OPEN @ ACCESS Freely available online @ PLOS ‘ ONE

CLCAs - A Family of Metalloproteases of Intriguing
Phylogenetic Distribution and with Cases of Substituted
Catalytic Sites

Anna Lenart’, Malgorzata Dudkiewicz?, Marcin Grynberg?, Krzysztof Pawlowski'**

1 Department of Cellular and Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland, 2 Faculty of Agriculture and
Biology, Warsaw University of Life Sciences, Warsaw, Poland, 3 Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences,Warsaw,
Poland

Abstract

The zinc-dependent metalloproteases with His-Glu-x-x-His (HExxH) active site motif, zincins, are a broad group of proteins
involved in many metabolic and regulatory functions, and found in all forms of life. Human genome contains more than 100
genes encoding proteins with known zincin-like domains. A survey of all proteins containing the HExxH motif shows that
approximately 52% of HExxH occurrences fall within known protein structural domains (as defined in the Pfam database).
Domain families with majority of members possessing a conserved HExxH motif include, not surprisingly, many known and
putative metalloproteases. Furthermore, several HExxH-containing protein domains thus identified can be confidently
predicted to be putative peptidases of zincin fold. Thus, we predict zincin-like fold for eight uncharacterised Pfam families.
Besides the domains with the HExxH motif strictly conserved, and those with sporadic occurrences, intermediate families are
identified that contain some members with a conserved HExxH motif, but also many homologues with substitutions at the
conserved positions. Such substitutions can be evolutionarily conserved and non-random, yet functional roles of these
inactive zincins are not known. The CLCAs are a novel zincin-like protease family with many cases of substituted active sites.
We show that this allegedly metazoan family has a number of bacterial and archaeal members. An extremely patchy
phylogenetic distribution of CLCAs in prokaryotes and their conserved protein domain composition strongly suggests an
evolutionary scenario of horizontal gene transfer (HGT) from multicellular eukaryotes to bacteria, providing an example of
eukaryote-derived xenologues in bacterial genomes. Additionally, in a protein family identified here as closely homologous
to CLCA, the CLCA_X (CLCA-like) family, a number of proteins is found in phages and plasmids, supporting the HGT
scenario.
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Introduction involvement in digestive processes, are now acknowledged for
many crucial regulatory roles in cellular signalling in diverse
biological processes, on cellular, tissue and organism scale, e.g. in
cell proliferation and differentiation, inflammation, tissue remod-
elling, neurogenesis, angiogenesis, apoptosis, wound healing, blood
coagulation [11-14]. Not surprisingly, proteases constitute an
important class of drug targets [15-17]. Among the generic class of
proteases, distinct clans have been identified using the catalytic
mechanism and three-dimensional fold as the classifier [18,19].
The zinc ion-dependent zincin-like metalloproteases grouped in
sampled during evolution. Further, the still incomplete charting of the MA clan in the MEROPS database include 37 families [20],
the protein universe is expected to be biased by technology and while in the Pfam database there are 52 families of the
prevailing research trends [5,6]. Even for the charted regions of Peptidase_MA clan, including also putative metalloproteases
thc sequence space, many evolutionarilyjustified similarity rc.la- [21,22]. The proteins containing the zincin-like domains often
tionships are not obvious and often are found only after solving feature complex domain composition reflecting their biological
three-dimensional structures [7] or applying sophisticated bioin- functions [23].

formatics approaches [8-10].

The protein sequence space, recently becoming sampled more
and more densely thanks to genomic and metagenomic sequencing
projects, has undoubtedly ‘granular’ features, and can be classified
using various algorithms and classification systems [1,2]. Yet, it has
also features of continuity, with very distant sequence similarities
discovered between hitherto unrelated protein families, and local
structural similarities found between members of different folds
[3,4]. The protein sequence/structure space, arguably, is not fully

Here, we explore the realm of all proteins identified by the
simple HExxH active site motif common to most MA clan
member families and show topology features of the sequence

Here, we focus on a broad clan of metalloproteases that are a
good example of protein class with such a dual granular and
continuous features. The proteases, originally noted for their
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similarity network of the clan families. Also, we show that the motif
can be used as a prefilter for discovery of novel metalloproteases.

