX
H = w and dX

H = dX
0.

One further observes that expressing ρX(r) inΔSnadd.[ρ|ρ0]
as ρ(r) dX(r) gives

ΔSnadd: ρjρ0
� � ¼ −∫ρ rð Þ ∑X dX rð Þ ln dX rð Þ=dX0 rð Þ� �	 


dr

¼ −∫ρ rð Þ ΔSadd: d rð Þjd0 rð Þ� �
dr ≤ 0;

ð57Þ

since both the local density ρ(r) and local additive
information-distanceΔSadd.[d(r)|d0(r)] are separately nonneg-
ative. Therefore, the Hirshfeld subsystems also result from the
maximum information principle for the nonadditive entropy
deficiency:

maxρ ΔSnadd: ρjρ0
� � ¼ ΔSnadd: ρHjρ0

� � ¼ 0: ð58Þ

The stockholder pieces of the molecular density thus exhibit
the maximum nonadditivity relative to the promolecular dis-
tributions in the separate subsystems.

Let us now examine the entanglement entropy of molecular
fragments in the phase-equilibrium state of Eq. (34), which
maximizes the resultant entropy combining contributions
from the modulus (probability) and phase (current) compo-
nents [14–20]. Consider the single-electron (orbital) state
ψ[p] = R exp(iϕ), ϕ ≥ 0, with p = |ψ|2 = R2 = ρ. The overall
global entropy contains the negative nonclassical (phase) con-
tribution S[ϕ] proportional to the state average phase 〈ϕ〉. The
equilibrium, phase-transformed state in Mopen[ψ→p],

ψeq: p½ � ¼ exp iϕeq: p½ �� �
ψ p½ � ¼ R exp iΦeq: p½ �� �

; ð59Þ

exhibits the resultant local phase

Φeq: p½ � ¼ ϕ ψ→p½ � þ ϕeq: p½ �≡ϕ p½ � þ ϕeq: p½ �; ð60Þ

identified by the optimum “thermodynamic” phase-shift of
Eq. (36) related to the system probability density:

ϕeq: p; r½ � ¼ − 1=2ð Þ lnp rð Þ ≡ ϕM rð Þ: ð61Þ

In such an entangled state of subsystems, in the bonded
(molecular) reference system M*

eq: = (A*¦B*)eq., the resultant

phase Φeq.[p] also characterizes each mutually-open
(nonadditive) fragment X* related to a common molecular
“ancestor” state ψ[p]:

ϕeq: p½ � ¼ ϕeq: X
*; p

� �
; X ¼ A;B: ð62Þ

The phase transformation of Eq. (59) generates the extra cur-
rent contribution proportional to the probability gradient:

j ϕeq: p½ �� � ¼ ħ=mð Þ p ∇ϕeq: p½ � ¼ − ħ=2mð Þ ∇ p ≡ jeq: p½ �: ð63Þ

The equilibrium states of the mutually-closed (additive)

subsystems {Xþ
eq: } in Mþ

eq: = (Aþ
eq: |B

þ
eq: ) are similarly

described by the respective “thermodynamic” phase-shifts
marking their own (internal) equilibria:

ϕeq: pX; r½ � ¼ − 1=2ð Þ lnpX rð Þ ≡ ϕX
þ pX½ �; X ¼ A;B: ð64Þ

They generate the associated currents in molecular fragments,

j ϕX
þ pX½ �½ � ¼ ħ=mð Þ pX ∇ϕX

þ pX½ � ¼ − ħ=2mð Þ ∇ pX ≡ jX
þg;f
ð65Þ

and the resultant average current:

j AþjBþð Þ ¼ ∑X PX jX
þ ¼ − ħ=2mð Þ ∇ ∑X PX pXð Þ

¼ − ħ=2mð Þ ∇ p≡ jþ: ð66Þ

In such a fragment resolution the overall entropy of
Meq.=M

*
eq: in the phase-equilibrium state ψeq.[p] thus reads:

