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Abstract. Recently, mutations in the Kruppel‑like factor 13 
(KLF13) gene encoding a Kruppel‑like transcription factor 
have been reported to cause congenital heart disease (CHD). 
However, due to pronounced genetic heterogeneity, the muta‑
tional spectrum of KLF13 in other cohorts of cases suffering 
from distinct types of CHD remain to be ascertained. In the 
present investigation, by Sanger sequencing of KLF13 in 316 
unrelated cases affected by different forms of CHD, a new 
mutation in heterozygous status, NM_015995.3: c.430G>T; 
p.(Glu144*), was detected in an index patient affected with 
patent ductus arteriosus (PDA) and ventricular septal defect 
(VSD), as well as bicuspid aortic valve (BAV), with a mutation 
frequency of ~0.32%. Genetic investigation of the avail‑
able family members of the proband demonstrated that the 
truncating mutation co‑segregated with CHD. The nonsense 
mutation was not observed in 400 unrelated volunteers without 
CHD who were enrolled as control subjects. Quantitative 
biological measurements with dual luciferase reporters 
revealed that Glu144*‑mutant KLF13 did not transactivate 
the downstream genes vascular endothelial growth factor A 
and natriuretic peptide A. In addition, the mutation abrogated 

the synergistic transcriptional activation between KLF13 and 
T‑box transcription factor 5, a well‑established CHD‑causing 
gene. In conclusion, the present study indicates that geneti‑
cally defective KLF13 contributes to familial PDA and VSD, 
as well as BAV, which expands the phenotypic spectrum 
linked to KLF13, and reveals a novel molecular pathogenesis 
of the disease, providing a new molecular target for the early 
prophylaxis and individualized treatment of CHD.

Introduction

Congenital heart disease (CHD), as a collective diagnosis 
for structural malformations of the heart and valves, as well 
as the endothoracic great blood vessels, occurring during 
embryonic development, represents the most common birth 
deformity in humans, with a prevalence of ~1% among live 
births worldwide (1,2). When minor cardiac structural anoma‑
lies are included, such as aneurysm of the atrial septum and 
bicuspid aortic valve (BAV), which is the most prevalent 
congenital cardiovascular anomaly with an incidence of 1‑2% 
in the population, the overall prevalence of CHD may be as 
high as ~5% (2). Based on the occurrence of cardiac lesions 
in certain locations, CHD is clinically classified into >20 
distinct subtypes, including ventricular septal defect (VSD), 
patent ductus arteriosus (PDA), transposition of the great 
arteries (TGA), double outlet of the right ventricle (DORV), 
tricuspid valve atresia (TVA), atrial septal defect (ASD), endo‑
cardial cushion defect, aortic stenosis, a right aortic arch, a 
single ventricle, tetralogy of Fallot, hypoplastic left heart and 
hypoplastic right heart (3‑6). Irrespective of minor CHD that 
may resolve spontaneously (3), major CHD may contribute to 
diminished health‑associated quality of life (7‑9), decreased 
exercise performance (10‑14), delayed neurodevelopment 
and brain injury (15‑18), ischemic or hemorrhagic cerebral 
stroke (19‑21), pulmonary arterial hypertension or Eisenmenger 
syndrome (22‑24), viral pneumonia (25‑27), infective endo‑
carditis (28‑30), acute myocardial infarction (31,32), chronic 
congestive heart failure (33‑35), ventricular or supraventricular 
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arrhythmia (36‑38) and death (39‑42). Notably, CHD remains 
the most frequent etiology of newborn deaths caused by birth 
defects, with 21.8% of the neonates who succumb to various 
birth malformations having a cardiovascular abnormality (43). 
Although tremendous improvement in the outcomes of cardiac 
surgery and perioperative intensive care has been achieved, 
which allows >90% of CHD‑infants to survive into adulthood 
and reach fertile age, this results in an increasing adult popula‑
tion with CHD, and now the rising number of adult patients 
with CHD accounts for more than two‑thirds of the overall 
CHD population (44). Moreover, the rates of late surgical 
complication and cardiac comorbidity, and even mortality, 
markedly increase in adults affected with CHD (45‑47). 
Despite the clinical importance, the etiologies underpinning 
CHD in a considerable proportion of cases remain obscure.

