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Lysine crotonylation (Kcr) is a newly discovered protein post-translational modification and has been
proved to be widely involved in various biological processes and human diseases. Thus, the accurate
and fast identification of this modification became the preliminary task in investigating the related bio-
logical functions. Due to the long duration, high cost and intensity of traditional high-throughput exper-
imental techniques, constructing bioinformatics predictors based on machine learning algorithms is
treated as a most popular solution. Although dozens of predictors have been reported to identify Kcr sites,
only two, nhKcr and DeepKcrot, focused on human nonhistone protein sequences. Moreover, due to the
imbalance nature of data distribution, associated detection performance is severely biased towards the
major negative samples and remains much room for improvement. In this research, we developed a con-
volutional neural network framework, dubbed iKcr_CNN, to identify the human nonhistone Kcr modifi-
cation. To overcome the imbalance issue (Kcr: 15,274; non-Kcr: 74,018 with imbalance ratio: 1:4), we
applied the focal loss function instead of the standard cross-entropy as the indicator to optimize the
model, which not only assigns different weights to samples belonging to different categories but also dis-
tinguishes easy- and hard-classified samples. Ultimately, the obtained model presents more balanced
prediction scores between real-world positive and negative samples than existing tools. The user-
friendly web server is accessible at ikcrcnn.webmalab.cn/, and the involved Python scripts can be conve-
niently downloaded at github.com/lijundou/iKcr_CNN/. The proposed model may serve as an efficient
tool to assist academicians with their experimental researches.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As one of the important post-translational modifications
(PTMs), lysine crotonylation (Kcr) was first discovered by Tan
et al. in 2011 [1]. It usually exists on histone proteins in the chro-
matin region with active transcription processes, thereby playing
significant roles in reproductive regulation, gene expression, and
chromatin structure [2–4]. In 2017, Xu et al. first confirmed the
occurrence of Kcr modification on nonhistone proteins [5], and
proved that it is widely localized in the cytoplasm and nucleus of
H1299 and HeLa cells, as well as a variety of mouse tissues. Subse-
quent studies elucidated crucial roles in various physiological and
pathological processes, indicating its significance in academic
researches and medical applications [6,7].

Predicting Kcr positions is the first step to proceed with mech-
anism investigation. Experimentally, multiple high-throughput
techniques have been developed, such as high-performance liquid
chromatography fractionation (HPLC), HPLC-tandem mass spec-
trometry (MS) [6–8]. However, these methods are time-
consuming, expensive and labour-intensive, bringing great difficul-
ties to large-scale analysis. Therefore, developing bioinformatics
tools based on mathematics and statistics theories become a
promising alternative to address this issue. In particular,
machine-learning (ML)-based predictors exhibited considerable
advantages in terms of time cost and budget, and presented satis-
factory prediction results.
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To date, a total of eleven predictors have been published for
the identification of protein Kcr sites. As summarized in Table 1,
the first tool, called CrotPred, applied the discrete hidden Mar-
kov model (DHMM) to explore histone Kcr sites in 2016 [9].
Later, five traditional ML-based models were developed, includ-
ing support vector machine (SVM) model by Qiu et al. [10],
CKSAAP_CrotSite (SVM) [11], iKcr-PseEns (ensemble random for-
est, RF) [12], LightGBM-CroSite (LightGBM) [13], and random
forest (RF)/SVM classifiers by Wang et al. [14]. The remaining
five were all built on the frame of deep learning (DL), including
iCrotoK-PseAAC [15], pKcr [16], Deep-Kcr [17], DeepKcrot [18]
and nhKcr [19]. Throughout these predictors, we can observed
that: in terms of datasets, the early tools mainly concentrated
on histone or mixed data, whereas the recent works began to
study nonhistone proteins due to the enrichment of high-
throughout nonhistone data. Accordingly, the number of samples
sharply increased from 34/90 (the number of positive samples
over negative samples) in the first model CrotPred [9] to
15,605/75,111 in the latest model nhKcr [19], which can effec-
tively guarantee the statistical significance of the constructed
models; in terms of protein features, it roughly covered several
classical easy-interpreted descriptors (i.e., composition of k-
spaced amino acid pairs (CKSAAP), one-hot, enhanced amino
acid composition (EAAC), pseudo-amino acid composition
(PseAAC), pseudo-position specific scoring matrix (PsePSSM),
etc) and deep learning representation embedding methods (i.e.,
wording embedding (WE)); in terms of algorithms, researchers
were more inclined to choose deep learning techniques rather
than conventional classifiers; as for model evaluation, recent
works strictly completed cross validation and independent tests
to get objective and reliable results.

In machine learning fields, another challenge is data imbalance,
indicating the uneven distribution of samples belonging to
Table 1
Description of eleven computational tools for protein Kcr prediction.

Tools Species Train Test Features(selection)

nhKcr nonhistone-
human

12,262/
60,101

3,343/
15,010

BE, AAINDE, BLOSUM

DeepKcrot nonhistone-
human

6,687/
67,106

1,483/
16,497

WE

nonhistone-
papaya

2,742/
29,676

711/
7,458

nonhistone-rice 909/
11,780

225/
2,734

nonhistone-
tabacum

1,643/
9,696

451/
2,449

Wang’s work histone-
mammalian

167/167 44/95 AAC, AAPC, BE, CKSA
EGAAC(CHI2)

nonhistone-
plant

2,548/
2,548

669/
6,720

LightGBM-
CroSite

histone-
human,mouse

159/847 – BE, PWAA, EBGW, KN
(Elastic)

Deep-Kcr mixed-human All: 9,964/9,964
(Train/Test = 7:3)

CSKAAP, PWAA, AAIn
EBGW

pKcr nonhistone-
papaya

2,742/
29,676

711/
7,458

WE

iCrotoK-PseAAC mixed-mixed 378/500 – SVV, SM, PRIM, RPRI
AAPIV, RAAPIV

iKcr-PseEns histone-
human,mouse

169/866 – PseAAC

CKSAAP_CrotSite histone-
human,mouse

169/847 – CKSAAP, PseAAC

Qiu’s work histone protein 159/847 – PWAA
CrotPred histone-mixed 34/90 – DHMM

Asbbreviations: EBGW, encoding based on grouped weight; kNN, k nearest neighbors; Ps
composition; CTD, composition, transition and distribution; RPRIM, position relative inc
absolute position incidence vector; RAAPIV, reverse accumulative absolute position incide
vector machine; DHMM: discrete hidden Markov model.
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different classes. The degree of imbalance can be expressed by
the imbalance ratio (IR),