CLCAs are a protein family implicated in several pathologies in
humans, including asthma, chronic obstructive pulmonary disease
(COPD) and cancer [24,25]. Originally, they were believed to be
calcium-activated chloride channels [26,27]. Despite their char-
acterisation as putative metalloproteases several years ago [28],
they attracted moderate interest. The current view is that they are
mvolved in regulation of calcium-activated chloride currents [29].
Several members of the CLCA family have been characterised
beyond any doubt as secreted zinc-dependent metalloproteases
[30,31] that perform self-cleavage at a conserved site. Vertebrates
possess several closely homologous CLCA genes (usually 3-6), the
functional relationships between them are not fully elucidated. It is
not known whether CLCAs possess other physiological substrates
except themselves, whether they are cleaved by other proteases
except themselves, and whether different CLCA proteins cleave
each other [32,33]. It is now believed that activation of ion
channels by CLCA proteins occurs via a direct protein-protein
interaction between an ion channel molecule and the N-terminal
fragment of a CLCA protein, an interaction possible only after
CLCA self-cleavage [31].

Recently, cases of patchy phylogenetic distribution of homo-
logues of human genes in prokaryotes have attracted some
attention, [9,10,23]. Such distribution has been interpreted as
potential sign of horizontal gene transfer (HGT) [34-37].

In this article, first, we survey the HExxH proteins and identify
domain families with majority of members containing the motif.
Second, we analyse the substituted HExxH motifs in families
where they are conserved in most members. Third, we provide
support for the hypothesis of eukaryote to prokaryote horizontal
gene transfer in CLCA proteins. Lastly, we present the prokaryote-
specific CLCA-like domain family (CLCA_X) and present an
overall representation of sequence similarity topology of the
zincin-like clan.

Results and Discussion

Survey of HExxH motif-containing proteins

The ubiquitous HExxH zinc-binding motif is a hallmark of zinc-
dependent metalloproteases [38-41]. We surveyed the Trembl
database and found 151223 occurrences of the motif compared to
80000 expected by chance (significant, almost twofold over-
representation, p-value of the binomial text <<107'0, see
Methods). Then, we checked whether the occurrences of this
motif were within the known Pfam protein domains (Pfam
database version 24.0), or outside those.

After removal of redundancy in the hit sequence set at 90%
sequence identity, the occurrence of the HExxH motif within
Pfam domains was 47794 (versus 41946 expected) which makes up
52% of the occurrences, while the occurrence outside Pfam
domains was 43395 (versus 49242 expected). Thus, since approx.
46% of the total length of Trembl proteins lie within the Pfam
domains, within these domains the HExxH motif is found
significantly more often (p-value of the binomial text <<10~'°,
see Methods) than expected by chance, while outside of the
domains it is found significantly less often than expected.

The regions of protein sequence databases unassigned to known
protein domains (e.g. Pfam) can be unassigned for two reasons:
first, they may constitute novel, yet undescribed domains, second,
they may belong to special regions (e.g. transmembrane segments,
low-complexity regions, disordered regions, unique variable
regions and so forth). Hence, it can be expected that some
HExxH motifs found here outside Pfam domains actually do occur
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in yet undiscovered protein domains, possibly in novel protease
domains. Search for novel metalloprotease domains is out of the
scope of this article, however the existence of yet undescribed
zincin domains can be argued for by the rapid increase in the
numbers of zincin domains described in domain databases (for
example, in the Pfam database, the Peptidase_MA clan grew from
36 families in release 24, 2009, to 52 families in release 26, 2011
[42]. Also, recently, some novel zincin families have been
characterised [23,30]. Examples of zincin-like metalloprotease
domains, suspected but not described formally yet, include the
family of the ddrB protein of E. coli bacteriophage P1 [43] and the
CLCA_X family mentioned herein.

Since the HExxH motif is found in protein sequences twice as
often as expected by chance, even if the HExxH metalloproteases
had not been known, one would have expected some functional
relevance of the motif. Yet, obviously, some of the occurrences
have to be due to chance. One way of separating the functional
HExxH motifs from the random ones is identifying those motifs
that are conserved by evolution. To this extent, we sought protein
domain families, for which significant fraction of family members
had the motif present in a conserved position.

The Pfam domains are clearly split into those that have few
(sporadic, random) occurrences of HExxH and those that possess
the motif, as a rule, in a conserved position (see Fig. 1). Indeed, all
the domains with majority of members having a HExxH motif can
be predicted by sensitive sequence analysis methods (FFAS) to
possess the structures of zincin-like metalloproteases (see Table 1).
Thus, zincin-like fold can be predicted for eight structurally
uncharacterised Pfam domains possessing the HExxH motif. One
of them is the fatty acid desaturase domain (FA_desaturase,
PF00487) that is present in proteins coded by eight human genes
[44,45]. The remaining seven are DUF462, DUF922, DUF1025,
DUF2248, DUF2342, DUF3267 and SprA-related (PF12118)
domains. Metalloprotease function is most likely conserved in
these families, as judged from the conservation of active site motifs

(see Fig. 2).