In vertebrates, the heart is the first functional organ that 
develops during embryonic morphogenesis, and cardiac 
organogenesis undergoes an extremely complex biological 
process, which is precisely mediated by a sophisticated 
regulatory network, involving transcription factors, cardiac 
structural proteins, signaling transducers, epigenetic modifiers 
and microRNAs (48). Previous studies have demonstrated that 
both environmental risk factors and genetic defects may inter‑
fere with this finely controlled developmental process, giving 
rise to CHD (1,2,48‑54). The well‑recognized non‑inheritable 
pathogenic factors for CHD include maternal viral infec‑
tion, nutritional deficiency, obesity, diabetes and decreased 
physical activity, as well as exposure to toxic chemicals, 
therapeutic drugs and ionizing radiation during early preg‑
nancy (48‑51). However, accumulating evidence highlights 
the strong genetic basis underpinning CHD (1,2,52‑54). 
Significant familial aggregation of CHD has been reported, 
with the risk of CHD recurrence in the first‑degree offspring 
of an affected parent being between 3 and 19% depending on 
the distinct types of lesion (55). In addition to chromosomal 
alterations encompassing aneuploidies, microdeletions and 
microduplications, pathogenetic variations in >100 genes 
amply expressed in the developing heart, encompassing those 
encoding sarcomeric proteins, transcription factors, chro‑
matin modifies and signal‑transducing molecules, have been 
determined to contribute to CHD (1,2,52,53,56‑83). Of these 
reported CHD‑causative genes, the majority code for cardiac 
core transcription factors, such as T‑box transcription factor 
(TBX)1, TBX20, TBX5, NK2 homeobox 5, GATA binding 
protein (GATA)6, GATA4, GATA5, heart and neural crest 
derivatives expressed (HAND)1 and HAND2 (84). However, 
the genetic components underpinning CHD in most cases are 
still unknown.

Notably, mutations in the Kruppel‑like factor 13 (KLF13) 
gene, which codes for a Kruppel‑like transcription factor 
crucial for proper cardiovascular morphogenesis, have recently 
been discovered to cause distinct types of CHD (66,67). 
Li et al (66) performed targeted sequencing analyses of the 
entire coding region of KLF13 in a cohort of 309 index patients 
suffering from CHD, and found two heterozygous KLF13 vari‑
ants in 2 out of 309 CHD patients, including NM_015995.3: 
c.467G>A; p.(Ser156Asn) in one patient affected with TGA 
and NM_015995.3: c.487C>T; p.(Pro163Ser) in another patient 
with TVA, VSD and ASD. These two missense mutations 
were absent from 200 population‑matched healthy controls. 

Biological assays elucidated that Ser156Asn‑mutant KLF13 
had enhanced transcriptional activation on the downstream 
target gene brain natriuretic peptide, alone or in synergy 
with TBX5, and a significantly enhanced ability to bind 
physically to TBX5, whereas the Pro163Ser variant showed 
a loss‑of‑function effect (66). Wang et al (67) performed 
whole‑exome sequencing analyses in a family with a high 
incidence of CHD (DORV and VSD), and identified a new 
KLF13 variant, NM_015995.3: c.370G>T; p.(Glu124*). The 
nonsense heterozygous mutation was absent from 312 control 
individuals without CHD. Functional investigation unveiled 
that the Glu124* variation exerted a loss‑of‑function impact 
on its two target genes, actin α cardiac muscle 1 (ACTC1) 
and atrial natriuretic peptide, singly or synergistically with 
GATA4, as well as GATA6 (67). These investigations under‑
score the substantial genetic heterogeneity of CHD comprising 
a wide spectrum of cardiovascular structural malformations, 
which encourages exploration of the spectrum and prevalence 
of KLF13 variations in different cohorts of cases inflicted with 
various types of CHD. The aim of the current study was to 
analyze the spectrum and prevalence of KLF13 variations in 
another cohort of cases with various types of CHD.