IR ¼ Nmajority

Nminority
ð1Þ

where Nmajority and Nminority indicate the number of samples in the
majority and minority classes, respectively. The data imbalance
(columns 3 and 4 in Table 1) is actually a common problem in
machine learning fields and usually leads to the prediction prefer-
ence on the samples in the majority class. For instance, the imbal-
ance ratio (IR) in nhKcr tool achieves 12262/60101�1/5 for the
training dataset. As can be seen in the column ‘‘(Imbalance) Classi-
fiers”, two imbalance strategies of random under-sampling (RUS)
[20] and synthetic minority oversampling technique (SMOTE) [21]
were implemented to balance the datasets before modelling. Con-
sidering the limited amount of data available and the lack of inde-
pendent test for the early models, here we only discussed two
newest tools focused on nonhistone Kcr modification. For the
DeepKrot model, the prediction specificity (Sp) for negative samples
over 5-fold cross validation (5-CV) and independent tests both
achived 90.00%, whereas the associated sensitivity (Sn) for positive
samples were only 53.70% and 52.40%, respectively. Similarly, nhKcr
separately presented unsatisfied Sp values of 62.86% and 58.90%
over 5-CV and independent tests. Generally, compared with the
average prediction efficiency (�60%) of positive segments, these
two tools are obviously skewed towards negatives (�90%). In the
prediction process using above models, the true Kcr sites what
experts are actually more concerned about are often negleted.
Therefore, it is urgent to develop new Kcr predictors with better
and balanced detection performance.

In this research, applying the large-scale nonhistone Kcr data,
we developed a novel computational tool based on the neural con-
volutinal networks (CNNs), named iKcr_CNN, to determine moified
(Imbalance)
Classifier

Results Sn Sp MCC AUC Year

62 CNN 5-cv 62.86 90.00 0.51 0.88 2021
Inde 58.90 90.00 0.48 0.88

CNN 5-cv 53.70 90.00 0.34 0.86 2021
Inde 52.40 90.00 0.34 0.86
Inde – – – 0.88

Inde – – – 0.86

Inde – – – 0.84

AP, EAAC, (RUS)RF.SVM Inde 92.00 88.00 0.80 – 2020

Inde 83.00 70.00 0.54 0.84

N, PsePSSM (SMOTE)
LightGBM

Jack 98.86 99.11 0.98 1.00 2020

dex, CTD, CNN 10-cv – – – 0.86 2020

CNN 10-cv 51.69 90.00 0.34 0.86 2019
Inde 53.67 90.00 0.34 0.85

M, FV, ANN Jack 99.17 99.40 98.00 2019

ensemble RF Jack 90.53 95.27 81.26 0.98 2018

SVM Jack 92.45 99.17 92.83 2017

SVM Jack 71.69 98.70 77.80 2017
Jack 79.41 77.78 52.59 2016

ePSSM, pseudo-position specific scoring matrix; PWAA: position weight amino acid
idence matrix; SVV, site vicinity vector; FV, frequency vector; AAPIV, accumulative
nce vector; CNNs: convolutional neural networks; RF: random forest; SVM: support
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Kcr positions. As illustrated in Fig. 1, the modelling process
includes five main parts: (1) nonhistone Kcr data collection; (2)
protein sequence encoding; (3) one-dimensional CNNs architec-
ture with FL loss; (4) performance evaluation; and (5) web server
establishment. Meanwhile, we implemented the powerful dimen-
sion reduction method of uniform manifold approximation and
projection (UMAP [22]) to visually analyze the data distribution.
We demonstrate that the proposed predictor is a reliable tool

(available at ikcrcnn.webmalab.cn/.) to recognize potential Kcr
sites in nonhistone proteins.

2. Materials and methods

2.1. Benchmark datasets

In this research, we used the benchmark datasets from the
related literature and online datasets by Chen et al. for modelling
[19], which includes large number of non-redundant experimen-
tally verified Kcr sites on human nonhistone sequences. In short,
it was collected through the following steps: first, 19,287 Kcr sites
involved in 4230 proteins were filtered from the UniProt database
[23]; then, the threshold of 0.3 was set in the CD-HIT program [24]
to remove redundant segments, which can effectively avoid the
overfitting problem caused by sample similarity; later, centered
on the residue K, these protein sequences were further split into
15,603 Kcr and 164,709 non-Kcr segments with a fixed window
length of 29, i.e. 14 acids on upstream and 14 acids on down-
stream; finally, 12,262 positive and 60,101 negative samples were
collected (marked as 12,262/60,101) for the training dataset and
3,343/15,010 for the testing dataset. Besides, several samples with
auto-filled residue ‘‘O” or sparse amino acid ‘‘U” were further
deleted to avoid potential interference or feature extraction error.
Ultimately, the training and testing datasets contained a total of
12,022/59,226 and 3,252/14,792 samples, respectively. Corre-
sponding IR between Kcr and non-Kcr samples is approximately
1:5. More details on data preparation process can be found in
Ref. [19].

2.2. Protein descriptors

Translating the protein fragments into a computer-recognizable
numeric vector is a fundamental step to construct a superior
Fig. 1. Flowchart of the iKcr_CNN predictor, including data collection, sequence e
establishment as well as UMAP visualization of data distribution.

3270
model. In the current study, we explored the effectiveness of ele-
ven common descriptors, which can be generally grouped into four
categories: (1) sequential information: one-hot, EAAC and CKSAAP;
(2) evolutionary information: bi-profile Bayes (BPB), BLOSUM62
and position-specific scoring matrix (PSSM); (3) physicochemical
information: AAIndex, 188D; and (4) deep representation learning
embedding information: bi-directional long short-term memory
(BiLSTM) [25], word2vec (W2V) [26], and encoder representation
from transformers (BERT) [27]. Given a protein sample R = R1R2. . .R-

l-1Rl, the mentioned descriptors can be briefly described as follows:

(1) Sequential information.