Substituted HExxH sites in metalloproteases

Both among the HExxH proteins that are characterised as
metalloproteases and those predicted as such, many domains
(approximately half of the cases) have active site motifs occasion-
ally “broken down”, i.e. with substitutions at one of the critical
positions, His, Glu or second His, see the protein families with less
than 100% of conserved HExxH motif in Fig. 1. The domain
families with significant fraction of substituted active sites occur in
all domains of life, bacteria, eukaryotes and archaea alike.

Interestingly, the substituted motifs exhibit non-random substi-
tution patterns (see Fig. 2). Both the first and the second histidine
residues are significantly more often than expected by chance
replaced with positively charged arginine and lysine. Generally in
protein sequences, histidine is most often replaced by glutamine.
The glutamate residue of the HExxH motif in the zincin-like
proteins is most often replaced by glutamine, as generally in
proteins. The biological role of lysine- or arginine-replaced
histidines in the substituted active sites are not clear since these
positively charged residues are not expected to participate in zinc
ion binding. The replacement frequencies of the critical histidine
and glutamate residues in substituted HExxH proteins deviate
largely from the general replacement frequencies observed in
proteins for these residues.

Several substitutions do occur in HExxH motifs at least twice as
often as in proteins in general (see Table S1). The first histidine
residue of the motif is approximately twofold more often than in
an average protein substituted by Glu or Arg. The second histidine
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Figure 1. Histogram. Pfam protein domains binned by percentage of family members that possess the HExxH motif. Shown are only the domains
with more than 50 occurrences of the motif included plus all Peptidase domains with at least one occurrence.

doi:10.1371/journal.pone.0062272.g001

Table 1. Structure predictions for domain families

with majority of members possessing the HExxH motif.

% of domain

conserved protein

Caur0242 [Chloroflexus aurantiacus]

family
members First
possessing % prediction of
the HExxH FFAS Z- sequence a zincin-like
Query motif score  identity  top FFAS hit structure
CLCA_N (PF08434) Calcium-activated 72 —6,3 11 d1kufa_ d.92.1.9 (A:) Snake venom metalloprotease [28]
chloride channel [Trimeresurus mucrosquamatus], atrolysin E
SprA-related (PF12118) SprA-related family 95 =77 11 PF05569.4; Q8RPJ4_DESHA/7-280; BlaR1 peptidase M56 this article
FA_desaturase (PF00487) Fatty acid 37 -84 16 d1k7ia2 d.92.1.6 (A:18-258) Metalloprotease [Erwinia this article
desaturase chrysanthemi]
Metallopep (PF12044) Putative peptidase 87 -123 20 d1c7ka_ d.92.1.1 (A:) Zinc protease [Streptomyces Pfam
family caespitosus] annotation
MtfA (PF06167) Phosphoenolpyruvate: 100 —43,9 11 d1j7na2 d.92.1.14 (A:551-773) Anthrax toxin lethal factor, [7]
glucose-phosphotransferase regulator N- and C-terminal domains [Bacillus anthracis]
DUF2248 (PF10005) Uncharacterized protein 100 -139 10 d1j7na2 d.92.1.14 (A:551-773) Anthrax toxin lethal factor,  this article
conserved in bacteria N- and C-terminal domains [Bacillus anthracis]
DUF2265 (PF10023) Predicted amin 100 =77 1 d3b7sa3 d.92.1.13 (A:209-460) Leukotriene A4 hydrolase  Pfam
opeptidase catalytic domain [Homo sapiens] annotation
DUF462 (PF04315) Protein of unknown 100 -7 13 d1j7na2 d.92.1.14 (A:551-773) Anthrax toxin lethal factor, this article
function N- and C-terminal domains [Bacillus anthracis]
DUF922 (PF06037) Bacterial protein of 100 —74 10 dikjpa d.92.1.2 (A:) Thermolysin [Bacillus this article
unknown function thermoproteolyticus]
DUF3267 (PF11667) Protein of unknown function 83 -108 12 dlasta_ d.92.1.8 (A:) Astacin [Astacus astacus)] this article
DUF1025 (PF06262) Domain of unknown 76 —434 34 d3ellal d.92.1.17 (A:1-113) Uncharacterized protein this article
function Acel_2062 [Acidothermus cellulolyticus]
DUF2342 (PF10103) Uncharacterized 43 -938 19 d3cmnal d.92.1.16 (A:43-391) Uncharacterized protein this article