Materials and methods

Recruitment and clinical evaluation of study participants. 
The present study participants comprised a new cohort of 316 
index patients affected with different forms of CHD enrolled 
from the Chinese Han population between March 2018 
and November 2020 at Tongji Hospital and East Hospital, 
Tongji University (Shanghai, China). Clinical diagnosis and 
classification of various types of CHD were made as described 
previously (3,67). The relatives of the probands were also 
recruited when available. Patients with known syndromic 
CHD or chromosomal anomaly were ruled out from this 
research. Patients were diagnosed with syndromic CHD if they 
manifested a distinct facial gestalt or had at least one reported 
extra‑cardiac malformation (85). A total of 400 unrelated 
volunteers without CHD were enrolled as control individuals 
from the same geographic area, who were exactly matched 
with the cases for sex and ethnicity, as well as age. All research 
participants underwent a comprehensive clinical assessment, 
as described previously (67‑69). This research was fulfilled 
in compliance with the tenets of the Declaration of Helsinki. 
The protocol applied to the current investigation was approved 
by the Medical Ethics Committee of Tongji Hospital, Tongji 
University School of Medicine [Shanghai, China; approval no. 
LL(H)‑09‑07]. Written informed consent was provided by the 
research participants or their parents prior to commencement 
of sample collection. 

Genetic analysis of KLF13. A whole blood specimen was 
collected from each study participant in an EDTA‑coated tube 
and stored in a refrigerator at ‑80˚C. Genomic DNA was puri‑
fied from blood leucocytes by utilizing DNA extraction reagent 
(Promega Corporation). The entire coding region, as well 
as splicing boundaries, of the KLF13 gene (NC_000015.10) 
were amplified via polymerase chain reaction (PCR) using a 
DNA polymerase kit (Qiagen GmbH) and the KLF13‑specific 
oligonucleotide primers, as described previously (67): Forward 
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5'‑CCA TGC GCT CAC TCT TCG GT‑3' and reverse, 5'‑CCT TTG 
TCT GAG GCC GGG CT‑3' for the first party of coding exon 1 
(product size, 670 bp); forward, 5'‑CGG ACC TCA ACC AGC 
AAG CG‑3' and reverse, 5'‑CTC CGA GAG CCA AGA CCC GC‑3' 
for the second party of coding exon 1 (product size, 569 bp); and 
forward, 5'‑GCA TGT GGG AGG GGT GTT GA‑3' and reverse, 
5'‑TCG TGA AAC GTG TCC ATC CCT‑3' for coding exon 2 
(product size, 675 bp). Each mixture used for PCR was prepared 
in a 0.2‑ml PCR tube with a final volume of 25 µl, containing 1X 
Buffer (Qiagen GmbH), 1X Q solution, a component of the 
HotStar Taq DNA Polymerase kit facilitating amplification of 
templates with a high‑degree secondary structure or with a rich 
GC content by modifying the melting behavior of DNA (Qiagen 
GmbH), 0.2 mM dNTPs (Qiagen GmbH), 0.5 µM forward 
primer, 0.5 µM reverse primer, 0.02 U/µl HotStar Taq DNA 
Polymerase (Qiagen GmbH) and 0.1 µg genomic DNA. PCR was 
fulfilled on a 96‑well thermocycler (Bio‑Rad Laboratories, Inc.). 
The thermocycling conditions set for the PCR were as follows: 
Initial denaturation at 95˚C for 15 min, followed by 36 cycles of 
denaturation at 94˚C for 30 sec, annealing at 62˚C for 30 sec and 
extension at 72˚C for 1 min, with a final extension at 72˚C for 
7 min. PCR products were resolved by 1.5% agarose gel elec‑
trophoresis and visualized after ethidium bromide staining of 
gels. PCR‑sequencing of extracted amplicons was conducted as 
described previously (69). For a validated KLF13 variation, the 
Human Gene Mutation Database (HGMD; http://www.hgmd.
cf.ac.uk/ac/index.php), Single Nucleotide Polymorphism (SNP) 
datbase (https://www.ncbi.nlm.nih.gov/snp) and the Genome 
Aggregation Database (gnomAD; https://gnomad.broadinsti‑
tute.org) were retrieved to verify its novelty.

