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The COVID-19 pandemic has emerged as a serious global health crisis, with the
predominant morbidity and mortality linked to pulmonary involvement. Point-of-Care
ultrasound (POCUS) scanning, becoming one of the primary determinative methods for
its diagnosis and staging, requires, however, close contact of healthcare workers with
patients, therefore increasing the risk of infection. This work thus proposes an autonomous
robotic solution that enables POCUS scanning of COVID-19 patients’ lungs for diagnosis
and staging. An algorithm was developed for approximating the optimal position of an
ultrasound probe on a patient from prior CT scans to reach predefined lung infiltrates. In the
absence of prior CT scans, a deep learning method was developed for predicting 3D
landmark positions of a human ribcage given a torso surface model. The landmarks,
combinedwith the surfacemodel, are subsequently used for estimating optimal ultrasound
probe position on the patient for imaging infiltrates. These algorithms, combined with a
force–displacement profile collection methodology, enabled the system to successfully
image all points of interest in a simulated experimental setup with an average accuracy of
20.6 ± 14.7 mm using prior CT scans, and 19.8 ± 16.9 mm using only ribcage landmark
estimation. A study on a full torso ultrasound phantom showed that autonomously
acquired ultrasound images were 100% interpretable when using force feedback with
prior CT and 88% with landmark estimation, compared to 75 and 58% without force
feedback, respectively. This demonstrates the preliminary feasibility of the system, and its
potential for offering a solution to help mitigate the spread of COVID-19 in vulnerable
environments.
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1 INTRODUCTION

The COVID-19 pandemic has emerged as a serious global health
crisis, with the primary morbidity and mortality linked to
pulmonary involvement. Prompt and accurate diagnostic
assessment is thus crucial for understanding and controlling
the spread of the disease, with Point-of-Care Ultrasound
scanning (POCUS) becoming one of the primary
determinative methods for its diagnosis and staging (Buda
et al., 2020). Although safer and more efficient than other
imaging modalities (Peng et al., 2020), POCUS requires close
contact of radiologists and ultrasound technicians with patients,
subsequently increasing risk for infections (Abramowicz and
Basseal, 2020). To that end, robotic solutions embody an
opportunity to offer a safer and more efficient environment to
help mitigate the critical need for monitoring patients’ lungs in
the COVID-19 pandemic, as well as other infectious diseases.

Tele-operated solutions allow medical experts to remotely
control the positioning of an ultrasound (US) probe attached
to a robotic system, thus reducing the distance between medical
personnel and patients to a safer margin. Several tele-operated
systems have been successfully tested amid the pandemic for
various purposes. Ye et al. (2020) developed a 5G-based robot-
assisted remote US system for the assessment of the heart and
lungs of COVID-19 patients, whereby the system successfully
evaluated lung lesions and pericardial effusions in patients with
varying levels of disease progression. An MGIUS-R3 tele-
echography system was also evaluated for remote diagnosis of
pneumonia in COVID-19 patients (Wu et al., 2020). The
physician successfully obtained a lung scan from 700 km away
from the patient’s site, allowing him to diagnose lung pneumonia
characterized by pleural abnormalities. The system could also
detect left ventricular systolic function, as well as other
complications such as venous thrombosis (Wang et al., 2020).
Yang et al. (2020) developed a tele-operated system that, in
addition to performing robotized US, is capable of medicine
delivery, operation of medical instruments, and extensive
disinfection of high-touch surfaces.

Although a better alternative to traditional in-person POCUS,
commercialized tele-operated solutions nonetheless typically
involve the presence of at least one healthcare worker in close
vicinity of the patient to initialize the setup and assist the remote
sonographer (Adams et al., 2020). An autonomous robotic US
solution would hence further limit the required physical
interaction between healthcare workers and infected patients,
while offering more accuracy and repeatability to enhance
imaging results, and hence patient outcomes. An autonomous
solution can additionally become a valuable tool for assisting less
experienced healthcare workers, especially amid the COVID-19
pandemic where trained medical personnel is such a scarce
resource. Mylonas et al. (2013) have trained a KUKA light-
weight robotic arm using learning-from-demonstration to
conduct autonomous US scans; however, the entire setup was
trained and evaluated on Latin letters detection within a uniform
and clearly defined workspace, which is not easily transferable to
applications involving human anatomy. An autonomous US
robotic solution has been developed by Virga et al. (2016) for

scanning abdominal aortic aneurysms, whereby the optimal
probe pressure is estimated offline for enhanced image
acquisition, and the probe’s orientation estimated online for
maximizing the aorta’s visibility. Kim et al. (2017) designed a
control algorithm for an US scanning robot using US images and
force measurements as feedback tested on a thyroid phantom.
The authors developed their own robotic manipulator, which,
however, has too limited of a reach to scan a human upper torso.
Additionally, the phantom on which the experiments were
conducted is flat without an embedded skeleton, impeding the
solution’s immediate translation to lung scanning. The
aforementioned works show significant progress in the field;
however, to the best of our knowledge, no system has been
developed for performing US lung scans in particular. Robotic
POCUS of lungs requires a more tailored approach due to 1) the
large volume of the organ which cannot be inspected in a single
US scan, implying that during each session, multiple scans from
different locations need to be sequentially collected for
monitoring the disease’s progression; 2) the scattering of US
rays through lung air, meaning that an autonomous solution
needs to be patient-specific to account for different lung shapes
and sizes to minimize this effect; and finally 3) the potential
obstruction of the lungs by the ribcage, which would result in an
uninterpretable scan.

We thus developed and implemented a protocol for
performing autonomous robotic POCUS scanning on COVID-
19 patients’ lungs for diagnosis and monitoring purposes. The
major contributions of our work are 1) improved lung US scans
using solely force feedback, given a patient’s prior CT scan; and 2)
prediction of anatomical features of a patient’s ribcage using only
a surface torso model to eliminate the need for a CT scan, with

FIGURE 1 | Components of the autonomous robotic system setup.
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comparable results in terms of US scan accuracy and quality. This
article is organized as follows: 1) Materials and Methods, which
includes detailed information on the adopted robotic scanning
procedure and algorithmic steps at every stage of the protocol; 2)
Experiments and Results, which details the experimental setup
used for validating the approach as well as the obtained results; 3)
Discussion, providing an insightful analysis of aforementioned
results and future work prospects; and finally 4) Conclusions,
summarizing our key contributions and research outcomes.