Stotal ψeq: p½ �� � ¼ S
�
M*

eq:

� ¼ S ψeq: p½ �� �
¼ S ψ p½ �½ � þ S ϕeq: Mð Þ� �
¼ S p½ � þ S ϕ ψ→p½ �½ �ð Þ þ S ϕM p½ �½ �
¼ S ϕ ψ→p½ �½ �;

ð67Þ

since S[p] and

S ϕM p½ �½ � ¼ −2∫p ϕM p½ � dr ¼ −S p½ � ð68Þ

cancel each other. One also observes that the additive equilib-
rium component, describing the mutually nonbonded frag-
ments in Mþ

eq:, exactly vanishes:

Sadd: ψeq:

� � ¼ S
�
Mþ

eq:

�

¼ −∑X∫pX lnpX þ 2ϕX
þ pX½ �ð Þdr ¼ 0:

ð69Þ

Therefore, the nonadditive part of the resultant entropy in the
phase-transformed, equilibrium state ψeq.[p] is determined by
the phase-entropy S[ϕ[p]], due to the phase of the original
quantum state ψ[p], a common molecular “ancestor” of both
the entangled subsystems in M:

Snadd: ψeq:

� � ¼ Stotal ψeq:

� �
−Sadd: ψeq:

� � ¼ S ϕ½ �: ð70Þ

Indeed, the phenomenon of a quantum entanglement
[28, 30, 31] for the given electron distribution in the
molecule as a whole, has an exclusively nonclassical
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(phase/current) origin. This entropic descriptor of the
fragment entanglement vanishes for the nondegenerate
ground state ψ = ψ0, when the probability “degree-of-
freedom” alone exactly identifies the molecular electron-
ic state: ϕ = ϕ0 = 0, and hence j = j0 = 0. This result is
in accordance with the basic theorems of DFT [22],
which predict that all physical properties in such a
“classical” (real) state are determined by the molecular
electron density alone. Therefore, when the molecular
current exactly vanishes, a division of the molecular
density, a “static” distribution of electrons, into the
equilibrium fragment pieces amounts to a classical par-
tition into a collection of disentangled subsystems,
which is devoid of any phase (coherence) content.

Affinities, fluxes, information production,
and equilibrium

We now reexamine a related problem of the source term
in the associated continuity equation for the resultant
gradient information, generated by the coupled probabil-
ity p(r, t) = ψ(r, t) ψ*(r, t) = R(r, t)2 and phase ϕ(r,
t) = (2i)−1ln[ψ(r, t)/ψ*(r, t)] components of the molecular
electronic state ψ(r, t). It can be approached using the
standard treatment of irreversible thermodymamics [38].

Before addressing the problem of a production of the
resultant information let us briefly examine the continu-
ity of the classical gradient information I[p] of Eq. (18).
Its functional derivative

Fclass:
p rð Þ ¼ δI p½ �

δp rð Þ ¼
∇ p rð Þ
p rð Þ

� �2

−2
Δp rð Þ
p rð Þ

� �

¼ −4
ΔR rð Þ
R rð Þ

� �
; ð71Þ

defines the local probability “intensity” of the classical
information, which determines the functional differen-
tial, dI[p] = ∫ Fp

class.(r) δp(r) dr, the Fisher information
current, JI

class.(r) = Fp
class.(r) j(r), its divergence:

∇ ⋅J I
class: rð Þ ¼ ∇ Fp

class: rð Þ⋅ j rð Þ þ Fp
class: rð Þ ∇ ⋅ j rð Þ; ð72Þ

and derivative of the functional density:

t
pF

t
class
p

p )(
)(

)(
. rr

r
. ð73Þ

Taking into account the probability continuity then gives the
information source derivative:

d p(r)/dt I
class.

(r) = )(
)(

. rJ
r class

I
p

t
= j(r) Fp

class.
(r) j(r) Gp

class.
(r). 