In the one-hot method, 20 different residues,
‘ARNDCQEGHILKMFPSTWYV’, are separately encoded as
10000000000000000000, 01000000000000000000, . . .,
00000000000000000001, generating a 20*l-dimensional sparse
matrix. EAAC calculates the frequencies of individual residues in
the fixed k-length segments (default k = 5), inducing (l-k + 1)*20-
D features. Similarly, CKSAAP computes the occurrence probabili-
ties of k-spaced amino acid pairs. When k = 0, it includes 20*20
0-spaced amino acid pairs (i.e., AA, AC, AD, . . .). When k = 1, it
counts 400 1-spaced pairs (i.e., A-A, A-C, A-D, . . .), etc. Finally, it
generates a (kmax + 1)*400-D feature vector.

(2) Evolutionary information.

BPB calculates the position-specific probabilities of 20 amino
acids of positive and negative subsets, and applies them directly
to define 2*l-D features. BLOSUM62 implements the simple protein
evolutionary matrix BLOSUM62 through the basic local alignment
search tool (BLAST) to encode protein sequences with the dimen-
sion of 20*l. Furthermore, PSSM strictly aligns the sequence with

large protein sequences in NR database (ftp://download.nmdc.cn/

blast/db/nr) to obtain a 20*l-D scoring matrix locally.

(3) Physicochemical information.

AAIndex incorporates 531 physicochemical properties of amino
acids to obtain l*531-D peptide features by iLearn toolkit [28].
188D features can be mainly divided into two parts. The first one
calculates the amino acid composition (abbreviated as AAC), which
ncoding, CNNs-based model development, performance evaluation, web server

http://ikcrcnn.webmalab.cn/
http://download.nmdc.cn/blast/db/nr
http://download.nmdc.cn/blast/db/nr


Table 2
Parameters involved in this CNNs model.

Layers Settings Output
shape

Parameters

Input selected AAindex (-,812) –
Conv1D_1 filters = 200, kernel_size = 7,

activation=’relu’
(-
,860,200)

1600

Maxpooling_1 pool_size = 2 (-
,403,200)

–

Dropout_1 rate = 0.25 (-
,403,200)

–

Conv1D_2 filters = 100, kernel_size = 5,
activation=’relu’

(-
,399,100)

100,100

Maxpooling_2 pool_size = 2 (-
,199,100)

–

Dropout_2 rate = 0.25 (-
,199,100)

–

Conv1D_3 filters = 50, kernel_size = 3,
activation=’relu’

(-,197,50) 15,050

Maxpooling_3 pool_size = 2 (-,98,50) –
Dropout_3 rate = 0.25 (-,98,50) –
Flatten (-,4900) –
Dense_1 unit = 200, activation=’relu’ (-,200) 980,200
Dropout_4 rate = 0.5 (-,200) –
Dense2 unit = 1, activation=’sigmoid’ (-,1) 201
Adam lr = 0.001 – –
Total – – 1,097,151
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forms a 20-D feature vector. The second part comprehensively
integrates composition, transition, and distribution values of eight
important physicochemical attributes (CTD) and forms a 168-D
feature vector [29,30]. More specific, these physiochemical proper-
ties include hydrophobicity, normalized Vander Waals volume,
polarity, polarizability, charge, surface tension, secondary structure
and solvent accessibility. Ultimately, it generates a 188-D protein
feature vector in total to encode protein sequences.

(4) Deep representation learning embedding methods.

By analogy of biological sequences as text, bioinformatics
experts successfully applied multiple advanced natural language
processing (NLP) techniques into proteomics and genomics with
outstanding results [31,32]. Here, we exploited three deep learning
embedding methods of BiLSTM [25], BERT [27], and W2V [26].
BiLSTM combines forward and backward LSTM based on the bidi-
rectional propagation mechanisms to extract contextual informa-
tion [25], well reflecting the global structure similarity between
proteins and pairwise residue contact maps for every segment
[33]. BERT uses the transformer attention mechanism to realize
multiple focus points for the same sentence simultaneously [27].
W2V characterizes residues by the similarity of the involved con-
text/similarity [26]. These features mentioned above can be conve-
niently acquired through state-of-the-art toolkits, such as iLearn,

eFeature (lab.malab.cn/soft/eFeature/), BioSeq-Analysis [34–36].
2.3. Classification algorithms

In recent years, DL technology has made remarkable achieve-
ments in image recognition, autonomous driving, NLP, etc. It also
demonstrates excellent performance on bioinformatics subjects,
such as the prediction of protein structure, protein-protein interac-
tions (PPIs), drug design, and disease treatment [37,38]. Regarding
PTMs detection, dozens of state-of-the-art tools have been pro-
posed in the application of CNNs, transfer learning (TL), LSTM
and attention-based networks, such as MusiteDeep [39], Caps-
Net_PTM [40], MultiRM [41].

As illustrated in Fig. 2, our CNNs architecture consists an input
layer, three 1D convolutional layers, two fully connected layers,
and an output layer. Combining the involved model parameters
in Table 2, 812-D AAindex features were served as input and fed
into the network; Then, three sequentially connected blocks (i.e.,
Fig. 2. CNNs architecture of this work. AAindex features are continuously fed into three
informative attributes. Then, one flatten and two dense layers followed by a sigmoid ac
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convolutional with a rectified linear unit (RELU) activation func-
tion, max pooling, and dropout layers) were followed to extract
hidden discriminative patterns. In specific, the number of filters
was separately set as 200, 100 and 50 for three convolutional lay-
ers with kernel sizes of 7, 5 and 3, as well as the same pooling sizes
of 2. Next, the output of Dropout_3 with a size of (98,50) was flat-
tened into a 4,900-D vector and continuously fed into two dense
layers to finally generate a 1-D matrix, which was activated by
the sigmoid function to output the prediction probability. Here
the dropout rates were set as 0.25 for the first three dropout layers
and 0.5 for the last, and the batch size as 150 to avoid out of mem-
ory error. During the fitting process, we chose fashionable opti-
mizer of Adam with the default learning rate of 0.001 to
optimize the involved 1,097,151 parameters in total. This model
is implemented in TensorFlow (v1.12.0) and Keras (v2.2.4) [42].
For comparison, we also investigated several traditional machine
learning methods in Scikit-Learn package (v0.24.2) [43], including
RF [44], SVM [45] and naïve Bayes (NB) [46].
1D convolutional blocks (convolution, max pooling and dropout layers) to extract
tivation function are incorporated to output the prediction results.

http://lab.malab.cn/soft/eFeature/
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2.4. Imbalance strategy

Data imbalance exists in almost all machine learning fields,
such as credit fraud, information security, image processing, bioin-
formatics [47]. It is known that traditional algorithms proceed
optimization by maximizing the overall prediction accuracy. As a
result, classification model usually illustrates severe skewness
towards the majority class, which is actually converse to the sam-
ples of interest to experts, seriously limiting the reliability and
applicability of proposed tools. Fortunately, various imbalance
strategies have been proposed, such as SMOTE [21], RUS [20],
cost-sensitive, ensemble classifiers, which can be roughly grouped
into three parts: data-, algorithm-, and hybrid-level methods
[48,49]. Taking data-level SMOTE as an example [21], it synthesizes
new samples X0 according to the data similarity of the k-nearest
neighbor (KNN) samples Xn randomly chosen from the minority

samples X
�
, formulated as.