2 MATERIALS AND METHODS

2.1 Testbed
The overall robotic setup is shown in Figure 1, which consists of a
6 degrees of freedom UR10e robot (Universal Robot, Odense,
Denmark), a world frame color camera Intel RealSense D415
(Intel, Santa Clara, California, United States), a C3 wireless US
probe (Clarius, Burnaby, British Columbia, Canada), and an SI-
65-5 six-axis F/T Gamma transducer (ATI Industrial, Apex,
North Carolina, United States). The US probe and camera are
attached to the robot’s end effector in series with the force sensor
via a custom-designed 3D-printed mount for measuring the
forces along the US probe’s tip. The tool camera was
positioned behind the probe to visualize it in the camera
frame, as well as the scene in front of it. An M15 Alienware
laptop (Dell, Round Rock, Texas, United States) with a single
6 GB NVIDIA GeForce GTX 1660 Ti GPU memory card was
used for controlling the robot.

For the experimental validation of the results, we are using a
custom-made full torso patient-specific ultrasound phantom that

was originally developed for FAST scan evaluation, as it offers a
realistic model of a patient’s torso (Al-Zogbi et al., 2020). The
phantom’s geometry and organs were obtained from the CT scan
of a 32-year-old anonymized male patient with low body mass
index (BMI). The tissues were made of a combination of two
different ballistic gelatin materials to achieve human-like
stiffness, cast into the 3D-printed molds derived from the CT
scan. The skeleton was 3D printed in polycarbonate, and the
mechanical and acoustic properties of the phantom were
evaluated, showing great similitude to human tissue properties.
An expert radiologist has also positively reviewed the phantom
under US imaging.

2.2 Workflow
Figure 2 shows the step-by-step workflow of the autonomous US
scanning protocol of the robotic system, with and without prior
CT scans. First, an expert radiologist marks on a chest CT of a
patient regions of interest (typically but not necessarily
containing infiltrates), which are to be observed over the
course of coming days to evaluate the progression of the
disease. An algorithm computes the spatial centroid of each
region and returns optimal positions and orientations of an
US probe on a subject’s body, such that the resultant US
image guarantees to contain the specified point of interest
without skeletal obstruction. In the case where a CT scan is
not available, landmarks of the ribcage are estimated using the
patient’s 3D mesh model, which is obtained through a depth
camera. The scanning points are then manually selected on the
model following the 8-point POCUS protocol (Blaivas, 2012).
Goal positions and orientations are then relayed to the robotic
system. Owing to possible kinematic and registration errors, the

FIGURE 2 |General workflow of the autonomous robotic setup. Areas of interest in lungs are marked by an expert if a CT scan of a patient is available. The centroid
of each area is computed, and an algorithm segments different organs in CT images. In the case where a CT is not available, a surface model of the patient is obtained
using a depth camera, which acts as an input to a deep learning algorithm to estimate ribcage landmarks. The 8-point POCUS locations are subsequently manually
proposed. In both cases, the optimal US probe positioning and orientation is estimated, which is relayed to the robotic system. During implementation, a
force–displacement profile is collected, which is used to correct the end effector’s position to avoid imaging of bones. US images of the target point are finally collected in
a sweeping motion of ± 30+.
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positioning of the US probe may suffer from unknown
displacements, which can compromise the quality and thus
interpretability of the US scans. To mitigate this, the system
employs a force–feedback mechanism through the US probe to
avoid skeletal structures that will lead to shadowing. The specifics
of this protocol are discussed in further detail in the following
subsections.

The optimal US scanning position and orientation algorithm,
as well as the ribcage landmark estimation, were implemented in
Python, whereas the robot control, which includes planning and
data processing algorithms, was integrated via Robot Operating
System (Quigley et al., 2009). Kinematics and Dynamics Library
(KDL) in Open Robot Control Systems (OROCOS) (Smits et al.,
2011) is used to transform the task-space trajectories of the robot
to the joint space trajectories, which are the final output of the
high-level autonomous control system. The drivers developed by
Universal Robot allow one to apply the low-level controllers to
the robot to follow the desired joint-space trajectories.

2.3 Estimation of Optimal Ultrasound Probe
Positioning and Orientation
A prior CT scan of a patient’s chest is required for the algorithm’s
deployment. The possible scanning area on the body of a given
patient is limited to the frontal and side regions. Given a region of
interest in the lungs specified by a medical expert, its spatial
centroid is computed first to define a target point. The procedure
thus initially targets imaging a single point, followed by a
sweeping motion about the contact line of the US probe to
encompass the surrounding area. A set of images from the CT
data containing the computed centroid is generated at various
orientations, each of which is subsequently segmented into four
major classes: 1) soft tissues, 2) lung air, 3) bones, and 4)
background. First, the background is identified using a
combination of thresholding, morphological transformations,
and spacial context information. The inverse of the resultant
binary mask thus delimits the patient’s anatomy from the
background. The inverse mask is next used to restrict the
region in which lung air is identified and segmented through
Gustafson–Kessel clustering (Elsayad, 2008). The bones are
segmented using an intensity thresholding cutoff of 1,250,
combined with spacial context information. Soft tissues are

lastly identified by subtracting the bones and lung air masks
from the inverse of the background mask. For simplicity’s sake,
identical acoustic properties are considered for all soft tissues
within the patient’s body. This assumption is justified by
comparing the acoustic properties of various organs in the
lungs’ vicinity (soft tissue, liver, and spleen), which were
shown to be sufficiently close to each other. Figure 3
summarizes the workflow of the segmentation algorithms, as
well as the final segmentation masks.