ð74Þ

This product of the classical probability “affinity” Gp
class.(r)

and “flux” j(r) is thus seen to identically vanish for an r-inde-
pendent phase, i.e., the zero current, e.g., in the stationary state
of Eq. (15). Turning now to the continuity problem of the
resultant gradient information, one again recognizes the con-
tinuity relations of Eqs. (8) and (12) for the independent
(instantaneous) probability and phase parameters of a general,
complex wavefunction of Eq. (6),

σp ¼ dp
dt

¼ ∂p
∂t

þ ∇ ⋅ j ¼ 0 and

σϕ ¼ dϕ
dt

¼ ∂ϕ
∂t

þ ∇ ⋅J ≠ 0;

ð75Þ

expressing the associated dynamical equations resulting from
SE:

∂p=∂t ¼ − ħ=mð Þ� ½∇ p⋅∇ϕþ pΔϕ
i
¼ −V tð Þ⋅∇ p

¼ − ħ=mð Þ ∇ϕh iψ tð Þ⋅∇ p and

∂ϕ=∂t ¼ ħ= 2mð Þ½ � R−1ΔR− ∇ϕð Þ2
h i

−v=ħ;

ð76Þ

here j ≡ Jp = pV denotes the probability current and J ≡ Jϕ =
ϕV stands for the phase-flux density, measuring the phase
transported through unit area per unit time, and the phase
source σϕ is defined in Eq. (14). The local resultant intensi-
ties (per unit volume) F(r) = [Fp(r), Fϕ(r)] ≡ {Fk(r)}, asso-
ciated with the probability and phase components x(r) = [p(-
r), ϕ(r)]} ≡ {xk(r)} and their currents J(r) = [Jp(r), Jϕ(r)]} ≡
{Jk(r)}, are again given by the corresponding (partial) func-
tional derivatives of I[ψ] = I[p, ϕ] with respect to these state
parameters:

Fp rð Þ ¼ ∂I p;ϕ½ �
∂p rð Þ

� �
ϕ

¼ ∇ p rð Þ
p rð Þ

� �2

−2
Δp rð Þ
p rð Þ

� �
þ 4 ∇ϕ rð Þ½ �2

¼ 4 ∇ϕ rð Þ½ �2−ΔR rð Þ
R rð Þ

� �
;

Fϕ rð Þ ¼ ∂I p;ϕ½ �
∂ϕ rð Þ

� �
p
¼ −8 ∇ p rð Þ⋅∇ϕ rð Þ þ p rð ÞΔϕ rð Þ½ �:

ð77Þ

They determine the differential of this resultant gradient
information,
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dI[p, ] = rrrrr dFpFp )()()()( = rrrrr ddxF
k

kk )(])()([ , ð78Þ

and suggest the associated information current

J I rð Þ ¼ Fp rð Þ Jp rð Þ þ Fϕ rð Þ Jϕ rð Þ ≡ ∑k Fk rð Þ jk rð Þ ð79Þ

measuring the regional resultant information transported
through unit area per unit time.

The rate of a local production of the resultant gradient
information is given by the sum of the information leaving

the region and the rate of the information source within this
infinitesimal volume,

)(
)()(

)( rJrrr II tdt
d

, ð80Þ

where:

k

k
k t

xF
t

)(
)(

)( rrr
and       

k
kkkkI FF )()()()()( rJrrJrrJ . ð81Þ

Finally, using the continuity Eq. (75) identifies the source term
of the resultant gradient information:

k
kkk

k
k F

t
xF

dt
d

)()()(
)(

)(
)( rJrrJrrr

)()()()()()()()()( rrrrJrGrrrJr I
k

kk
k

kk FFF .
ð82Þ

The first term in the preceding equation is classical
in character. As in irreversible thermodynamics [38] it
combines products of regional affinities G(r) ≡ {Gk(r) =
∇Fk(r)}, gradients of local intensities F(r) ≡ {Fk(r)},
and fluxes J(r) ≡ {Jk(r)} associated with the state pa-
rameters x(r) ≡ {xk(r)}. The former determine the infor-
mation “forces” driving these conjugate flows,