doi:10.1371/journal.pone.0062272.t001
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Figure 2. Sequence logos of substituted and conserved active
site motifs in selected zincin-like families.
doi:10.1371/journal.pone.0062272.g002

residue is also approximately twofold more often replaced with Lys
or Arg and almost fivefold more often - by Leu. The catalytic Glu
is very often replaced by Ala, Leu and Gln (2-, 3- and 3-fold,
respectively). These substitutions can be divided into two
categories: first, missense mutations resulting from a single-
nucleotide change in a codon: H->R, H-»Q, H-L and E—Q,
and second, amino acid substitutions requiring two nucleotide
changes in the corresponding codon: H—K, H—E, E—L.

The common active site substitutions are not spread evenly
among the HExxH metallopeptidase families (see Fig. 2). The
H1—R change (substitution of first histidine of the motif by an
arginine) is found often in CLCA_N peptidases and in BSPs (Basic
Secretory Proteins). The HI—E change is found often in
peptidases M2. The H5—L change occurs in reprolysins, while
the H5>—K change — in CLCA_N peptidases and reprolysins. The
substitution E2—Q) occurs in peptidases M54 and in BSPs (Basic
Secretory Proteins) and the change E2—L is seen in reprolysins.
Interestingly, only some of the unusually frequent active site
substitutions are biochemically conservative, retaining the hydro-
philic/charged properties of a residue (e.g. H=R, H=K, E—=Q).
Intriguingly, other frequent substitutions do change strongly the
properties of the amino acid residue from hydrophilic and/or
charged to hydrophobic (H—L, E—L). Thus, probably active site
substitutions observed in HExxH proteins are driven by more than
one biological mechanism. Some substitutions may allow a
metalloprotease to partly retain its biochemical properties (e.g.
zinc ion binding) while other changes may definitely abrogate the
original activity.. The roles of inactive HExxH metalloproteases
are not well-understood. The best studied are some of the
mammalian ADAM family members that have HExxH substitu-
tions such as LQxxL or HQxxH, and are involved in sperm-egg
interactions in the fertilisation process [46,47]. Although the
molecular function of the probably inactive proteases is mysteri-
ous, they can be expected to act as decoys, mimmicking other,
proteolytically active ADAM paralogues, or as accessory proteins
to their active counterparts.

The CLCA family

The CLCA proteins, defined herein as those possessing the
CLCA_N peptidase domain (PF08134) are one of the zincin-like
metalloprotease families identified in this study as having the active
site motif substituted in a number of cases (see Fig. 2).

A survey of CLCA_N domains shows widespread presence
throughout Metazoa including early branching Plocozoan (7richo-
plax), with notable absence in some model organisms like Drosophila
or Caenorhabditis [28]. No CLCA_N domains were found in other
eukaryotic taxa including Fungi, plants or amoebae. An analysis of
distribution of substituted and correct active site motifs in a
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phylogenetic tree of selected representatives of the CLCA_N
domain suggests that loss of proper active site in the CLCA family
occurred most likely independently five times in specific lineages
(see Fig. 3) rather than once in an ancestral CLCA_N domain.
Despite multiple occurrences of CLCA proteins in various
organisms, they often represent lineage-specific expansions, e.g.
human and Plocozoan multiple CLCAs all originate from single
proteins specific to their respective lineages (see Fig. SI).

Interestingly, CLCA_N domains were also found in a number
of prokaryotic genomes, including one archaeal genus (7hermo-
coccus) and a handful of bacterial strains from several bacterial
phyla. Strikingly, the CLCA_N-possessing strains are scattered
throughout several main bacterial phyla (see Table 2 and Fig. 4).
Thus, CLCA proteins are found in Chloroflexi, Synergistetes, alpha-,
gamma- and delta-proteobacteria, but not in more than three five
strains from each phylum.

The typical domain architecture of a metazoan CLCA protein,
as shown in Figs. 4 and 3, is repeated in bacterial homologues from
alpha-, gamma- and delta- Proteobacteria, as well as Synergistetes.
Other prokaryotic CLCA proteins (archaeal and those from
Chloroflexi) have the CLCA_N domain thrown into a different,
species-specific domain architecture (see Fig. 5). Interestingly, the
typical CLCA domain architecture is also present in two species,
the gamma-proteobacterium 7Zeredinibacter and the euryarcheon
Methanosarcina, with the CLCA_N domain replaced by two
unrelated enzymatic (peptidase) domains, Peptidase_M10 and
CHAP, respectively [22,48].