The objective is to image predetermined points within the
lungs, while maximizing the quality of the US scan which is
influenced by three major factors: 1) proximity of the target to the
US probe, 2) medium through which the US beam travels, and 3)
number of layers with different acoustic properties the beam
travels across. The quality of an US scan is enhanced as the target
is closer to the US probe. In the particular case of lung scanning,
directing beams through air should be avoided due to the
scattering phenomenon, which significantly reduces the
interpretability of the resulting scan. Skeletal structures reflect
US almost entirely, prompting the user to avoid them at all cost.
Last, layers of medium with different attenuation coefficients
induce additional refraction and reflection of the signal,
negatively impacting the imaging outcomes.

The problem was therefore formulated as a discrete
optimization solved by linear search, whereby the objective is
to minimize the sum of weights assigned to various structures in
the human body through which the US beam travels, along with
interaction terms modeling refraction, reflection, and attenuation
of the signal. Let p

→
i ∈ R2 represent the 2D coordinates of a pixel i

inside the ultrasound beam cone (see Figure 3 for cone
reference). Let p

→
fc ∈ R2 represent the pixel corresponding to

the focal point of the ultrasound probe. The attenuation of the
ultrasound signal is evaluated through the following equation
(Narayana et al., 1984):

wi,c � w0,c[exp( − αΔ
∣∣∣∣∣∣
∣∣∣∣∣∣ p→i − p

→
fc

∣∣∣∣∣∣
∣∣∣∣∣∣2)]

− 1
, (1)

whereby w0,c is the weight of the first pixel pertaining to the same
class c, α is the attenuation coefficient of the medium, and Δ is the
spatial resolution of the CT scan. To model the intensity
reflection of the ultrasound beam at the interface of two
different mediums, first the intensity reflection coefficient γ is

FIGURE 3 | Overview of steps for optimal scanning points selection algorithm.
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evaluated, and subsequently applied to the weight of the first pixel
following the interface boundary (Laugier and Haïat, 2011):

c � (ρ2v2 − ρ1v1)2(ρ2v2 + ρ1v1)2, (2)

w*
i,c � wi,c(c)− 1, (3)

with ρ being tissue density and v the speed of ultrasound. The
term ρv effectively represents the impedance of the medium, with
medium 1 preceding medium 2. The algorithm thus evaluates the
weight of every pixel in between the first point of contact of the
ultrasound probe and the target point, with higher weights
assigned to more attenuated pixels, as they would drastically
reduce the image quality. The US path that results in the lowest
weight is selected as the optimal one.

To this end, bones were assigned the highest weight of 109,
since US rays cannot travel past them. The second highest weight
was assigned to lung air at 5, followed by soft tissues at 1. These
weights were derived with the assistance of an expert
sonographer. The assumed attenuation coefficients for skeletal
tissue, lung air, and soft tissues are 1.1 dB/(mm × MHz), 1.2 dB/
(mm × MHz), and 0.12 dB/(mm × MHz), respectively. The
assumed densities of each class are 2000 kg/m3, 1.225 kg/m3,
and 1,000 kg/m3, whereas the speed of sound is 3,720 m/s,
330 m/s, and 1,575 m/s, respectively (Zagzebski, 1996;
Etchison, 2011; Shung, 2015; Szalma et al., 2019). The weights
are computed within an US cone that can only be instantiated
from the surface of the patient’s body across all generated images.
The algorithm first determines the optimal scanning position and
orientation of the probe for each individual image, and then
selects the image with the overall lowest returned weight. The
position of the US cone, as well as the orientation of the image,
defines the optimal US scanning position and orientation in the
CT coordinate frame. The solution was deployed on the
Alienware laptop used for the robot control, and a pseudo-
code is provided for reference in Algorithm 1.

Algorithm 1: Ultrasound Probe Optimal Scanning Position
and Orientation

1: input: CT scan, target point p
→

t ∈ R3, angle resolutionΔβ � 5,
Δ in mm

2: procedure
3: extract N ×M image I0 from CT in axial plane s.t. p

→
t ∈ I0

4: extractN ′ ×M′ images Ii fromCT in tilted planes at anglesΔβ
s.t. p

→
t ∈ Ii

5: generate background masks MBK ,i for Ii, i : 0→ k
6: generate lung air masks ML,i for Ii, i : 0→ k
7: generate bones masks MBN ,i for Ii, i : 0→ k
8: generate soft tissue masks MT ,i for Ii, i : 0→ k
9: replace Ii with. Mi :� MBK,1 +MT ,i +ML,i +MBN ,i, i : 0→ k
10: initialize empty weight vector W ∈ R(k+1)×L

11: For i :� 0 to k do
12: generate L US beam cone contours C for Ii s.t. p

→
t ∈ Al , Al : �

area enclosed by contour
13: For j :� 0 to L − 1 do
14: define. d

→
:� p

→
t − p

→
fc

15: define p
→

closest :� argmin(
∣∣∣∣∣∣
∣∣∣∣∣∣ p→US − p

→
fc

∣∣∣∣∣∣|2) s.t. p
→

US ∈ d
→

16: reinitialize d
→

:� p
→

closest − p
→

t

17: define vector p
→

:� [Mi[ p→closest], . . . ,Mi[ p→t]]T that contains

all pixel values along d
→

18: initialize w � p
→[0]