Gk ¼ ∂σI=∂J k ; ð83Þ
while the latter appear as information “responses” to
these generalized perturbations:

J k ¼ ∂σI=∂Gk : ð84Þ

Due to the nonclassical (phase) contribution in the over-
all information measure, the rate of production of the resul-
tant gradient information does not vanish for zero affinities:

σI rð ÞjG¼0 ¼ Fϕ rð Þ σϕ rð Þ: ð85Þ

However, the equilibrium source of the gradient information
vanishes for the zero phase intensity, Fϕ(r) = 0, when

∇ϕ(r) = 0, e.g., in the stationary state of Eqs. (15) and
(16), for p[ψs] = ps(r) and ϕ[ψs] = ϕs(t), when ∇ϕs(t) = 0
and Δϕs(t) = 0. In such eigenstates of the Hamiltonian oper-
ator one finds: {Jp[ψs] = 0, Jϕ[ψs] = Jϕ (t)}, {Fp[ψs] = Fp

class.,
Fϕ[ψs] = 0} and {Gp[ψs] = Gp

class., Gϕ[ψs] = 0}. The station-
ary state, corresponding to the sharply specified electronic
energy of Eq. (16), thus exhibits a nonvanishing probability-
intensity of Eq. (71),

Fp ψs½ � ¼ −4ΔRs=Rs ¼ 8m Es−vð Þ=ħ2 or

Gp ψs½ � ¼ 8m=ħ2
� �

∇ v ≠ 0;

ð86Þ

and zero values of the phase-intensity and affinity: Fϕ[ψs] = 0,
Gϕ[ψs] = 0.

The vanishing production of the resultant gradient informa-
tion in the stationary quantum states,

σI ψs½ � ¼ Gp ψs½ �⋅J p ψs½ � þ Gϕ ψs½ �⋅Jϕ ψs½ � þ Fϕ ψs½ � σϕ ψs½ � ¼ 0;

ð87Þ
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identifies them as the system information equilibra.
Thus, the stationary wavefunctions of molecular QM
represent the zero production states of the overall gra-
dient information. It should be observed, however, that
contrary to the concept of equilibrium in irreversible
thermodynamics [38], such IT equilibrium states do
not correspond to the vanishing affinities G = 0, since
σI[ψs] vanishes due to Jp[ψs] =Gϕ[ψs] = 0 and Fϕ[ψs] =
0. A given displacement from this information equilib-
rium, specified by the applied “forces” G, triggers prob-
ability and phase flows with each flux depending on all
affinities and all intensities: Jk = Jk(G, F). One recalls
that in ordinary thermodynamics [38] each flux depends
most strongly on its own affinity and it is also known
to vanish as these affinities vanish, so one can expand
the currents in powers of the affinities with no constant
term.

The intensity and affinity concepts corresponding to the
phase equilibrium of Eq. (61) are also of interest:

Fϕ
eq: ¼ −∇ ⋅ 8p∇ϕeq:

� � ¼ 4Δp and

Gϕ
eq: ¼ 4∇ 3p:

ð88Þ

The former is thus related to the Fick’s diffusion equation [28]
(see Eq. (63)]:

∂p=∂tð Þdiff : ¼ −∇ ⋅ jeq: p½ � ¼ ħ= 2mð Þ½ � Δp ≡ D Δp; ð89Þ

which formally identifies the electron diffusion coefficient
D = ħ/(2 m) and the associated current for this migration:

jdiff : ¼ −D ∇ p ¼ jeq: p½ �: ð90Þ

Dynamics of resultant entropy/information
descriptors

Let us now reexamine a temporal evolution of the over-
all measures of the information and entropy content in
the specified molecular quantum state |ψ(t)〉. One recalls
that the average energy E[ψ(t)] of an isolated molecular
system,