X0 ¼ Xn þ randð0;1Þ � ðX
�
�XnÞ ð2Þ

Here, rand 0;1ð Þ will produce a random number between 0 and 1.
Ultimately, we can generate a large number of new minority class
samples to form a balanced dataset and applied to build model.

In the frame of DL, the imbalance issue can be similarly
addressed by adjusting class weights, evaluation matrices, and loss
functions. For instance, the online hard example mining (OHEM)
method increases the weight of mis-predicted samples to obtain
better results. However, it neglects the influence of easy-
classified samples. As an improvement, Lin et al. proposed focal
loss in 2017 when comparing one- and two-stage object detection
techniques and presented excellent results [50]. It is mainly bene-
fited from the initial precise identification of valid target areas,
which in fact is an imbalance issue. In the past five years, FL has
become a powerful way to address imbalance issue [50–53], which
not only assigns asymmetrical weights to samples in different
classes but also sets different weights on easy- and hard-
classified samples. Specifically, the standard cross entropy (CE) in
two-class classification is expressed as.

CE p; yð Þ ¼ �logðpÞ if y ¼ 1
�logð1� pÞ otherwise

�
ð3Þ

Here, y indicates the true label of considered samples (1: positive;
0: negative), and p is the predicted probability of the query samples
for category y ¼ 1 in the range 0–1. Conveniently, p can be writing
as.

pt ¼
p; if y ¼ 1

1� p; otherwise

�
ð4Þ

Then, CE can be shortened as.

CE p; yð Þ ¼ CE ptð Þ ¼ �logðptÞ ð5Þ
FL improves the loss function from two hands as follows:

(1) Distinguishing the contribution of samples of different cate-
gories to the loss function by introducing the weight parameter
a 2 ½0;1� for class 1 and 1� a for class �1. We define at anal-
ogously to pt , then the a-balanced CE loss can be written as,

CE ptð Þ ¼ �atlogðptÞ ð6Þ
(2) Distinguishing the contribution of easy- and hard-classified
samples to the loss function by introducing the focusing
parameter c(c � 0), CE will be rewritten as.

CE ptð Þ ¼ � 1� ptð ÞclogðptÞ ð7Þ
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Ultimately, FL can be ultimately written as.

FL ptð Þ ¼ �at 1� ptð ÞclogðptÞ ð8Þ
In summary, a exposes different weights of samples belonging

to positive and negative classes, and 1� ptð Þc, called the modulat-
ing factor, decreases the contributions of easy-classified samples.
As a result, FL makes classifiers mostly focused on the minority
class and hard-classified samples, as we expected. The best values
of a and c can be optimized on the integrated deep learning plat-
form using grid search using the grid search method of
a ¼ ½0:6;0:75;0:8;0:83;0:85;0:9� and c ¼ ½0:5;1;1:5;2;3;5].

2.5. Performance evaluation

Here, 5-fold CV and independent tests were both conducted to
evaluate model performance. In 5-fold CV, the training dataset is
randomly divided into five sub-datasets, in which four are used
to train the model and the remaining one to test. It is not com-
pleted until all five sub-datasets are applied for training once. In
addition, independent test is performed to check model generaliz-
ability. Six criteria are used to quantitively measure model effi-
ciency, including the sensitivity (Sn), specificity (Sp), accuracy
(Acc), Matthew’s correlation coefficient (MCC), precision (Pre) and
F1 score, formulated as follows,

Sn ¼ TP
TP þ FN

ð9Þ

Sp ¼ TN
TN þ FP

ð10Þ

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

ð11Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þp ð12Þ

Pre ¼ TP
TP þ FP

ð13Þ

F1 ¼ 2� Pre � Re

Pre þ Re
ð14Þ

Here, TP = true positive, TN = true negative, FP = false positive, and
FN = false negative. As supplements, the receiver operating charac-
teristic (ROC, false-positive rate (FPR) vs. true-positive rate (TPR))
curve, PR curves (precision vs. recall) and relevant areas under
curves (AUROC, AUPRC) are also illustrated as objective induces
because of independence of the threshold.
3. Results and discussion

In the current study, we applied the incorporated features of
selected AAIndex (812-D) to represent proteins and developed an
novel convolutional neural network framework to find potential
human nonhistone Kcr sites. To eliminate the prediction bias on
negative samples, we applied the focal loss function instead of
the standard cross-entropy as the indicator to guide the optimiza-
tion process. This concise model ultimately demonstrated 77.31%
prediction score for true Kcr sites, and 78.62% for false Kcr sites
with AUC value of 0.86 over 5-fold CV, as well as 77.87% for true
Kcr sites, 76.61% for false Kcr sites with AUC of 0.85 over indepen-
dent test. Our model presented more well results with real-world

datasets. The user-friendly web server is accessible at ikcrcnn.web-

malab.cn/.

http://ikcrcnn.webmalab.cn/
http://ikcrcnn.webmalab.cn/
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3.1. Analysis of residues distribution

At first, we analyzed the statistical distribution characteristics
of position-specific residues between the positive and negative
subsets (t-test: p < 0.05) in Fig. 3 using the Two Sample Logo plat-
form [54]. Different residues are colored by the charge property,
i.e., blue, red, and black mean the positively, negatively charged,
and neutral residues, respectively. Overall, apparent differences
can be observed between Kcr fragments (upper panel) and non-
Kcr fragments (lower panel), where the charged residues (blue
and red) were significantly enriched in the modified samples,
and contrarily neutral residues (black) in the nonmodified samples.
Combining the position preference, we can observe that for the
residues close to the center K (�4–4, circled by a green box), neg-
atively charged residues (E, D) and neutral residues (A, N, V, Y, etc)
are more likely located in the positive set, whereas the positively
charged amino (R, K) as well as multiple neutral residues (P, S, F,
etc) in the negative set. In particular, six residues close to the cen-
ter show higher preference values than 4%, including E (6.9%) in the
positive set, K (8.1%) and R (5.8%) in the negative set in the
upstream position �1, as well as E (6.3%), D (4.0%) in the positive
set, P (4.4%) in the negative set in the downstream position 1.
The noticeable position-specific distinguishment is fundamental
to building reliable computational Kcr tools.
3.2. Preliminary results of multiple protein descriptors and
imbalance/classification algorithms