19: initialize w0,T � 1, w0,L � 5 and w0,B � 109

20: For t :� 1 to length ( p
→
) do

21: If p
→[t − 1]≠ p

→[t]do
22: p

→[t : end] � p
→[t : end]⎡⎣(ρt vt−ρt−1vt−1)2

(ρt vt+ρt− 1vt− 1)2
⎤⎦− 1

23: update w0,c according to p
→[t : end] for corresponding classes

24: w � w + w0[exp(−αCΔ
∣∣∣∣∣∣
∣∣∣∣∣∣ p→i − p

→
closest

∣∣∣∣∣∣
∣∣∣∣∣∣2)]− 1

25: append w to W
26: return by linear search wmin : � Argmin W
27: return p

→
goal ∈ R3 corresponding to wmin evaluated from

plane transformation
28: return Rgoal ∈ SO(3) corresponding to wmin evaluated from

plane transformation
29: output: Rgoal and wmin

2.4 Force–Displacement Profiles Along the
Ribcage
Uncertainties in patient registration and robot kinematics can
result in a partial or complete occlusion of the region of interest
due to the misplacement of the US probe. To mitigate this
problem, a force–feedback mechanism is proposed, whereby
we hypothesize that for a constant force application of 20 N,
which is the recommended value for abdominal US imaging
(Smith-Guerin et al., 2003), the probe’s displacement within the
phantom body will be higher in-between the ribs as opposed to
being on the ribs. If the hypothesis is validated, one can thus
generate a displacement profile across the ribcage of a patient to
detect the regions obstructed by the ribs. The displacement on the
phantom is expected to follow a sinusoidal profile, with peaks
(i.e., largest displacements) corresponding to a region in-between
the ribs, and troughs (i.e., smallest displacement) corresponding
to a region on the ribs.

To evaluate this hypothesis, we have generated solid models
of n � 3 patient torsos using anonymized CT scans, which were
used to simulate displacements using finite element analysis
(FEA) in ANSYS (ANSYS, Canonsburg, Philadelphia,
United States). All image data are stripped from patient-
identifying information, and are thus concordant with the
exempt status described in 45 CFR §46.102. Two of the
patients are female. The third patient is a male and was used
as the model for the phantom’s creation. All patients have
varying BMI. The different organs of the patients were
extracted from the CT scans using Materialize Mimics
(Materialize NV, Southport, QLD 4222, Australia) software as
STL files, and subsequently converted through SOLIDWORKS
(SolidWorks Corp., Dassault Systemes, Velizy-Villacoublay,
France) into IGS format, thus transforming the mesh surfaces
into solid objects that can undergo material assignment and FEA
simulations. The tissues’ mechanical properties for the female
patients were obtained from the literature, whereas those of the
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phantom were measured experimentally (Al-Zogbi et al., 2020).
In the FEA simulations, the force was transmitted onto the
bodies through a CAD model of the ultrasound probe. In the
robotic implementation, the ultrasound probe does not slip on a
patient’s body when contact is established because of the setup’s
rigidity. A lateral displacement of the probe in simulation would
be erroneously translated into soft tissue displacement since the
probe’s tip displacement was used to represent the soft tissue
displacement. Thus to ensure that the motion of the probe is
confined to a fixed vector, the probe’s motion was locked in all
directions except in the z-axis. The force was directly applied to
the probe through a force load that gradually increases from 0 to
20 N over a period of 5 s. The probe was initially positioned at a
very close proximity from the torso; hence, its total displacement
was considered to be a measure of the tissue’s displacement. The
simulations were deployed on a Dell Precision workstation 3620
with an i7 processor and 16 GB of RAM. Each displacement data
point required on average 2.5 h to converge.

The location of the collected data points, as well as the returned
displacement profile for all the three patients, is shown in Figure 4.
Cubic splines were used to fit the data to better visualize the trend
using MATLAB’s curve fitting toolbox. Cubic splines were
considered for better visualizing the profiles, assuming a
continuous and differentiable function to connect data points.
The actual displacements in between the minimum and
maximum, however, need to be further validated, and may not
match the displayed spline. To verify the outcome of the simulations,
the corresponding displacement profiles were collected from the
physical phantom, which are reported in Figure 4 as well. Although
the physical test demonstrates overall larger displacements, the
physical displacement trend is similar to those of the simulated
experiments. The results thus provide preliminary validation of our
hypothesis of varying displacements associated with different
positioning of an US probe with respect to the ribs. Therefore,
we adopted this strategy in the robot’s control process, whereby the
system collects several displacement data points around the goal

FIGURE 4 | Force–displacement validation experiments. (A) Surface models of the three patients considered in our work, covering both genders and various BMI;
(B) positions on the phantoms where displacement profiles were collected in ANSYS simulations; (C) Comparison of experimental results between simulated data and
actual phantom (patient 1, left plot), and comparison of simulated data between all patients (right plot).
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position at 20 N, to ensure that the US image is obtained in-between
the ribs.

2.5 Ribcage Landmark Prediction
This framework uses 3D landmarks defined on the ribcage to
estimate the optimal probe’s position. We trained a deep
convolutional neural network to estimate the 3D position of
60 landmarks on the ribcage from the skin surface data.We define
these landmarks using the segmentation masks of ribs obtained
from the CT data. From the segmentation masks, we compute the
3Dmedial axis for each rib using a skeletonization algorithm (Lee
et al., 1994). The extremities and center of each rib for the first 10
rib pairs (T1 to T10) are used as landmark locations. The three
landmarks thus represent the rib–spine intersection, the center of
the rib, and the rib–cartilage intersection.

Recent research in deep learning has shown encouraging
progress in detecting 3D landmarks from surface data
(Papazov et al., 2015; He et al., 2019; Liu et al., 2019). Teixeira
et al. (2018) introduced a method to estimate 2D positions of
internal body landmarks from a 2.5D surface image of the torso
generated by orthographically projecting the 3D skin surface.
Such methods, however, do not generalize to 3D data, since it
would require representing landmark likelihood as a Gaussian
distribution over a dense 3D lattice, and the memory required for
representing 60 such lattices, one for each landmark, would be
overwhelming. We address this by training a 3D deep
convolutional network to directly estimate the landmark
coordinates in 3D from the 3D volumetric mask representing
the skin surface of a patient’s torso. Given the skin mask, we
estimate a 3D bounding box covering the thorax region, using
jugular notch on the top and pelvis on the bottom. We then crop
this region and resize to 128 × 128 × 128 volume, which is used as

input to a deep network. The network outputs a 3 × 60 matrix,
which represents the 3D coordinates of the 60 rib landmarks. We
adopt the DenseNet architecture (Huang et al., 2016) with batch
normalization (Ioffe and Szegedy, 2015), and LeakyReLU
activations (Xu et al., 2015) with a slope of 0.01 following the
3D convolutional layers with kernel size of 5x5x5. The network
parameters were optimized using AdaDelta (Zeiler, 2012).