E ψ tð Þ½ � ¼ Eh iψ tð Þ ¼ ψ tð ÞjĤjψ tð Þ
D E

¼ T ψ tð Þ þV� ½ψ tð Þ½ � ≡ E tð Þ;
T ψ tð Þ½ � ¼ ψ tð ÞjT̂jψ tð Þ

D E
≡ Th iψ tð Þ ≡ T tð Þ;

V ψ tð Þ½ � ¼ ψ tð Þ vj jψ tð Þh i ≡ Vh iψ tð Þ ¼ ∫p rð Þv rð Þdr ≡ V tð Þ;
ð91Þ

remains conserved in time:

dE tð Þ=dt ¼ i=ħð Þ ψ tð Þ Ĥ; Ĥ
h i��� ���ψ tð Þ

D E
¼ 0: ð92Þ

One similarly explores time dependency of overall
measures of the complementary entropy/information de-
scriptors: the expectation values of the state complex en-
tropy,

H ψ tð Þ½ � ¼ Hh iψ tð Þ ¼ ψ tð Þ Ŝ tð Þ
��� ���ψ tð Þ

D E

¼ ∫p r; tð Þ −2lnψ r; tð Þ½ �dr
¼ S p tð Þ½ � þ iS ϕ tð Þ½ � ≡ H tð Þ; ð93Þ

and its resultant gradient information:

I ψ tð Þ½ � ¼ Ih iψ tð Þ ¼ ψ tð Þ Î
��� ���ψ tð Þ

D E

¼ I p tð Þ½ � þ I ϕ tð Þ ¼ I� ½p tð Þ þI� ½ j tð Þ½ � ≡ I tð Þ: ð94Þ

One first observes that a direct differentiation of the
complex-entropy functional H(t) = ∫ψ*(r, t) Sψ(r, t)ψ(r, t) dr
= ∫p(r, t) Sψ(r, t) dr gives:

σH tð Þ ≡ dH tð Þ=dt

¼ ∫Sψ r; tð Þ ∂p r; tð Þ=∂t½ �dr þ ∫p r; tð Þ ∂Sψ r; tð Þ=∂t½ �dr

¼ 2∫ lnψ r; tð Þ½ �∇ ⋅ j r; tð Þdr−2∫ψ* r; tð Þ ∂ψ r; tð Þ=∂t½ �dr

¼ ∫ lnp r; tð Þ þ 2iϕ r; tð Þ½ �∇ ⋅ j r; tð Þdr

þ 2i=ħð Þ∫ψ* r; tð ÞĤ rð Þψ r; tð Þdr

¼ ħ=mð Þ∫ lnp r; tð Þ þ 2iϕ r; tð Þ½ �

� ∇ p r; tð Þ⋅∇ϕ r; tð Þ þ p r; tð ÞΔϕ r; tð Þ½ �dr þ 2iω tð Þ:

ð95Þ

where ω(t) = E(t)/ħ. Therefore, this complex derivative ex-
hibits the following real and imaginary components:

Re dH p;ϕ½ �=dtð Þ ¼ dS p½ �=dt ¼ ∫ lnpð Þ∇ ⋅ j dr;

Im dH p;ϕ½ �=dtð Þ ¼ dS ϕ½ �=dt ¼ 2 ∫ϕ∇ ⋅ j dr þ ω tð Þ� �
:

ð96Þ

A reference to the real part dS[p]/dt directly shows that
it has a nonclassical (current) genesis, vanishing in the
classical limit, for ϕ = 0 or j = 0, when S[ϕ] = 0. Indeed
it is the probability current j that drives changes in the
probability distribution [see Eq. (5b)]. Clearly, the imag-
inary part of the derivative results alone from the non-
classical phase component S[ϕ] of the complex entropy.
One thus finally concludes that the time evolution of
the entire complex entropy exhibits the phase/current
origin.