Conservation of the active site motif and general sequence
conservation in the CLCA_N family suggests its peptidase function
is broadly conserved (see the multiple alignment in Fig. 6, top, and
Fig. S2). The cysteine-rich domain following the CLCA_N core
metalloprotease domain (approx. residues 200-260 in human
CLCAL protein, see the multiple alignments) has no detectable
homologues in known proteins and may be hypothesized to be
involved in stabilisation of the peptidase domain and/or substrate
binding [31].

The CLCA_N domains of the bacterial CLCA proteins are
grouped together in a typical phylogenetic tree of the CLCA_N
domains from different organisms (see IFig. 3), however, their
precise phylogenetic relation to metazoan CLCA_N domains,
hence their origin, remains unclear. The variability of sequences in
the family precludes a reliable phylogenetic tree that could suggest
the origin of the putative HG'T event.

It is argued that phylogenetic analysis using DNA sequences,
using the codon alignment derived from protein sequence
alignment can be more reliable than the corresponding analysis
using only protein sequences [49]. In the Fig. S3, two CLCA
metalloprotease domain phylogenetic trees are presented side-by-
side: one derived from mRNA sequences and the other derived
from protein sequences, both built using the same protein
sequence alignment. The nucleotide sequence tree has generally
much better bootstrap values. The trees are generally similar in
grouping sequences from major Metazoan taxa (e.g. vertebrates,
insects, crustaceans), however they differ in placement of several
highly diverged sequences that may have been subject to specific
evolutionary pressures. Also, the two trees differ in placement of
prokaryotic sequences whereas only the protein sequence tree
groups all the prokaryotic sequences together. However, the low
bootstrap values even for the nucleotide sequence tree preclude a
reliable elucidation of the origin of the putative HGT of CLCA
domain from Metazoa to prokaryotes. Also, because of low
bootstrap values and the presence of highly divergent sequences
(e.g. the lower branches in Fig. S3, upper part), the molecular
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Figure 3. Phylogenetic tree (ANCESCON, see Methods) of selected representatives of the CLCA_N domain. Locations of proteins with
substituted and correct active site motifs. Also predicted active sites of ancestral sequences shown.

doi:10.1371/journal.pone.0062272.g003

clock is not applicable here for estimation of time of the likely
horizontal gene transfer event recorded in the tree,
The habitats of CLCA_N domain-possessing prokaryotic strains

are strikingly similar. These organisms are all aquatic and free

living, usually aerobic, however they differ in temperature

preferences and energy sources used (see Table 2). Taking
together the taxonomic spread of CLCA proteins in prokaryotes
and the conservation of their multi-domain composition, the most
plausible evolutionary scenario seems to be that of horizontal gene
transfer from eukaryotes (Metazoa) to bacteria. This direction of the
transfer 1s most likely because of the ubiquity of CLCAs in Metazoa
and their paucity in prokaryotes. Of note, an automated approach
for detection of phylogenetically atypical genes in has identified a

PLOS ONE | www.plosone.org

CLCA homologue from Shewanella as a HGT candidate [50].
Because all the CLCA-possessing organisms live in aquatic
environments, it may be hypothesised that the horizontal gene
transfer of a metazoan CLCA gene to bacterium occurred in an
aquatic milieu.

Another argument in favour of a HGT scenario could have
been conservation of CLCA genomic neighbourhoods in prokary-
otes, however, no such conservation can be observed here.
Genomic neighbourhood similarities are usually restricted to the
species level. However, protein families annotated with some
common functional themes can be found in the neighbourhoods,
e.g. protease genes (COG1988, predicted membrane-bound
metal-dependent hydrolases and COG4955, distant caspase
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Table 2. Habitats and lifestyles of bacteria and archaea possessing CLCA proteins.