2.6 Control Strategy for Skeletal Structure
Avoidance
The autonomous positioning of the US probe in contact with the
patient’s body necessitates motion and control planning. Let TA

B
denote the homogeneous transformation matrix from frames A to
B, composed of a rotation matrix RA

B ∈ SO(3), and a translation
vector p

→A
B ∈ R3. The global reference frame for the robotic

implementation was chosen as the base frame of the robot,
denoted by frame R. Let C and p represent the frames attached
to the camera and tip of the US probe, as shown in Figure 5. Since
both camera and probe are rigidly affixed to the robot’s end effector,
TC
R and TP

R are constant. TC
R is estimated by performing an eye-in-

hand calibration following the scheme presented in Tsai and Lenz
(1989), whereas TP

R is evaluated from the CAD model of the probe
and its holder. Note that these transformations are composed of two
transformations, namely,

TC
R � TEE

R TC
EE, (4)

TP
R � TEE

R TP
EE, (5)

whereby EE corresponds to the robot’s end effector frame. The
holder is designed such that the frame of the US probe would be
translated by a fixed distance along the z-direction of the

FIGURE 5 | Overview of the different reference frames used in the implementation, as well as the homogeneous transformations between them.
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manipulator’s end effector frame (see Figure 5). Thus, in the
physical workspace, the relationship used to map out the point
cloud data (frame PC) to the robot’s base frame is

TPC
R � TC

R T
PC
C . (6)

The anonymous CT patient scans (frame CT) were used to
generate the mesh model (frame M) of the torsos, and hence the
transformation between the two is known, set as RM

CT � I and
p
→M

CT � [0, 0, 0]T . The transformation TM
PC between the point

cloud data and the mesh model is estimated through the
pointmatcher library using the iterative closest point approach
(Pomerleau et al., 2013). Initial target points are either defined in
the CT scans, or on the mesh models, both of which correspond
to the M frame. Since the US probe target position and
orientation need to be defined in the US probe frame (p), the
following transformation is used:

TM
P � TP−1

R TC
R T

PC
C TM

PC. (7)

The overall control algorithm can be described through three
major motion strategies: 1) positioning of the US probe near the
target point, 2) tapping motion along the ribcage in the vicinity of
the target point to collect displacement data at 20 N force, and 3)
definition of an updated scanning position to avoid ribs, followed
by a predefined sweeping motion along the probe’s z-axis.

The trajectory generation of the manipulator is performed by
solving for the joint angles θi, i ∈ [0, 5] through inverse kinematics
computation facilitated by Open Robotics Control Software
(OROCOS), and the built-in arm controller in the robot driver.

Since obstacle avoidance has not been explicitly integrated into the
robot’s motion generator, we have defined a manipulator home
configuration, from which the system can reach various target
locations without colliding with the patient and the table. The
home configuration is centered at the patient’s torso at an elevation
of 0.35°m from the body, with the +z axis of the end effector
corresponding to the −z axis of the robot’s base frame. The robot is
driven to the home configuration before each target scan.

The force–displacement collection task begins with the robot
maintaining the probe’s orientation fixed (as defined by the goal),
and moving parallel to the torso at regular intervals of 3 mm,
starting at 15 mm away from the goal point, and ending 15 mm
past the goal point, resulting in a total of 11 readings. The robot
thus moves along the end effector’s +z-axis, registering the
probe’s position when a force reading is first recorded, and
when a 20 N force is reached. The L2 norm of the difference
of these positions is stored as a displacement data point. The two
data points that represent the smallest displacements are assumed
to be rib landmarks, and represent the center of the
corresponding rib. The ideal direction of the applied force
would be normal to the centerline of the curved section of the
probe; however, it may not always be the case as some regions in
the lungs might only be reachable with the resultant force pushing
the probe on the side. In the case where the measured lateral
forces contributed to the overall force by over 20%, the overall
force was then considered in the computations. The center of
mass of the probe holder is not in line with the assumed center;
however, it is stiff enough to prevent bending.

FIGURE 6 | Selected results from the optimal scanning algorithm compared to medical expert’s selection. The yellow lines mark the expert’s proposed paths, and
the red lines are the ones proposed by the algorithm. The green dots are the target points that need to be imaged in the lungs. Paths returned by the expert that were
obstructed by the ribs are marked as such. Each column of results corresponds to a CT scan of a different patient. (A)Results fromCOVID-19 patient 1; (B) results from a
healthy patient; (C) results from COVID-19 patient 2.
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Since the goal point is always located between two ribs, it can
hence be localized with respect to the center of the two adjacent ribs.
The goal point is thus projected onto the shortest straight segment
separating the center of the ribs, which is also closest to the goal point
itself. Let the distance of the goal point from Rib 1 be d1. Since the
ribs are fairly close to each other, a straight line connecting the two is
assumed to avoidmodeling the curvature of a torso. Once two points
with the smallest displacement are identified from the force
collection procedure, a line connecting the two is defined in the
end effector’s coordinate frame, and distance d1 is computed along
that line fromRib 1 to define the position of the updated target point.
Maintaining the same optimal orientation, the robot is thus driven to
the updated goal point, the end effector thenmoves along the probe’s
+z-axis until a 20 N force is reached, followed by a sweeping motion
of ± 30+ around the probe’s line of contact with the patient.