This result can also be demonstrated via the differentiation

of the expectation value H(t) = 〈ψ(t)|Ŝ tð Þ |ψ(t)〉 and by subse-
quently using SE and probability continuity:
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ð97Þ

where Ĥ; Ŝ
� �

= T̂; Ŝ
� �

= (ħ2/m) [∇ 2, lnψ]

= (ħ2/m){∇ ⋅ [∇, lnψ] + [∇, lnψ] ⋅ ∇} and

∇ ; lnψ½ � ¼ ∇lnψ ¼ ∇ lnRþ i∇ϕ

¼ 1=2∇lnpþ i∇ϕ ¼ R−1∇Rþ i∇ϕ:

ð98Þ

In the Schrödinger dynamical picture, the time change of
the resultant gradient information, the operator of which does

not depend on time explicitly, Î rð Þ = −4∇2 = (8 m/ħ2)T̂ rð Þ,
results solely from the time dependence of the system state
vector itself. Therefore, the time derivative of the average
Fisher-type gradient (determinicity) information is generated

by the expectation value of the commutator Ĥ; Î
� �

alone,

dI tð Þ=dt ¼ i=ħð Þ ψ tð Þ Ĥ; Î
h i��� ���ψ tð Þ

D E
≡ i=ħð Þ Ĥ; Î

h iD E
ψ tð Þ

; ð99Þ

Ĥ; Î
h i

¼ v; Î
h i

¼ 4 ∇ 2; v
� � ¼ 4 ∇ ; v½ �⋅∇ þ ∇ ⋅ ∇ ; v½ �f g;

∇ ; v½ � ¼ ∇ v;
ð100Þ

and the integration by parts implies 〈ψ|∇ψ〉 = − 〈∇ψ|ψ〉 ≡
〈∇†ψ|ψ〉 or ∇† = −∇. Hence, the time derivative of the overall
gradient information reads:

σI tð Þ ≡ dI tð Þ=dt ¼ 4i=ħð Þ ψj∇ v⋅j∇ψh i− ∇ψj⋅∇ vjψh if g
¼ − 8=ħð Þ Im ψ tð Þj∇ v⋅j∇ψ tð Þh i

¼ − 8=ħð Þ Im ∫ψ r; tð Þ*∇ v rð Þ⋅∇ψ r; tð Þdr
h i

¼ − 8=ħð Þ∫p∇ϕ⋅∇ v dr ¼ − 8m=ħ2
� �

∫ j⋅∇ v dr:

ð101Þ

Again, this total time-derivative of the resultant gradient
information is seen to be determined by the current content
of the molecular electronic state. Therefore, it identically van-
ishes for the zero current density everywhere for ϕ(r) = 0, thus
again confirming its nonclassical origin.

Conclusions

The IT approach has proven its utility in a variety of
molecular scenarios, e.g., [39–42]. In this analysis we
examined mutual relations between densities of the clas-
sical and nonclassical components of the resultant
information/entropy measures, combining the probability
contributions of Fisher or Shannon and their associated
phase/current supplements. For example, the complex
(“vector”) entropy approach combines the classical
(real) and nonclassical (imaginary) contributions due to
the state probability (wavefunction modulus) and current
(wavefunction phase), respectively. Such generalized en-
tropic concepts allow one to distinguish the information
content of states generating the same electron density
but differing in their phase/current composition. They
also allow a more precise information-theoretic descrip-
tion of the bonding status of molecular fragments. The
IT principles using the resultant quantum descriptors of
the entropy/information content in electronic states have
also been used to determine the phase and information
equilibria in molecules and their constituent parts
[12–18]. The phase aspect of molecular states is also
vital for the quantum (amplitude) communications be-
tween atoms in molecules [2–5, 42], which determine
entropic descriptors of the chemical bond multiplicities
and their covalent/ionic composition.