oxygen
Species, strain phylum environment lifestyle requirement  energy source thermo-philic
Alkalilimnicola ehrlichii MLHE-1 y-proteobacteria aquatic free living facultative chemoautotroph =
anaerobic
Aminomonas paucivorans Synergistetes aquatic/sewage free living anaerobic chemoautotroph -
Chloroflexus aurantiacus J-10-fl  Chlorflexi aquatic/hot springs  free living facultative photoautotroph +
aerobic
Citreicella sp. SE45 a-proteobacteria aquatic free living aerobic chemoautotroph -
Desulfobulbus propionicus S-proteobacteria aquatic/marine free living anaerobic chemoautotroph =
DSM 2032 sediments
Herpetosiphon aurantiacus Chlorflexi aquatic free living aerobic chemotroph -
DSM 785
Plesiocystis pacifica SIR-1 d-proteobacteria marine/aquatic free living aerobic chemoheterotroph -
Roseiflexus sp. RS-1 Chlorflexi aquatic free living aerobic phototroph +
Shewanella sp. MR-4 y-proteobacteria aquatic free living facultative heterotroph mesophile (30-40°C)
anaerobie
Thermococcus_sp._AM4 Euryarchaeota aquatic free living facultative chemoautotroph hyper-thermofile
(Archaea) anaerobie

doi:10.1371/journal.pone.0062272.t002

homologues). Also, present in the neighbourhoods are COG2199
(diguanylate cyclase with PAS/PAC sensor), COG VicK (histidine
kinase), COG Baes (sensor histidine kinase), COG3899 (sensor
histidine kinase), COG-NtrB (signal transduction histidine kinase,
nitrogen specific). The protease and signalling domains present in
bacterial CLCA neighbourhoods are reminiscent of the vertebrate
CLCA extracellular protease functions, including the regulatory
functions.

A homologous gene acquired by a host by the way of HGT and
whose evolution therefore does not match the evolution of its host
organism has been termed xenologue [51]. The hypothetical
cukaryote-to-bacteria gene transfer described here is obviously not
the first known case of eukaryote-derived xenologues in bacterial
genomes. Recently, three-dimensional structures of two virulence
factors from Bacteroidetes bacteria have been solved. Both three-
dimensional structures turned out to be metalloproteases. Their
structural features and sequence similarity relationships strongly
suggested these proteins had been acquired from mammals by a
bacterial pathogen [52,53]. Although the prevalence of HGT
between eukaryotes and prokaryotes has only recently been
appreciated [54], its crucial importance for the evolution of
bacteria, archaea and viruses has been known for a decade and
HGT is now established as one of key mechanisms modulating the
classic Darwinian mechanisms of evolution [51,55,56].

The CLCA_X (CLCA-like) family

Among the distant subsignificant hits in PSI-BLAST sequence
similarity searches for CLCA proteins, a recurring sequence could
be noted: a 260 residue-long protein annotated as hypothetical
protein Maqu_3852, NCBI gi:120556756, from gamma-proteo-
bacterium Marinobacter aquaeoler VT8. It turned out to be a
founding member of a large group of bacterial and viral proteins,
termed herein CLCA_X. In the Pfam database, most of these
could be assigned to the uncharacterised Pfam-B_1042 domain
family. Similarity between CLCA_N protease domain and
CLCA_X is significant, as proved by HHalign alignment between
HHsenser-generated profiles of the two groups (alignment p-value
2.3E-05, see Fig. 7).
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Charting the CLCA_X family using HHsenser brought 153
proteins, after CD-hit clustering at 95 sequence identity. Cluster-
ing at 70% sequence identity yielded 115 representative sequences.
A substantial part of these, were annotated as viral proteins, in
general, only 12 out of 115 proteins did not hit any mobile
genomic elements (phage, prophage or plasmid sequences) in the
ACLAME database (see list in Table S2).

For groups of distantly related protein families, phylogenetic
trees are in general not feasible. The approximate topology of
sequence similarity networks can be visualized by graph
approaches utilising sets of pairwise similarities, e.g. CLANS
[57]. In order to locate the CLCA_N and CLCA_X families
within the context of zinc dependent metalloproteases of the zincin
fold, we applied the CLANS clustering algorithm to the complete
set of families of the Peptidase_MA clan and several more families
that were identified as related to them (see Results, first section).

In the CLANS clustering graph, the CLCA_X group locates
consistently as a sister group to CLCA_N (see Fig. 8). Even using
various significance thresholds for the CLANS analysis, one
obtains a consistent picture whereas CLCA_X 1is clustered
together with CLCA_N and close to the central zincin-like
families. The known protease family closest to CLCAs is the
Peptidase_M64 (IgA peptidase) [58], a secreted protease present in
many bacterial strains that have humans as hosts, including
pathogenic bacteria. Then, the next Pfam family most similar to
CLCA_X was PF04298 Zn_peptidase_2, an uncharacterized
bacterial family, present mostly in Fimicutes and Bacteroidetes.
Further, relatively closely to CLCA_X occurred the mostly
bacterial uncharacterised family DUF955, and the ubiquitous
Peptidase_M3 family of secreted proteases (e.g. neurolysins)
present in prokaryotes and eukaryotes alike, including humans
[59,60]. Among the above-mentioned metalloprotease families,
those  characterized (Peptidase_M64, Peptidase_M3 and
CLCA_N) are known to act as secreted proteases.