As depicted in Fig. 1, the modelling process is a complex process
where the performance depends on many factors (features, algo-
rithms, hyperparameters, etc.). Thus, it is hard to obtain the abso-
lutely best-performed model, and we can only screen out the
locally best one based on the limited considerations in the current
study. Here, we proceeded a series of preliminary experiments to
assess the performance of several commonly used feature extrac-
tion methods (including One-hot, EAAC, CKSAAP, PSSM, AAIndex,
etc.). Notably, for each feature representation, we applied multiple
imbalance strategies/classifiers (including SMOTE, RF, SVM, CNN
(CE), CNN(FL), etc.). After a robust/systematic comparison, we fil-
tered out the best-performed one as the candidate model to carry
out further optimization and analysis, which integrates the protein
feature AAIndex_nhKcr and the classifier CNNs with FL.

Among these preliminary experiments, we summarized parts of
sequence representation results based on CNNs (FL) in Table 3 and
different classifiers based on AAIndec_nhKcr features in Table 4 to
discuss, respectively. Since the strict implement of standard 5-CV
experiment with a large amount of training samples is time-
consuming, we split the raw training dataset into two sub-
Fig. 3. Two Sample Logo of human nonhistone Kcr segments (p < 0.05), where the
positively charged, negatively charged and neutral residues are separately indicated
in blue, red, and black [54]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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datasets with a ratio of 8:2, marked as data_training
(9,599/47,399) and data_validation (2,423/11,827), to finish vali-
dation experiment. Ultimately, the associated results of the valida-
tion and independent tests were obtained, where second column
‘‘Num_Feas” indicates the number of features involved.

In Table 3, we compared effectiveness of 17 single/combined
feature encodings based on the CNNs architecture with FL function
(a ¼ 0:8, c ¼ 1, batch_size = 150, epoch = 10). Among the first six
types of sequence information, the 500-D EAAC vector presented
good results (validation: Sn = 74.24%, Sp = 74.74%; independent:
Sn = 76.73%, Sp = 75.83%). For the evolutionary information, except
for the BPB descriptor, BLOSUM62 and PSSM both gave higher pre-
diction scores of Sn and Sp than 70%. Regarding physicochemical
methods, three encoding approaches of AAIndex, AAIndex_bhKcr
and 188D were considered. Compared with the results of whole
AAIndex features, AAIndex_nhKcr displayed more exciting results
of 75.24% Sn, 78.73% Sp, 78.14% Acc, 0.44 MCC, 0.85 AUC over vali-
dation, and 81.43% Sn, 73.36% Sp, 74.80% Acc, 0.44 MCC, 0.84 AUC
over independent test. As supplements, we also investigated three
types of embedded features of BiLSTM, TAPE_BERT, and W2V using
the eFeature toolkit. However, these features all presented unsatis-
fied scores of 60%�70%. The combined features in the nhKcr pre-
dictor, marked as nhKcr, consisting of one-hot, BLOSUM62, and
selected AAIndex, also gave good results [19]. Further incorpora-
tion of effective EAAC and PSSM, forming a 3603-D vector didn’t
display obvious enhancement. In general, these descriptors of
EAAC, BLOSUM62, PSSM, AAIndex, AAindex_nhKcr, nhKcr and
nhKCR + EAAC + PSSM presented well recognition scores of approx-
imately 75% based on the CNNs (FL) algorithm (marked in bold).

As we all know, AAIndex is one of the classical physiochemistry-
related methods considering 531 physicochemical properties in
total to induce a 15399-D vector. Furthermore, Chen et al. [19]
applied RF as a feature selection approach to construct an effective
feature subject with 29 top-ranked properties (marked as AAIn-
dex_nhKcr). After deleting the specific columns with same values
for all samples related to K residue at the center, there are (29–1
)*29 = 812-D features remained to feed into the CNNs model. Typ-
ically, feature extraction methods of PSSM and deep representation
learning requires large memory as well as high time cost. In addi-
tion, the feature combination process is often accompanied by the
curse of dimensionality and information redundancy. By balancing
the model performance and computational cost, we ultimately
determined to only choose AAIndex_nhKcr features to construct
a simple yet efficient computational model. To better illustrate
the effectiveness of AAIndex features, we carried out an t-test
experiment with another representative descriptors of EAAC.
Specifically, we repeated validation tests of these two models ten
times and calculated the p-values, respectively. Taking comprehen-
sive metrics of MCC and AUC as examples, corresponding p-values
reached 2.19eE-11 and 3.368eE-11. Because p was much smaller
than 0.05, we can say that the AAIndex_nhKcr encoder is obviously
better than EAAC encodings with �100% confidence intervals.

In Table 4, we summarized the results of a series of (imbalance)
algorithms based on the AAIndex_nhKcr features, including three
conventional ML classifiers of RF, SVM, NB, and DL algorithm of
CNNs. Moreover, we equipped classical SMOTE and different loss
functions (CE, aCE and FL) to these classifiers to explore the effect
of data imbalance. Among the data in rows 1–4, we can find the
serve overfitting problem for the RF model, corresponding to low-
est Sn of 4.24%. For the SVM and CNN (CE) models, imbalance issue
seriously influenced the model performance, where the validation
Sn scores were only 44.58% and 22.79%, respectively. As for the NB
model, although the prediction precision was relatively balanced
for samples in two classes, it still cannot meet the experimental
requirements. Next four rows of 5–8 indicated the results of typical
under-sampling strategy SMOTE implemented with above four



Table 3
Performance of different protein representation approaches based on the CNNs(FL) algorithm.