The need for the nonclassical (phase/current) supplements
of the classical (probability) measures of the information con-
tent in molecular states has been stressed. The electron density
distribution determines a static facet of the molecular struc-
ture, while the current distribution describes its dynamic as-
pect. Both these structural manifestations contribute to the
overall information content of the generally complex electron-
ic states of molecular systems, reflected by resultant IT con-
cepts. The total time derivatives of such entropic descriptors
of electronic states have been examined. These time depen-
dencies have been established via the Schrödinger equation
and the dynamics/continuity it implies for the classical and
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nonclassical degrees-of-freedom of complex wavefunctions.
The nonclassical origin of the net temporal changes in the
overall entropy/information quantities have been demonstrat-
ed. Thus, in real electronic states, exhibiting the vanishing
local phase and current, the time derivatives of the resultant
gradient information and global entropy exactly vanish.

Although, for simplicity reasons, we have assumed the
one-electron case, the modulus (density), and the phase
(current) aspects of general electronic states can be similarly
separated [2] using the Harriman-Zumbach-Maschke (HZM)
construction [43, 44] of Slater determinants yielding the spec-
ified electron density. The present single-electron develop-
ment can then be naturally generalized into many-electron
states of atomic and molecular systems. One observes that in
HZM construction the common modulus part of N occupied
(orthonormal) equidensity orbitals (EO), for the given ground-
state density ρ, ψ[ρ] = {ψw[p]}, reflects the molecular proba-
bility distribution p(r) = ρ(r)/N, and so do the system optimum
(orthonormal) Kohn-Sham (KS) [23] orbitals: φ[ρ] = {φt[p]}.
In fact the two sets constitute the equivalent sets of spin-
orbitals linked by the unitary transformation and generating
identical Slater determinants, Ψ(N) ≡ det(ψ[ρ]) = det(φ[ρ]) ≡
Φ(N), and hence the invariant overall entropy or information
measures.

For example, the expectation value of the N-electron oper-

ator for the overall gradient information, )(N =∑îI ið Þ, {̂I ið Þ
= −4Δi}, reads:

I(N) = (N) )(N (N) = w ψw Iˆ ψw

= (N) )(N (N) = t φ φt Iˆ t = (8m/ħ2
) Ts(N),

ð102Þ
where Ts(N) stands for the kinetic energy of noninteracting
electrons in the KS limit [23]. Thus, the amount of resultant
gradient information in the occupied HZM orbitals derived
from the optimum molecular distribution of electrons equals
to that contained in orbitals describing the separable KS sys-
tem corresponding to the same ground-state density. Notice,
however, that the proportions between the classical
(probability) and nonclassical (phase) information contribu-
tions vary with different partitions of the molecular density
into orbital components.

In the DFT-based theory of chemical reactivity one
distinguishes between several hypothetical stages involv-
ing either the mutually bonded (entangled) or nonbond-
ed (disentangled) states of reactants for the same elec-
tron distribution in constituent subsystems. These two
categories are discerned by the phase aspect of the
quantum entanglement between such molecular frag-
ments, e.g., [2, 27]. We have identified the classical entropic
descriptor of this phenomenon, the nonadditive global entropy,
which has been interpreted as the partition additive entropy-

deficiency measuring the average information-distance be-
tween the fragment and molecular densities. The equilibrium
phases and currents of reactants can be related to the relevant
electron densities using the entropic principles of the quantum
IT. This generalized approach deepens our understanding of the
molecular/promolecular promotions of the constituent molecu-
lar fragments and provides a more precise framework for de-
scribing the hypothetical stages invoked in the theory of the
chemical bond and reactivity.