CLCA_X proteins are found in several bacterial phyla, partly
those that possess CLCA proteins with CLCA_N domains, namely
alpha-, beta-, gamma-, delta-proteobacteria, as well as Synergistetes,
Spirochaetes  and  Firmicutes. Also, Caudovirales viruses possess
CLCA_X proteins. However, CLCA_N and CLCA_X domains
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are not found in the same species with the exception of Shewanella
sp. MR-7. The sequence conservation within the CLCA_X family
and similarity to CLCA_N domains suggests a conserved protease
function and similar active site architectures.

The CLCA_X active site conforms to a
HExxHxxxD, only somewhat similar to the CLCA consensus,
which is HExxHxxxGxxDEY (see Fig. 6, bottom, and Fig. S4),
whereas either the aspartate or the second glutamate residue in the
latter motif has been proposed as a likely additional ligand of the
zinc ion [31]. The conserved aspartate in the CLCA_X active site
motif may perform the same role. The CLCA active site motif is
remarkably similar to the active site of known Peptidase_M64
proteins, the HExxHxxxxIxDEY motif [58,61]. In a recently
solved structure of a Peptidase_M64 metalloprotease (PDB code
3P1V), a second zinc ion is present, liganded by E of the conserved
DEY motif, and by three strongly conserved cysteines, located 90—
100 residues away from the HExxH motif towards the C-terminus.
Thus, such a role for the DEY motif in the CLCA_N can be
postulated.

Although many CLCA_X proteins are long (e.g. more than half
of the CLCA_X proteins are longer than 500 residues, more than
sixty are 1000 residues or longer), almost none of them contains
any known protein domains, suggesting possible existence of
completely novel protease auxiliary domains.

consensus

Conclusions

The CLCA proteins receive continued attention due to their
medical and biological relevance [62-64]. The details of the

PLOS ONE | www.plosone.org

catalytic metalloprotease activity of CLCA are being elucidated, as
well as mechanisms of ion channel activation [31].

Here, we argue for an atypical evolutionary scenario of HGT,
from multicellular eukaryotes to bacteria and archaea. Such
transfers have been described previously, yet they involved
Wolbachia, intracellular parasites of Drosophila [54,65]. A CLCA
protein from the bacterium Shewanella has been identified
previously as a putative HGT gene [50]. Although the horizontal
gene transfer of CLCA genes is only a hypothesis, it seems to be
the best explanation of the phylogenetic CLCA distribution
observed. Thus, study of distant prokaryotic homologues of CLCA
may shed light on its biological functions in Metazoa, including
humans.

We also argue that the current catalogues of proteins families,
including enzymes, are still incomplete and insufficient, as shown
by our metalloprotease structure and function prediction for eight
uncharacterised Pfam families (see Table 1). The number of
HExxH motifs and HExxH motif-containing families suggests that
other HExxH metalloprotease families may remain undicovered.
We also expect that prevalence and functional importance of
mactive homologues of known enzymes may be under-appreciat-
ed.

Methods

Survey of HExxH proteins

The Trembl database, version 04.2010, counting 10706472
sequences was used, and the HExxH proteins were extracted using
PrositeScan  [66]. The proteins with motifs identified were
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doi:10.1371/journal.pone.0062272.g006

screened against the Pfam database (version 24.0) [67]. Fold
predictions for HExxH rich domain families were performed using
the FFAS server [68,69].

The CLANS algorithm [57] was run with five iterations of PSI-
BLAST, using the BLOSUM4)5 substitution matrix and inclusion
threshold of 0.001 on nr90 and env90 sequence databases. FFor the
graphs, PSI-BLAST similarity relations with significance of P-
value below 0.1 were considered, alternatively, thresholds of 0.01,
1E-5 and 1E-10 were used. The following protein families were
included in the analysis: 52 families belonging to the Pfam