Features Num_Feas Validation Independent

Sn (%) Sp (%) Acc (%) MCC AUC Sn (%) Sp (%) Acc (%) MCC AUC

One-hot 580 56.20 79.82 75.83 0.31 0.76 62.10 75.80 73.33 0.31 0.77
EAAC 500 74.24 74.74 74.66 0.39 0.82 76.73 75.83 75.99 0.43 0.84
CKASSP (kmax = 0) 400 69.23 62.02 63.24 0.24 0.71 67.23 62.51 63.36 0.23 0.70
CKSAAP (kmax = 1) 800 64.79 66.07 65.85 0.24 0.71 60.65 70.60 68.81 0.25 0.72
CKSAAP (kmax = 2) 1200 56.94 73.36 70.59 0.24 0.72 61.45 68.77 67.45 0.24 0.71
CKSAAP (kmax = 3) 1600 65.32 67.12 66.82 0.25 0.72 62.04 70.63 69.08 0.26 0.72
BPB 58 59.16 72.56 70.30 0.25 0.73 66.92 67.31 67.24 0.27 0.74
BLOSUM62 580 81.40 71.89 73.50 0.41 0.84 77.47 74.78 75.27 0.42 0.83
PSSM 580 75.08 74.20 74.34 0.39 0.82 70.95 74.42 73.79 0.37 0.81
AAIndex 15,399 71.64 73.92 73.53 0.36 0.81 78.79 72.35 73.51 0.41 0.83
AAIndex_nhKcr 812 75.24 78.73 78.14 0.44 0.85 81.43 73.36 74.80 0.44 0.84
188D 188 76.82 60.19 63.00 0.28 0.75 72.52 67.72 68.58 0.32 0.77
BiLSTM 3605 55.95 69.62 67.31 0.20 0.69 56.93 67.05 65.23 0.19 0.68
TAPE_BERT 768 74.49 56.62 59.64 0.23 0.71 68.89 63.23 64.25 0.25 0.72
W2V 300 61.52 62.23 62.11 0.18 0.67 59.76 63.95 63.20 0.19 0.67
nhKcr 2523 75.60 78.40 77.93 0.44 0.85 74.30 76.53 76.13 0.42 0.83
nhKCR + EAAC + PSSM 3603 80.57 74.16 75.24 0.43 0.85 82.69 71.91 73.85 0.43 0.85

Num_Feas: the number of features.
AAIndex_nhKcr: the AAindex-related 841-D features by considering top 29 most important physicochemical properties in the predictor nhKcr [19].
nhKcr: the combined protein features proposed in the predictor nhKcr [19].

Table 4
Comparison of different imbalance strategies/classifiers based on the selected AAindex_nhkcr features.

Classifiers Validation Independent

Sn (%) Sp (%) Acc (%) MCC AUC Sn (%) Sp (%) Acc (%) MCC AUC

RF 81.38 99.68 90.53 0.82 0.97 4.24 99.44 82.28 0.13 0.77
SVM 44.58 73.64 68.73 0.15 0.64 38.86 75.68 69.04 0.13 0.63
NB 61.99 66.96 66.12 0.22 0.71 62.22 67.13 66.25 0.23 0.71
CNN (CE) 22.79 97.02 84.49 0.30 0.85 36.80 93.97 83.66 0.37 0.85
SMOTE + RF 81.53 99.59 90.56 0.82 0.97 4.15 99.47 82.29 0.13 0.77
SMOTE + SVM 85.71 70.58 78.14 0.57 0.89 50.11 67.63 64.47 0.14 0.63
SMOTE + NB 78.31 73.41 75.86 0.52 0.84 43.77 73.51 68.15 0.15 0.65
SMOTE + CNN (CE) 82.58 97.10 89.84 0.81 0.97 33.75 93.99 83.13 0.34 0.84
CNN (aCE) 77.93 77.76 77.79 0.45 0.85 80.51 74.30 75.42 0.44 0.85
CNN (FL) 75.24 78.73 78.14 0.44 0.85 81.43 73.36 74.80 0.44 0.84
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Fig. 4. Radar plot of independent prediction results of six different imbalance
classifiers using selected AAIndex_nhKcr features.
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classifiers separately (marked as SMOTE + RF, SMOTE + SVM,
SMOTE + NB, and SMOTE + CNN (CE)). Overall, the noticeable over-
estimation problem can be observed, where the average Sn score of
32.85% over the independent test was much lower than that of
82.03% over the validation test. At last, we adapted the weighted
CE (marked as aCE) and FL function to the CNN architecture to
enhance performance. Once different weights were assigned to
the involved classes, the recognition skew on major samples can
be significantly eliminated. Accordingly, the average identification
scores of aCE- and FL-based CNNs models were sharply increased
to 78.78%, contributing to 20%�80% improvement than the previ-
ous results.

For a clear comparison of imbalance strategies, radar plot of the
independent results of the last six models were depicted in Fig. 4.
The SMOTE-based four models were all presented poor results for
positive samples. In machine learning research, a very important
assumption is that the training and testing datasets share same
data distribution characteristics. However, it is a challenging task
to keep the data spatial properties unchanged when dealing with
the imbalance datasets. Although SMOTE is a classical over-
sampling technique, it synthesizes new samples based on the data
similarity of the k-nearest neighbor (KNN) samples by

X0 ¼ Xn þ randð0;1Þ � ðX
�
�XnÞ (more details can be seen in Eq. (2)

and Ref. [21]). In our tests, the balanced training dataset-based
model performed well over the 5-CV experiment but badly over
independent test, especially for the true Kcr sites. We believed that
the new balanced training dataset can’t precisely keep the origin
3274
properties by the simple linear interpolation in SMOTE method.
Related classifiers were still dedicated to distinguishing negative
samples, and needed to be improved to concentrate on more crit-
ical positive samples. Fortunately, Sn values were sharply
increased to 80.51% for CNN (aCE, cyan line) and 81.43% for CNN
(FL, red line). Compared with aCE, FL additionally distinguish the
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easy- and hard- classified samples by the focusing parameter c,
which provides more opportunity to enhance the model power
and understand data characteristics. We concluded that the CNN
scheme implemented with class weights is superior to the applica-
tion of SMOTE for true Kcr detection.