3 EXPERIMENTS AND RESULTS

3.1 Scanning Points Detection
To evaluate the effectiveness of the scanning point detection
algorithm, we asked an expert radiologist to propose scanning
points on the surface of n � 3 patients using CT data in 3D
Slicer. All image data are stripped from patient-identifying
information, and are thus concordant with the exempt status
described in 45 CFR §46.102. Two of the patients were positive
for COVID-19 and exhibited significant infiltrate formation in their
lungs, whereas the last patient was healthy with no lung abnormalities
(see Figure 6). The medical expert selected 10 different targets within
the lungs of each patient at various locations (amounting to a total of
30 data points), and proposed corresponding probe position and
orientation on the CT scans that would allow them to image the
selected targets throughUS. Themedical expert only reviewed the CT

slices along the main planes (sagittal, transverse, and coronal). The
following metrics were used to compare the expert’s selection to the
algorithm’s output: 1) bone obstruction, which is a qualitative metric
that indicates whether the path of the US center beam to the goal
point is obstructed by any skeletal structure; and 2) the quality of the
US image, which was estimated using the overall weight structure
discussed in the previous section, whereby a smaller scan weight
signals a better scan, with less air travels, scattering, reflection, and
refraction. For a fair initial comparison, we restricted the image search
in the detection algorithm to the plane considered by the medical
expert, i.e., the optimal scanning point was evaluated across a single
image that passes through the target point. In this setting, the
algorithm did not return solutions that were obstructed by bones,
whereas five out of 30 of the medical expert’s suggested scanning
locations resulted in obstructed paths, as shown in Figure 6.

The quality of the scans has been compared on the remaining
unobstructed 25 data points, and it was found that the algorithm
returned paths with an overall 6.2% improvement in US image
quality as comparedwith the expert’s selection based on the returned
sum of weights. However, when the algorithm is reset to search for
optimal scanning locations across several tilted 2D images, the
returned paths demonstrated a 14.3% improvement across the 25
data points, indicating that it can provide estimates superior to an
expert’s suggestion that was based on exclusively visual cues. The
remaining five points have also been tested on the algorithm, and the
optimal scanning locations were successfully returned. The average
runtime for the detection of a single optimal scanning position and
orientation is 10.5 ± 2.10 min, evaluated from the aforementioned
30 target points. The two most time-consuming tasks are the
generation of oblique planes from the CT scans, and the
Gustafson–Kessel clustering used to delineate lung air. Since this
is a preprocessing step, the rather large time consumption is not a
concern.

TABLE 1 | Percentile distribution of the ribcage heights for training and testing the 3D landmark prediction algorithm.

Percentile

Ribcage height (mm) 10th 20th 30th 40th 50th 60th 70th 80th 90th

Training set 282 293 304 321 344 372 388 407 428
Testing set 337 351 363 371 379 399 407 432 447

FIGURE 7 | Landmark outputs for every patient superimposed on the ribcages. The ribcage acts as ground truth for bone detection using the proposed landmarks.
The skeletons are used for visualization purposes and were not part of the training process.
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3.2 Ribcage Landmark Prediction
A total of 570 volumes were prepared from thorax CT scans, 550
of which were used for training and 20 for testing. All image data
are stripped from patient-identifying information and are thus
concordant with the exempt status described in 45 CFR §46.102.
Each of the 570 volumes is obtained from a different patient. In
the training set, the minimum ribcage height was 195 mm and the
maximum height was 477 mm, whereas in the testing set the
minimum ribcage height was 276 mm and the maximum height
was 518 mm. The percentile distribution of the training and
testing ribcage heights is detailed in Table 1. The network was
trained for 150 epochs optimizing the L1 distance between the
predicted coordinates and the Ground truth coordinates using
the Adam optimizer (Kingma and Ba, 2015). The training took
place on an NVIDIA Titan Xp GPU using the PyTorch
framework (Paszke et al., 2017) and converged in 75 min. A
mean Euclidean error of 14.8 ± 7.00 mm was observed on the

unseen testing set, with a 95th percentile of 28 mm. The overall
inference time was on average 0.15 s. Figure 7 shows the
landmark predictions obtained using the trained model on the
three human subjects discussed in Section 2.4, by taking their
corresponding skin surface masks as input. Figure 8 shows the
projected landmarks in 2D images.

3.3 Evaluation of Robotic System
A total of four experiment sets were devised to analyze the validity of
our twomain hypotheses, which involve the evaluation of the robotic
system: 1) with prior CT scans without force feedback, 2) with prior
CT scans with force feedback, 3) with ribcage landmark estimation
without force feedback, and 4) with ribcage landmark estimationwith
force feedback. The overall performance of the robotic system is
assessed in comparison with clinical requirements, which encompass
three major elements: 1) prevention of acoustic shadowing effects
whereby the infiltrates are blocked by the ribcage (Baad et al., 2017);
2) minimization of distance traveled by the US beam to reach targets,
particularly through air (Baad et al., 2017); and last 3) maintaining a
contact force below 20N between the patient’s body and US probe
(Smith-Guerin et al., 2003).

3.3.1 Simulation Evaluation
Due to the technical limitations imposed by the spread of COVID-
19 itself, the real-life implementation of the robotic setup was
limited to n � 1 phantom. Additional results are thus reported
using Gazebo simulations. The same three patients described in
Section 2.4 are used for the simulation. Since Gazebo is not
integrated with an advanced physics engine for modeling tissue
deformation on a human torso, we replaced the force sensing
mechanism with a ROS node that compensates for the process of
applying a force of 20 N and measuring the displacement of the
probe through a tabular data lookup, obtained from the FEA
simulations. In other words, when the US probe in the simulation
approaches the torso, instead of pushing through and measuring
the displacement for a 20 N force (which is not implementable in
Gazebo for such complex models), we fix the end effector in place,
and return a displacement value that was obtained from prior FEA
simulations on the corresponding torso model.