Construction of gene expression plasmid and site‑directed 
mutagenesis. The wild‑type KLF13‑pcDNA3.1 plasmid 
(Invitrogen; Thermo Fisher Scientific, Inc.) was constructed 
as described previously (67). The mutation discovered in the 
current study was introduced into wild‑type KLF13‑pcDNA3.1 
by site‑targeted mutagenesis with a site‑targeted mutagenesis 
kit (Stratagene; Agilent Technologies Inc.) with the following 
primers: Forward, 5'‑CCC GCG GGG AGC GGC TAG CCC GGC 
CTC AGA C‑3' and reverse, 5'‑GTC TGA GGC CGG GCT AGC 
CGC TCC CCG CGG G‑3'. The mutant‑type KLF13‑pcDNA3.1 
was selected by DpnI (Takara Biotechnology Co., Ltd.) and 
was confirmed by sequencing analysis. The TBX5‑pcDNA3.1 
plasmid (Invitrogen; Thermo Fisher Scientific, Inc.) and the 
reporter plasmid of human natriuretic peptide precursor 
A‑luciferase (NPPA‑luc), which expresses firefly luciferase, 
have been described previously (68). The reporter plasmid of 
human vascular endothelial growth factor A (VEGFA)‑luc, 
which expresses firefly luciferase, was generated as previously 
described (86).

Cell culture, expression plasmid transfection and reporter 
gene assay. NIH3T3 cells (Cell Bank of Type Culture 
Collection of the Chinese Academy of Sciences) were seeded 
onto a 24‑well plate, and maintained in DMEM (Merck KGaA) 
containing 10% fetal bovine serum and 1% penicillin/strepto‑
mycin (both Thermo Fisher Scientific, Inc.), in an atmosphere 
of 5% CO2 at 37˚C. NIH3T3 cells were transfected 24 h 
after plating with various expression plasmids, including 
empty pcDNA3.1, wild‑type KLF13‑pcDNA3.1 (KLF13), 

Glu144*‑mutant KLF13‑pcDNA3.1 (Glu144*), wild‑type 
TBX5‑pcDNA3.1 (TBX5), NPPA‑luc and VEGFA‑luc, 
utilizing the Lipofectamine® 3000 Transfection Reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) as described previ‑
ously (67). The internal control plasmid pGL4.75 (Promega 
Corporation), which expresses Renilla luciferase, was 
co‑transfected to balance transfection efficiency. The empty 
pcDNA3.1 plasmid (Invitrogen; Thermo Fisher Scientific, 
Inc.) was used as a negative control. Cells were collected 
at 48 h post‑transfection, and lysed in 0.2 ml Reporter Lysis 
Buffer (Promega Corporation). The cellular lysates were used 
to measure the luciferase activities of firefly and Renilla on a 
luminometer (Promega Corporation), using a dual‑luciferase 
assay kit (Promega Corporation). The activity of the target 
gene promoter was expressed as fold activation of firefly 
luciferase to Renilla luciferase. For each expression plasmid, 
three transfection experiments were performed in triplicate.

Statistical analysis. Data for promoter activity are presented 
as the mean ± standard deviation of the original results from 
three transfection experiments. Differences in promoter 
activities between two groups were compared with unpaired 
Student's t‑test. When comparisons among multiple groups 
were made, one‑way ANOVA with a Tukey‑Kramer HSD 
post‑hoc test was used. A two‑sided P‑value of <0.05 was used 
to indicate a statistically significant difference. The statistical 
software used for the analysis was SPSS version 17.0 for 
Windows (SPSS, Inc.).

Results

Clinical characteristic data of the studied patients. In 
this investigation, a cohort of 316 unrelated index patients 
suffering from various types of CHD (168 male cases and 148 
female cases, with ages ranging from 1‑49 years and a mean 
age of 21±9 years) was clinically investigated in contrast to 
a total of 400 unrelated individuals without CHD (212 male 
individuals and 188 female individuals, with ages ranging 
from 1‑49 years and a mean age of 21±8 years). All the 
included patients with CHD had echocardiographic evidence, 
whereas the echocardiograms of the enrolled control subjects 
were normal, without evidence of cardiovascular structural 
abnormalities. Among the 316 unrelated index patients with 
CHD, 58 index patients reported a positive family history of 
CHD, while all 400 control subjects lacked a family history of 
CHD. No research participants had known environmental risk 
factors predisposing them to CHD, including maternal viral 
infection, nutritional deficiency, obesity, diabetes or exposure 
to toxic chemicals, therapeutic drugs and ionizing radiation 
during early pregnancy. Most of the patients underwent 
cardiac catheterization or surgery. The clinical features of the 
316 index cases with CHD are summarized in Table I.