The phenomenological apparatus of irreversible thermo-
dynamics [38] also provides an attractive basis for an en-
tropic representation of elementary molecular processes
[2]. In this analysis we approached anew the problem of
productions of the overall measures of information/entro-
py, which take into account both the modulus and phase
components of complex wavefunctions. We introduced the
relevant intensity and affinity conjugates of both the prob-
ability and phase fluxes, which together define a local pro-
duction of the state information content. The nonvanishing
local phase source has been identified, giving rise to the
nonclassical contribution in the local production of the re-
sultant entropy/information content. It has been argued that
the criterion of the vanishing production of the gradient
information identifies the stationary states of molecular
QM as the system information equilibria. The local
information-source has also been interpreted “thermody-
namically”, by separating a classical summation over prod-
ucts of affinities (“perturbations”) and fluxes (“responses”)
associated with the probability and phase/current degrees-
of-freedom of molecular states. Since spontaneous flows
driven by displacements in the given information affinity
should act in a direction to restore the equilibrium, these
elementary products should be negative; thus, decreasing
the state information (determinicity) level, and hence in-
creasing the state entropy (uncertainty, indeterminicity)
content. This suggests a positive entropy production, and
hence a negative information source.

To conclude this analysis, let us briefly comment on the
resultant entropy concepts containing an explicit phase contri-
bution [Eqs. (24) and (29)], the Shannon entropy of electron
probability distribution [Eq. (19)], and von Neumann’s (vN)
ensemble average entropy [45] contained in the density oper-
ator. The latter is defined as mathematical trace involving the
density operator ρ̂ of the statistical mixture in question,

SvN ρ̂̂½ � ¼ −tr ρ̂̂lnρ̂̂ð Þ ð103Þ
expressed in terms of its eigenvectors {|ψj〉} and eigenvalues
(probabilities) {|ηj〉}:

ρ̂ ψij i ¼ ηi ψij i; ρ̂ ¼ ∑ j ψ j

�� �
η j ψ j

� ��: ð104Þ

It generates the information entropy contained in the ensemble
state probabilities:
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SvN ρ̂
h i

¼ −∑ jη jlnη j: ð105Þ
This measure identically vanishes for the pure quantum

state |ψ〉, when ρ̂ψ = |ψ〉 〈ψ| and ηψ = 1: SvN[ρ̂ψ ] = 0. The

(idempotent) density operator ρ̂ψ then determines the

Hermitian density matrix in position representation,

γ r; r’ð Þ ¼ r ρ̂̂ψ
�� ��r’� � ¼ ψ rð Þψ* r’ð Þ; γ r; rð Þ ¼ p rð Þ; ð106Þ

in terms of which the Shannon entropy S[p] contained in the
probability density p(r) reads:

S p½ � ¼ S ρ̂ψ
h i

¼ ∫dr∫dr’ γ r; r’ð Þ −δ r; r’ð Þln γ r’; rð Þ½ � ≡ tr ρ̂ψŜγ
h i

:

ð107Þ
Indeed, in this pure-state case the above “ensemble” average
measure reduces to the expectation value in state |ψ〉, S[p] =

〈ψ|Ŝ
class:
ψ |ψ〉, of the classical (Hermitian) entropy operator [see

Eq. (22)],

Ŝ
class:

ψ ¼ 1

2
Ŝψ þ Ŝψ

*
� �

¼ Re Ŝψ
� �

¼ −lnp: ð108Þ

Therefore, in the familiar Shannon entropy of classical IT,
which reconstructs the ensemble-average measure of von
Neuman’s quantum entropy in density matrix, the phase/
current information terms of the complex entropies S[ψ] and
S[ψ*] = S[ψ]* cancel out, as indeed expected of the expecta-

tion value of the Hermitian operator Ŝ
class:
ψ . One recalls that in

QM one represents the physical properties by the associated
(linear) Hermitian operators. However, the information entro-
py is neither an observable, determined in an experiment, nor
is it linear in the underlying probability argument. Therefore,
attributing to the overall quantum entropy content in the spec-
ified quantum state a non-Hermitian operator is an admissible,
workable proposition, capable of a unique phase characteriza-
tion of the entangled molecular subsystems [31].
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