To replicate a realistic situation with uncertainties and
inaccuracies, the torso models are placed in the simulated world
at a predefined location, corrupted with noise in the x, y, and z
directions, as well as roll, pitch, and yaw angles. Errors were estimated
based on reported camera accuracy, robot’s rated precision, and
variations between original torsos design and final model. The noises
were sampled from Gaussian distributions with the precomputed
means, using a standard deviation of 10%of themean. The numerical
estimates on the errors are reported in Table 2. The exact location of
the torsos is thus unknown to the robot. For each torso model, a total
of eight points were defined for the robot to image, four on each side.
Each lungwas divided into four quadrants, and the eight target points
correspond to the centroid of each quadrant (see Figure 9). This
approach is based on the 8-point POCUS of lungs. The exact location
of the torso is used to assess the probe’s position with respect to the
torso, and provide predicted US scans using CT data. Two main
evaluation metrics are considered: 1) the positional accuracy of the

FIGURE 8 | Predicted landmarks (represented by red points) on patient
1 as seen through head–feet projection (top), as well as lateral projection
(bottom). The landmarks are not part of the lungs, but merely appear so
because of the projection.
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final ultrasound probe placement, which is the L2 norm of the
difference between the target ultrasound position, and the actual final
ultrasound position; and 2) a binary metric for imaging the goal
infiltrate or region, whereby it is either visualized or obstructed.

Each experiment set was repeated 10 times with different sampled
errors at every iteration. The results of all four experiment sets are
reported in Table 3. It is noticeable that the force feedback
component has decreased the overall error on the probe’s
placement by 49.3% using prior CT scans, and 52.2% using
predicted ribcage landmarks. The major error decrease was
observed along the z-axis, since the force feedback ensured that
the probe is in contact with the patient. It also provided additional
information on the rib’s placement near the target points, which were
used to define the same target points’ positions relative to the rib’s
location as well. For the US probe placement using only
force–displacement feedback, we can observe that the average
error across all three models is 20.6 ± 14.7 mm. Using the final
probe’s placement and orientation on the torso, we converted these

data into CT coordinates to verify that the point of interest initially
specified was imaged. In all of the cases, the sweepingmotion allowed
the robot to successfully visualize all the points of interest. When
using ribcage landmark estimation, the displacement error with force
feedback for all the three patients averaged at 19.8 ± 16.9 mm.

FIGURE 9 | Each lung is divided into four regions, the centroids of which are computed and used as target points in the scanning point detection algorithm.

TABLE 2 | Elements contributing to the overall error estimation. RPY stands for
roll, pitch, and yaw. All values in the x, y, z directions are reported in mm, and
the RPY values are in radians.

x y z R p Y

Registration 5 5 30 0.10 0.10 0.10
Robot 0.1 0.1 0.1 0.01 0.01 0.01
Model 10 10 10 0.05 0.05 0.05
Total ∼15 ∼15 ∼40 0.16 0.16 0.16

TABLE 3 | Probe positioning error evaluation on the simulation experiments for the
three patients. Experiments are divided by cases; case 1: using CT data
without force feedback; case 2: using CT data with force feedback; case 3: using
landmark prediction only without force feedback; case 4: using landmark
prediction only with force feedback. All values are reported in mm.

Case 1 Case 2 Case 3 Case 4

Patient 1
Average error in x 13.7 9.40 16.5 12.3
Average error in y 12.7 10.1 14.6 6.70
Average error in z 30.3 11.5 31.2 8.10
Total error 35.5 17.9 38.1 16.1
Standard deviation 18.2 12.8 18.5 16.8

Patient 2
Average error in x 14.2 13.2 12.4 11.2
Average error in y 10.5 8.70 15.3 13.4
Average error in z 41.0 13.5 35.6 15.1
Total error 44.6 20.7 40.6 23.0
Standard deviation 23.4 14.5 9.80 16.2

Patient 3
Average error in x 17.8 15.0 19.8 11.3
Average error in y 13.6 13.9 12.4 10.9
Average error in z 35.6 11.1 39.1 13.2
Total error 42.0 23.2 45.5 20.5
Standard deviation 18.7 16.7 21.4 17.6
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Similarly, the data were transformed into CT coordinates, showing
that all the target points were also successfully swept by the probe.
The average time required for completing an 8-point POCUS scan on
a single patient was found to be 3.30 ± 0.30min and 18.6 ± 11.2min
using prior CT scans with and without force feedback, respectively.
The average time for completing the same scans was found to be
3.80 ± 0.20min and 20.3 ± 13.5 using the predicted ribcage
landmarks with and without force feedback, respectively. The
reported durations do not include the timing to perform camera
registration to the robot base, as it is assumed to be known a priori.

3.3.2 Phantom Evaluation
The same eight points derived from the centroids of the lung
quadrants were used as target points for the physical phantom.
Since the manufactured phantom does not contain lungs or visual
landmarks, we are evaluating the methodology qualitatively,
categorizing the images into three major groups: 1) completely
obstructed by bones whereby 50–100% of the field of view is

uninterpretable, with the goal point shadowed; 2) partially
obstructed by bones, whereby <50% of the field of view is
uninterpretable, with the goal point not shadowed; and 3)
unobstructed, whereby <10% of the field of view is interpretable,
and the goal point not shadowed. These groupings were developed in
consultation with an expert radiologist. Since the scanning point
algorithm focuses on imaging a target point in the center of the US
window, we are also reporting this metric for completeness. The
phantom was assessed by an expert radiologist, confirming that the
polycarbonate from which the ribcage is made is clearly discernible
from the rest of the gelatin tissues. It does, however, allow for the US
beam to traverse it, meaning that the “shadow” resulting from the
phantom’s rib obstruction will not be as opaque as that generated by
human bones. The robot manipulator is first driven to the specified
goal point, and displacement profiles are collected in the vicinity of
the target. The ribs’ location is estimated from the force–displacement
profile, and the final goal point is recomputed as a distance
percentage offset from one of the ribs. Each experiment set was