Detection of a new pathogenic KLF13 mutation. Via direct 
sequencing analysis of the entire coding region and splicing 
donors/acceptors of KLF13 in 316 index patients with diverse 
forms of CHD, a heterozygous non‑synonymous mutation, 
NM_015995.3: c.430G>T; p.(Glu144*), was detected in one 
index patient inflicted with CHD, comprising PDA and VSD, as 
well as BAV; this mutation therefore has a prevalence of ~0.32% 
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(1/316) in the study CHD population. The mutation carrier 
possessed a CHD‑positive family history, and genetic assay of 
the available family members unveiled that the nonsense muta‑
tion was in co‑segregation with autosomal‑dominant CHD in 
the whole family, with complete penetrance for PDA, as well 
as BAV, and incomplete penetrance for VSD. The nonsense 
mutation was neither detected in 400 control subjects nor 
found in the HGMD, SNP and gnomAD databases, indicating 
its novelty. The sequence electropherogram traces illustrating 
the KLF13 mutation in the heterozygous status as well as its 
wild‑type sequence in the homozygous status are presented in 
Fig. 1A. The schemas exhibiting the functional domains of both 
wild‑type KLF13 and mutant KLF13 are provided in Fig. 1B. 
The pedigree structure of the studied family inflicted with CHD 
is displayed in Fig. 1C. The clinical characteristic information of 
the CHD‑affected family members is shown in Table II.

Transcriptional activation function of KLF13 is disabled by 
the mutation. As indicated in Fig. 2, wild‑type KLF13 and 
Glu144*‑mutant KLF13 (each 100 ng of expression plasmid) 
transactivated the NPPA promoter by ~16‑fold and ~1‑fold, 
respectively (wild‑type KLF13 vs. Glu144*‑mutant KLF13: 
t=9.99854, P=0.00056). When half the amount of wild‑type 
KLF13 and Glu144*‑mutant KLF13 (each 50 ng of expres‑
sion plasmid) was utilized in combination to model the 
pathological state of mutation carriers (heterozygosity), the 
induced transcriptional activity was ~8‑fold (wild‑type KLF13 
vs. wild‑type KLF13 + Glu144*‑mutant KLF13: t=5.31149, 
P=0.00604).

Synergistic transcriptional activation between KLF13 and 
TBX5 is nullified by the mutation. As indicated in Fig. 3, 
wild‑type KLF13 and Glu144*‑mutant KLF13 (each 100 ng 
of expression plasmid) transactivated the VEGFA promoter 
by ~9‑fold and ~1‑fold, respectively (wild‑type KLF13 vs. 
Glu144*‑mutant KLF13: t=9.90028, P=0.00058). In the 
presence of wild‑type TBX5 (100 ng of expression plasmid), 
wild‑type KLF13 and Glu144*‑mutant KLF13 (each 100 ng 
of expression plasmid) transactivated the VEGFA promoter 
by ~36‑fold and ~4 fold, respectively (wild‑type KLF13 + 
wild‑type TBX5 vs. Glu144*‑mutant KLF13 + wild‑type 
TBX5: t=16.2934, P=0.00008).

Discussion

In the present study, a new KLF13 mutation, NM_015995.3: 
c.430G>T; p.(Glu144*), was identified in one family suffering 
from PDA, BAV and VSD. The nonsense heterozygous muta‑
tion, which co‑segregated with CHD in the whole family, 
was neither observed in 800 control chromosomes nor found 
in the databases of HGMD, SNP and gnomAD. Functional 
investigations demonstrated that the Glu144*‑mutant KLF13 
failed to transcriptionally activate the promoters of NPPA 
and VEGFA. Additionally, the mutation abrogated the syner‑
gistic transcriptional activation between KLF13 and TBX5, 
a well‑established CHD‑causative gene (68,69,84). These 
findings support the fact that genetically defective KLF13 
confers an enhanced susceptibility to CHD, including PDA, 
BAV and VSD. Notably, the experiments performed in one 
NIH3T3 cell line only failed to control for cell‑dependent 
effects, and it remains possible, in fact likely, that other cells 
may yield different results. Hence, it is very important that 
additional cells lines are used to examine the functional effect 
of Glu144*‑mutant KLF13 to generalize the mechanism 
proposed on the basis of this work.