PLOS ONE | www.plosone.org

Peptidase_MA clan, and also 12 families identified herein as
similar to zincins (see Table 1): CLCA_N (PF08434), SprA-related
(PF12118), FA_desaturase (PF00487), Metallopep (PF12044),
MtfA (PF06167), DUF2248 (PF10005). DUF2265 (PF10023),
DUF462 (PF04315), DUF922 (PF06037), DUF3267 (PF11667),
DUF1025 (PF06262), DUF2342 (PF10103), and finally the
CLCA_X family described herein.
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Survey of the CLCA_N homologues. Building

representative sets of CLCA_N and CLCA_X sequences

The following sequences were used as seeds for five separate
HHsenser [70] searches: residues 1-260 of human CLCAI
(21|311033467), residues 1-312 of putative outer membrane
adhesin like protein from Shewanella sp. MR-4 (gi|113971723),
residues 575-875 of unnamed protein product from Spirochaeta
coccordes DSM 17374 (gi]|330837124), full length sequence (260
residues) of hypothetical protein Maqu_3852 from Marinobacter
aquaeolet V'T'8 (gi| 120556756), residues 700—1000 of Bbp10 protein
from Bordetella phage BPP-1 (gi|41179371). Results from the first
two and last three searches were combined into CLCA_N and
CLCA_X sequence sets. The sets were cleared of redundant
entries using the CD-HIT program [71] at 95 and 70% sequence
identity levels, creating thus full and representative sets. HHsenser
was ran on combined nr and env_nr (environmental sequences)
databases using standard parameters. The CLCA_N full and
representative sequence sets contained 160 and 92 sequences,
respectively, while the CLCA_X sequence sets contained 153 and
115 sequences, respectively.

The five HHsenser run seeds were significantly similar, as
judged by the FFAS profile-profile algorithm [72]: CLCA1 human
vs Shewanella: Zscore —56.3, 12% sequence identity over 255
residues; Marinobacter Maqu_3852 vs Bordetella phage BPP-1:
Zscore —33.6, 13% sequence identity over 182 residues;
Manmnobacter Maqu_3852 vs Spirochaeta gi|330837124: Zscore
—32.6, 13% sequence identity over 181 residues. Similarities of
the CLCA_N and CLCA_X families were also confirmed by
HHalign [73] using HHsenser-generated multiple sequence
alignments for human CLCAl and Marnobacter protein
Maqu_3852 as input. HHalign alignment was significant (E-value
3E-05) and covered 98 residues (see Fig. 7).
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Phylogenetic tree reconstruction

A phylogenetic tree of the metazoan CLCA_N domains was
built in order to establish the origin of CLCA_N domains with
substituted active sites. For preparation of multiple sequence
alignment, sequences of CLCA_N domains from various groups of
organisms vertebrates, invertebrates and Prokaryota were manually
selected. These sequences possessed both the correct and
substituted active sites. The T-coffee [74] program with standard
parameters was used to build the alignment. The obtained
alignment was refinement using the G-blocks algorithm [75] to
eliminate poorly aligned positions and divergent regions. The G-
blocks option allow less strict flanking positions was used. The
refined alignment was used to create phylogenetic tree using the
ANCESCON program [76]. This algorithm provided reconstruct-
ed sequences for the tree root and all the internal nodes. The
maximum likelihood method for estimaion of substitution rate
factors was applied for estimation of the likelihood of residues at a
site given a tree.

Other methods

For visualization of the reconstructed phylogenetic tree, the on-
line tool iTOL [77] was applied. The sequence logos were created
using the aligned Pfam seed sequences for the protein domains
studied and the Weblogo tool, weblogo.berkeley.edu [78].

Identification of similarities to phage and viral proteins was
performed using Blast queries on the ACLAME database [79].

The aminoacid substitution frequencies of residues in the
HExxH motif were compared against the corresponding frequen-
cies observed generally in proteins, as encoded in the PAM250
matrix [80]. Protein domains were identified using the Pfam
database Pfam HMM tool [42].
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Figure 8. CLANS sequence similarity network for zincin-like
proteins. Pfam clan Peptidase_MA and other zincin-like proteins
included (see Methods). Four different BLAST E-value thresholds used
for CLANS clustering. Pfam clan Peptidase_MA proteins: Matrixin
(Peptidase_M10): green, Peptidase_M1: magenta, Reprolysin: cyan,
Zn_peptidase_2: brown. Others in the Peptidase_MA clan: black
Proteins not included in the Pfam clan Peptidase_MA: CLCA_N: red,
CLCA_X: orange, Others outside the Peptidase_MA clan: blue. A)
Relations with significance of P-value below 0.1, B) P-value below 0.01,
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doi:10.1371/journal.pone.0062272.g008

Supporting Information

Figure S1 Phylogenetic tree of human and Plocozoan CLCA_N
domains.
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