FIGURE 10 | Selected US scans obtained from the phantom through the different sets of experiments. Scans that are obstructed by bones are marked as such,
with the arrows pointing toward the bone. Each column represents a different experiment, namely: (A) scans using CT data without force feedback; (B) scans using CT
data with force feedback; (C) scans using landmark prediction only without force feedback; (D) scans using landmark prediction only with force feedback.
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repeated three times, the results of which are reported inTable 4. The
evaluation of the US images was performed by an expert radiologist.
The results show that the force feedback indeed assists with the
avoidance of bone structures for imaging purposes, whereby 100% of
theUS scans using prior CT datawere interpretable (i.e., with a visible
center), and 87.5% of the scans were interpretable using landmark
estimation. The results without using force feedback show that only
75% of the scans have a visible center region using prior CT scans,
and 58.3% using predicted landmarks. The landmark estimation
approach demonstrated worse results due to errors associated with
the prediction, which can cause erroneous ribs’ location estimation,
and thus bad initial target points suggestions. Select images for all four
experiments are shown in Figure 10. The average time required for
completing an 8-point POCUS scan on the phantomwas found to be
3.40 ± 0.00min and 17.3 ± 5.10min using prior CT scans with and
without force feedback, respectively. The average time for completing
the scans was found to be 3.30 ± 0.00min and 25.8 ± 7.40min using
predicted ribcage landmarks with and without force feedback,
respectively. Camera registration time was not included in
reported durations.

4 DISCUSSION

The experimental results have demonstrated the preliminary
feasibility of our robotic solution for diagnosing and monitoring
COVID-19 patients’ lungs, by successfully imaging specified lung
infiltrates in an autonomous mode. In a real-life setting, a
sonographer initially palpates the patient’s torso to assess the
location of the ribs for correctly positioning the US probe. We
proposed a solution that autonomously replicates this behavior, by
collecting force–feedback displacement data in real time. This
approach has been assessed in simulation on three patients with
varying BMI.Wehave evaluated our algorithm for proposing optimal
US probe scanning positions and orientations given a patient’s CT
scan for generating target points for the robotic system. We also
addressed the issue of potentially unavailable prior CT scans by
developing a deep learning model for ribcage landmarks estimation.
Our approach has demonstrated feasibility potential in both
simulations and physical implementation, with a significant
improvement in US image quality when using force feedback, and
comparable results to CT experiments when using ribcage landmarks
prediction only. The successful imaging of the target points in
simulation, as well as the reduction in shadowing effects in the
phantom experiments, is deemed to fulfill the clinical requirements
defined in Subsection 3.3. This does not, however, imply the system’s

clinical feasibility, as additional experiments would be needed to
support such claim. The current system is intended to alleviate the
burden of continuously needing highly skilled and experienced
sonographers, as well as to provide a consistent solution to lung
imaging that can complement a clinician’s expertise, rather than
eliminating the need of a clinician’s presence.

We acknowledge the limitations associated with the current
implementation. The presented work is a study for demonstrating
the potential of the methods’ practical feasibility, laying down the
foundation for more advanced experimental research. Although the
simulated environment has been carefully chosen in an attempt to
replicate real-life settings, and the physical phantom results have
shown to support the simulated results, further experimentation is
required to validate the outcomes. The simulated environment is
incapable of capturing all the nuances of a physical setup—soft tissue
displacements, for instance, have been acquired from a limited set of
points on the patients’ torsos using finite element simulations, with
displacements in other locations obtained by interpolation. Elements
such as breathing and movement of a patient during the scanning
procedure are additional, albeit not comprehensive, factors too
complex to be modeled in a robotic simulation, but ones that can
negatively affect the outcome of the implementation.

Future work will focus on developing improved registration
techniques to reduce the error associated with this step. An
image analysis component as an additional feedback tool can
further enhance the accuracy of the setup; force feedback ensures
that the US probe is not positioned on ribs, and that it is in contact
with the patient; however, it does not guarantee image quality.
Additionally, a larger sample size of patients needs to be investigated
to better validate the proposed force–displacement hypothesis. As
was shown in Figure 4, different patients showed different
displacement magnitudes, with the least noticeable differences
pertaining to the patient with the highest BMI. It is important to
understand in the future how well this approach scales with different
body types and genders. The physical phantom used for the
experimental setup does not contain lungs, has Polycarbonate
bones, and embedded hemorrhages made of water balloons.
These factors make the US image analysis quite challenging, with
room for misinterpretation. Additional experiments need to be
conducted on phantoms containing structures that can be clearly
visualized and distinguished in US to better assess the experiments’
outcome. Lastly, this study does not account for variations in
patients’ posture as compared to their posture when the CT scan
was taken. The combination of CT data, ribcage landmark
estimation, and force feedback will be investigated in future work
for improved imaging outcomes.

TABLE 4 | Qualitative categorization of all US images as evaluated by an expert radiologist. The US images were collected from the phantom. Experiments are divided by
cases; case 1: using CT data without force feedback; case 2: using CT data with force feedback; case 3: using landmark prediction only without force feedback; case 4:
using landmark prediction only with force feedback.

Completely obstructed Partially obstructed Unobstructed Visible center

Case 1 6 3 15 18
Case 2 0 4 20 24
Case 3 10 1 13 14
Case 4 3 3 16 19

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 64575613

Al-Zogbi et al. Autonomous Robotic Lung POCUS Imaging

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


5 CONCLUSION

We have developed and tested an autonomous robotic system that
targets the monitoring of COVID-19-induced pulmonary diseases in
patients. To this end, we developed an algorithm that can estimate the
optimal position and orientation of an US probe on a patient’s body
to image target points in lungs using prior patient CT scans. The
algorithm inherently makes use of the CT scan to assess the location
of ribs, which should be avoided in US scans. In the case where CT
data are not available, we developed a deep learning algorithm that
can predict the 3D landmark positions of a ribcage given a torso
surface model that can be obtained using a depth camera. These
landmarks are subsequently used to define target points on the
patient’s body. The target points are relayed to a robotic system.
A force–displacement profile collection methodology enables the
system to subsequently correct the US probe positioning on the
phantom to avoid rib obstruction. The setupwas successfully tested in
a simulated environment, as well as on a custom-made patient-
specific phantom. The results have suggested that the force feedback
enabled the robot to avoid skeletal obstruction, thus improving
imaging outcomes, and that landmark estimation of the ribcage is
a viable alternative to prior CT data.
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