The KLF13 gene, which encodes a transcription factor with 
288 amino acids, is located on human chromosome 15q13.3. 
As one member of the KLF family, the KLF13 protein harbors 
four critical structural domains encompassing a transactiva‑
tion domain, which functions to transactivate downstream 
target genes, a transcriptional inhibition domain, which 
serves to transcriptionally inhibit downstream target genes, a 
nuclear localization signals responsible for nuclear localiza‑
tion, and three zinc‑fingers required for binding to target 
gene promoters and interaction with other transcriptionally 
cooperative partners (67,87). Previous investigations have 
substantiated the ample expression of KLF13 in the hearts 

Table I. Demographic and clinical characteristics of the 
316 patients affected with various forms of congenital heart 
disease.

Parameters n or mean

Sex, n (%) 
  Male 168 (53)
  Female 148 (47)
Mean age (range), years 21±9 (1‑49)
Distribution of distinct forms of CHD, n (%) 
  VSD 73 (23)
  ASD 57 (18)
  PDA 38 (12)
  TOF 32 (10)
  DORV 16 (5)
  VSD + PDA 28 (9)
  VSD + ASD 22 (7)
  DORV + VSD 16 (5)
  TGA + VSD 16 (5)
  ASD + PDA 9 (3)
  TOF + ASD 6 (2)
  PTA + VSD 3 (1)
Arrhythmias, n (%) 
  AVB 16 (5) 
  FVPB 9 (3)
  AF 7 (2)
  PVT 3 (1)
Medical history, n (%) 
  Cardiovascular surgery for CHD 177 (56)
  Catheter‑based treatment for CHD 101 (32)
  Follow‑up 38 (12)

CHD, congenital heart disease; VSD, ventricular septal defect; ASD, 
atrial septal defect; PDA, patent ductus arteriosus; DORV, double 
outlet of the right ventricle; TOF, tetralogy of Fallot; TGA, transposi‑
tion of the great arteries; PTA, persistent truncus arteriosus; AVB, 
atrioventricular block; FVPB, frequent ventricular premature beat; 
AF, atrial fibrillation; PVT, paroxysmal ventricular tachycardia.
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of both humans and vertebrates during embryonic develop‑
ment, and the pivotal effect of KLF13 on cardiovascular 

morphogenesis (66,67,86,88). Recent experimental studies 
have corroborated that KLF13 transactivates the expression 

Figure 1. A new KLF13 mutation contributing to congenital heart disease. (A) Sequence electropherograms illustrating the KLF13 mutation in the heterozy‑
gous status (mutant) and its wild‑type base in the homozygous status (wild‑type). The arrow indicates the nucleotides where the mutation occurs. (B) Schematic 
representations exhibiting the structural domains of KLF13. (C) Pedigree structure of the family inflicted with congenital heart disease (+ represents a carrier 
of the KLF13 mutation and‑represents a non‑carrier). TAD, transcriptional activation domain; TID, transcriptional inhibitory domain; NLS, nuclear location 
signal; Zn, zinc finger.
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of several downstream genes, encompassing NPPA, NPPB, 
VEGFA and ACTC1, separately or synergistically with TBX5, 
GATA4 and GATA6 (86,88). Deleterious mutations in KLF13 
and its downstream target genes VEGFA and ACTC1, as well 
as its transcriptionally cooperative partners TBX5, GATA4 and 
GATA6, have been discovered as genetic defects underpinning 
CHD in humans (66‑69,84,89‑91). In the current investigation, 
the mutation found in cases with familial CHD was anticipated 
to generate a truncated KLF13 protein losing most structural 
domains, and biochemical assays revealed that Glu144*‑mutant 
KLF13 had no transactivation on its downstream target genes. 
In addition, the mutation disrupted the synergistic transcrip‑
tional activation between KLF13 and TBX5. These results 
strongly indicate KLF13 haploinsufficiency as a molecular 
mechanism underpinning CHD in a subset of cases.