3.3. Model optimization and data visualization

After a series of preliminary investigation, we determined the
general framework of the model, which integrates the protein fea-
ture AAIndex_nhKcr and the classifier CNN with FL. As illustrated
in Imbalance strategies section, FL function concludes two parame-
ters of a and c. First, a is introduced to assigning different class
weights for samples of different categories. Thus, we can take val-
ues according to the imbalance ratio. As for another focusing
parameter c(c � 0), it is used to distinguish the contribution of
easy- and hard-classified samples to the loss function. As depicted
in Ref. [50], the contribution of well-classified examples will
decrease with c increasing. Thus, we gradually increased c values
to find best one. Comprehensively, we applied the grid search
method of a ¼ ½0:6;0:75;0:8;0:83;0:85; 0:9� and
c ¼ ½0:5;1;1:5;2;3;5] to find best values. After comprehensive
comparison, we finally obtained the best model with a ¼ 0:8,
c ¼ 0:25. Based on the optimized parameters, we carried out stan-
dard 5-CV and independent experiments to fairly compare with
proposed tools. Meanwhile, we recorded the changes of FL values
and accuracy scores with epoch increasing in Fig. 5A and B, respec-
tively. More specific, FL at first dropped rapidly within the epochs
of 1 �6, then slowly decreased towards a steady value of �0.12.
We can observe a weak increasing trend in epoch of 16–20, indicat-
ing potential overestimation problem. Correspondingly, accuracy
also showed an exciting increasement and gradually tended to sta-
bilize. Here, four-fifths (57,000 samples) of the training samples
were used to train during the fitting process of 5-fold CV, which
means that more than 380 interactions performed in each epoch
with the batch size of 150. Comprehensively considering the detec-
tion capability and computational costs, we finally used the model
with epoch of 16 as our final model (marked by the pale purple
area in Fig. 5).

Finally, our model was constructed using the whole training
data with selected 821-D AAIndex_nhKcr features based on the
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Fig. 5. The changes of FL (A) and Accuracy (B) with increasing epoch (1 � 20) over
5-CV and independent experiments.
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CNNs method implemented with FL loss (a ¼ 0:8, c ¼ 0:25,
epoch = 16, batch_size = 150). Fig. 6 plotted the evaluated metrics
of optimized model (A. Sn, Sp, Acc,MCC, Pre, F1; B. ROC curves; C. PR
curves). More specific, 5-CV illustrated the results of Sn = 77.13%,
Sp = 78.26%, MCC = 0.45, AUC = 0.85 and AUPRC = 0.52, and corre-
lated independent results of Sn = 81.46%, Sp = 74.23%,
MCC = 0.45, AUC = 0.87 and AUPRC = 0.52. It is found that 5-CV
and independent tests gave comparable and balanced results. Thus,
we believed that our model is an efficient tool to detect existed Kcr
sites.

At last, we visually analyzed the distribution characteristics of
the training samples using the popular dimension reduction
method UMAP. Because of more than 70,000 samples involved in
the training dataset, we randomly selected 10% of all sequences
with the same IR of 1:5 to perform clear illustration. Fig. 7A plotted
the UMAP results of the original 812-D AAIndex protein features,
i.e., the input data for the convolution model. It can be observed
that the positive (red dot) and negative samples (purple dot) were
strongly mixed together and evenly scattered throughout the
entire feature space. Furthermore, we extracted the output of hid-
den fully connected layer (‘‘Dense1” in Table 2) formed 200-D hid-
den attributes. Similarly, Fig. 7B displayed the UAMP results of
CNN-learned hidden features. Remarkably, the positive samples
(red dot) were mainly concentrated in the lower-left area, whereas
the negative samples in the opposite upper-right area. Compared
with original AAIndex features, the mined patterns by a series of
convolution, pooling and dropout operations are more discrimina-
tive to distinguish Kcr and non-Kcr proteins, which well proved/re-
flected the effectiveness of the CNNs framework as a feature
extraction approach to mine hidden distinctive attributes from
inputted simple categories.
3.4. Comparison of different tools and discussion

Only two state-of-the-art computational tools, nhKcr and
DeepKcrot, are concentrated on human nonhistone Kcr sites.
Therefore, Table 5 compared the prediction performance of
iKcr_CNN with these two tools. Of note, nhKcr and iKcr_CNN used
the same datasets to train model. Despite �12% drop in Sp of
iKcr_CNN than that of nhKcr, the rapid increase in Sn from �60%
to �77% provides greater opportunities to identify hidden real true
Kcr sites, which is more crucial for the future application. In terms
of DeepKcrot, it illustrated �37% skew on false Kcr sequences com-
pared to true Kcr sites. As can be seen in Table 1, the datasets used
in DeepKcrot are different from this work. Thus, we reperformed
the independent test using their testing dataset (containing 1,483
Kcr and 16,497 non-Kcr segments), which can not only check our
model generalizability but also be treated as a more fair compar-
ison between DeepKrot and iKcr_CNN. We found that the predic-
tion efficiency of positive samples are sharply improved from
52.40% to 85.7, corresponding to 33.3% improvements, which well
reflected the precise identification of true positive samples in our
model. Related MCC, AUC, Pre and F1 separately achieved 0.36,
0.87, 23.37% and 36.72%. Additionally, we further calculated 95%
confidence interval results of 5-CV experiments and listed in 3rd
row: Sn = 77.13% ± 4.51%, Sp = 78.26% ± 2.46%, Acc = 78.06% ±
1.47%, MCC = 0.45 ± 0.02, AUC = 0.86 ± 0.00, etc. Taking Sn as an
example, the average value is 77.13% and will be in the range of
72.62%~81.64% with 95% probability. Similarly, Sp will be located
in the range of 75.8%�80.72% with 95% probability. In summary,
relative to other two tools, iKcr_CNN presented well-balanced pre-
diction results for samples belonging to different classes, especially
for the positive samples of interest to biologists. Therefore, it is an
efficient bioinformatics tool with well robustness and generaliz-
ability, and expected to offer reliable guidance for future
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Fig. 7. UMAP visualization results of training samples, where the protein sequences were formulated by the original AAIndex features (A) and mined attributes outputted
from the constructed CNNs architecture (B).

Table 5
Comparison of state-of-the-art tools for human nonhistone Kcr sites, where ‘‘±” indicated 95% confident interval results.