 It has been validated in experimental animal models 
that Klf13 deficiency contributes to aberrant cardiovascular 
morphogenesis. In Xenopus, KLF13 is abundantly expressed 
in the heart and vessels during embryogenesis, and knock‑
down of the Klf13 alleles in Xenopus embryos leads to atrial 

septal defects and myocardial trabecular hypoplasia, similar 
to those seen in mice or humans with hypomorphic alleles of 
Gata4 (88). In mice, KLF13 is expressed highly in the heart 
at all stages of embryonic development, including during 
development of truncus arteriosus, ventricular trabeculae, 
atrial myocardium and atrioventricular cushions (88,92). When 
homozygous knockout of Klf13 alleles was performed in mice, 
cardiac vacuolar lesions, heart enlargement and embryonic 
death occurred (93). In another study, although mice with 
heterozygous deletion of Klf13 had no obvious cardiac struc‑
tural abnormalities, compound haploinsufficiency of Tbx5 and 
Klf13 markedly reduced the postnatal viability and significantly 
increased the penetrance of cardiac septal aberrations caused 
by Tbx5 haploinsufficiency (88). Altogether, these results from 
experimental animals indicate that genetically defective KLF13 
increases the vulnerability to CHD in humans, and suggest that 
the dosage of KLF13 must be finely controlled to avoid cardio‑
vascular developmental malformations.

Notably, KLF13 variations have been reported to cause 
distinct types of congenital cardiovascular deformities in 
humans, including TGA, TVA, DORV, VSD and ASD (66,67). 
In the present study, the affected family members who carried 
an identified KLF13 mutation manifested PDA, BAV and VSD, 
therefore expanding the phenotypic spectrum ascribed to mutant 
KLF13 and highlighting the genetic heterogeneity of CHD.

Table II. Phenotypic profile and KLF13 mutation status of the family members affected with congenital heart disease.

Individual Sex Age, years Cardiac phenotype KLF13 mutation (p.Glu144*)

I‑1 M 75a PDA, BAV, VSD NA
II‑1 M 61 PDA, BAV +/‑
II‑7 M 53 PDA, BAV, VSD +/‑
III‑1 M 36 PDA, BAV +/‑
III‑6 F 30 PDA, BAV +/‑
III‑13 M 28 PDA, BAV, VSD +/‑
IV‑1 F 10 PDA, BAV +/‑

aAge at death. M, male; F, female; PDA, patent ductus arteriosus; BAV, bicuspid aortic valve; VSD, ventricular septal defect; NA, not available; 
+/‑, heterozygosity; KLF13, Kruppel‑like factor 13.

Figure 2. Diminished transcriptional activity of KLF13 caused by the 
mutation. In cultivated NIH3T3 cells expressing various recombinant 
plasmids, activation of NPPA‑luc by wild‑type or Glu144*‑mutant KLF13, 
singly or together, revealed that Glu144*‑mutant KLF13 failed to transac‑
tivate its downstream target gene NPPA. For each eukaryotic expression 
plasmid, cellular transient transfection experiments were repeated three 
times in triplicates. *P=0.00056 and **P=0.00604 compared with wild‑type 
KLF13. NPPA‑luc, human natriuretic peptide precursor A luciferase; 
KLF13, Kruppel‑like factor 13.

Figure 3. Synergistic transcriptional activation between KLF13 and TBX5 
disrupted by the mutation. In cultivated NIH3T3 cells, the synergistic transac‑
tivation of the promoter of VEGFA by KLF13 and TBX5 was abrogated by the 
Glu144* mutation. *P=0.00058 and **P=0.00008 compared with to respective 
wild‑type counterparts. VEGFA, human vascular endothelial growth factor A 
luciferase; TBX5, T‑box transcription factor 5; KLF13, Kruppel‑like factor 13.
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In conclusion, the present study causally links a new KLF13 
mutation to CHD, and to the best of our knowledge, for the first 
time to PDA and BAV, which reveals a novel molecular patho‑
genesis underlying CHD, conducive to precise prophylaxis and 
personalized treatment of the affected patients.
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