Tools Features Classifier Results Sn (%) Sp (%) Acc (%) MCC AUC Pre F1

nhKcr BE, AAIndex, BLOSUM62 CNN 5-CV 62.86 90.00 85.40 0.51 0.88 – –
Inde 58.90 90.00 84.33 0.48 0.88 – –

iKcr_CNN AAIndex CNN (FL) 5-CV 77.13 ± 4.51 78.26 ± 2.46 78.06 ± 1.47 0.45 ± 0.02 0.86 ± 0.00 41.83 ± 1.71 53.89 ± 1.35
Inde 81.46 74.23 75.53 0.45 0.85 41.01 54.55

DeepKcrot WE CNN 5-cv 53.70 90.00 87.10 0.34 0.86 – –
Inde 52.40 90.00 86.90 0.34 0.86 – –
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researches on associated molecular mechanisms, disease treat-
ments, and drug developments.

It should be noted that these three predictors were all built on
the frame of CNNs. Neglecting the protein representations and
hyperparameters setting, the biggest difference is the implement
of FL function instead of CE to guide optimization. The prediction
gap (�40%) between Sn and Sp in previous tools caused by the
imbalance challenge was successfully narrowed to be negligible.
During the construction process, we have tried to take into
account many factors, including well-known feature extraction
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methods, feature incorporation, complex feature selection strate-
gies (i.e., F-score-based feature ranking followed by incremental
feature selection (IFS)), grid search of hyperparameters in CNN
architecture (the number of layers, and involved number of fil-
ters, kernel size, dropout rate, learning rate, etc., see Table 2).
The evaluated metrics was basically swung at 75%, and hard to
obtain remarkable enhancement. Therefore, we implied that, with
the appropriate/necessary imbalance strategy, the most basic and
crucial method to increase performance is to find discriminative
protein representations.



Fig. 8. Screenshot of the iKcr_CNN web-server (available at ikcrcnn.webmalab.cn/), where the user can input or upload the query proteins (see upper panel) and then results
can be presented or download (see lower panel) a few minutes later.
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3.5. Construction of the iKcr_CCN web server

The essential purpose of developing prediction models is to
assist biological/experimental researchers find potential modified
sites. However, local implementation is cumbersome and challeng-
ing, especially the configuration of the DL environment of Ten-
sorFlow, Keras, etc. Thereby, we built a user-friendly web server

to predict Kcr sites online (accessible at ikcrcnn.webmalab.cn/).
As illustrated in Fig. 8, four underlined buttons of ‘‘Introduction”,
‘‘Prediction”, ‘‘Download” and ‘‘Contact” are separately linked to
brief sever introduction, Kcr prediction interface, resource down-
load and contact details. When predicting potential sites (green
box), the user only needs to prepare and input the query proteins
in FASTA format with a fixed window length of 29 (the lysine (K)
is in center and 14 acids on both sides, see 2.1) or directly upload
the FASTA file if large amounts of proteins. After submitting, the
predicted results will be illustrated in tabular form, including sam-
ple ID, protein sequence, predicted label with default threshold of
0.5 as well as specific probabilities predicted to be Kcr sites a few
seconds later (abbreviated as ‘‘ID”, ‘‘Label”, ‘‘Sequence” and ‘‘Prob-
ability”, respectively). It is noted that the output box can only dis-
play up to 20 samples. All prediction results and related AAIndex
features can be quickly download below in csv format (; icon).
All benchmark datasets and python codes can be obtained on the

‘‘Download” page as well as the public Git-Hub platform github.-

com/lijundou/iKcr_CNN/.

4. Conclusion

Precise identification of Kcr sites can facilitate the research pro-
gress of the involved modification mechanisms, cellular activities,
and medical developments. Although two state-of-the-art predic-
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tion tools have been proposed, they presented low efficiencies of
positive samples that experimenters are more interested in. In this
work, we built a novel computational tool in the deep learning
frame, dubbed iKcr_CNN, to predict Kcr site on human nonhistone
proteins. To eliminate the prediction preference for major samples
caused by imbalance distribution, we implemented the powerful
focal loss function as the indicator to optimize the constructed
deep learning classifier. Unlike the classical binary cross-entropy
(CE), FL not only implements different class weights but also dis-
tinguishes the well- and hard-classified samples to fairly treat
the positive and negative subsets. Based on only 29 important
physicochemical patterns in the AAIndex descriptor, this concise
model ultimately demonstrated 77.31% prediction score for true
Kcr sites, and 78.62% for false Kcr sites with AUC value of 0.86 over
5-fold CV, as well as 77.87% for true Kcr sites, 76.61% for false Kcr
sites with AUC of 0.85 over independent tests. Compared to the
previous tools, it reported the highest prediction precision of pos-
itive samples and showed more balanced performance, which indi-
cated the high efficiency of FL on data imbalance issue.
Furthermore, we built an online web-server, named iKcr_CNN, to
help scientific researchers conveniently perform Kcr detection

(available at ikcrcnn.webmalab.cn/). We anticipate that the pro-
posed model is a reliable tool to detect potential Kcr sites, and pro-
vides bioinformatics guidance for further laboratory researches.

Although our model showed balanced prediction scores for pos-
itive and negative samples, there is still some room existed to
improve its performance. A series of complex optimization exper-
iments involving different protein representation approaches, fea-
ture combination/selection, and classification algorithms, can only
bring �5% improvement. Therefore, we believed that developing
effective protein representation method is still the fundamental/
significant way to build advanced bioinformatics tools. Undeni-

http://ikcrcnn.webmalab.cn/
http://github.com/lijundou/iKcr_CNN/
http://github.com/lijundou/iKcr_CNN/
http://ikcrcnn.webmalab.cn/
http://ikcrcnn.webmalab.cn/
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ably, designing novel and effective representation methods is a
challenging and meaningful task, which mainly depends on the
profound realization of modification mechanisms and biological
sequences, combined with certain statistical knowledge. Besides,
DL-based multiple mainstream techniques, such as the Autoen-
coder (AE), transfer learning (TL), generative adversarial network
(GANs), are also the promising direction for us to mine more pow-
erful features. In addition, previous studies were basically concen-
trated on improving the overall prediction performance during the
modelling process. It is also valuable to give precise explanation for
the specific example which is detected by FL but not detected by
other methods. It hopefully brings new insights to the difference
of Kcr and non-Kcr samples in sequence level, even helps to
uncover the mechanisms of modification. In addition, it is highly
encouraged to implement several interpretable algorithms to help
biologist understand the model and analyze the contribution of
individual features to the predicted results, such as the Shapley
Additive explanation (SHAP) [20], Local Interpretable Model-
agnostic Explanations (LIME) [22], etc. The mentioned above will
be important aspects for us to enhance model performance and
conduct more in-depth research in the future.
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